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Recently, a recursion relation has been developed, generating the four-dimensional integrand of the
amplitudes of N' = 4 supersymmetric Yang-Mills theory for any number of loops and legs. In this paper,
I provide a comparison of the prediction for the two-loop six-point maximally helicity-violating integrand
against the result obtained by use of the leading singularity method. The comparison is performed

numerically for a large number of randomly selected momenta and in all cases finds agreement between

the two results to high numerical accuracy.
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L. INTRODUCTION

Scattering amplitudes in gauge theories are fascinating
quantities partly because they provide a direct link between
theory and experiment and partly because their investiga-
tion continues to uncover rich structures in quantum field
theory. Our understanding of computing amplitudes has
undergone a revolution over the past decade and a half,
owing in large part to the development of on-shell recur-
sion relations for tree-level amplitudes [1,2] and a purely
on-shell formalism for loop-level amplitudes, the modern
unitarity method [3-34]. These powerful modern methods
have to a large extent made the more traditional approach of
Feynman diagrams obsolete for tree-level and one-loop am-
plitudes. Thus, the current frontier is the development of
systematic approaches for computing two-loop amplitudes.

The maximally supersymmetric gauge theory in four
dimensions, the 2N" = 4 super Yang-Mills theory, has at-
tracted a great deal of effort over the past several years,
serving as a laboratory for testing new ideas. This has lead
to the discovery of a surprising new symmetry in the planar
limit, the so-called dual conformal symmetry, which,
although not inherited from the theory’s Lagrangian in
any obvious way, is nonetheless a property of its ampli-
tudes. This symmetry combines with the standard super-
conformal symmetry, dictated by the Lagrangian, to form
an infinite-dimensional symmetry algebra, the Yangian of
the superconformal group. This integrable structure has
been intensively studied [35-50] and has recently been
exploited successfully to determine the theory’s scattering
amplitudes recursively in the number of loops [51]. Another
spectacular recent advance, following earlier insights based
on a reformulation of the S matrix of N =4 SYM as a
contour integral on a Grassmannian manifold [52-59]—but
this time extendable to any planar supersymmetric gauge
theory—has been the development of recursion relations a
la that of Britto, Cachazo, Feng, and Witten (BCFW) for the
(strictly four-dimensional) loop integrand [60—63].

*Kasper.Larsen @cea.fr

1550-7998/2012/86(8)/085032(50)

085032-1

PACS numbers: 11.15.—q, 11.15.Bt, 11.55.Bq

Ensuring the soundness of new ideas requires perform-
ing careful tests of the results they produce. In this spirit,
the question we wish to address in this paper is whether the
result in Refs. [60,63] for the two-loop six-point maximally
helicity-violating (MHV) integrand of N = 4 SYM the-
ory can be reproduced by more traditional methods. In the
generalized-unitarity-based approach, an L-loop amplitude
is expressed as a linear combination of known basis inte-
grals, plus terms that are rational functions of the external
momenta (and which will not be discussed in this paper),

Amplitude = Z coefficient;Integral; + Rational.  (1.1)
JjEBasis

The coefficients of the integrals (evaluated in dimensional
regularization) are obtained by changing the integration
range from (R*2€)®L into specific contours o of real
dimension 4L, embedded in C* and encircling the points
where the maximum number of denominators of the inte-
grand become zero. Unlike the path followed in the leading
singularity method [64—68] in which one allows any choice
of contour o (by virtue of first having expanded the
amplitude in an artfully chosen, typically overcomplete,
basis), in generalized unitarity the contours ¢ are subject to
the constraint that any function which integrates to zero on
(R*~2€)®L must also integrate to zero on o [34]. As argued in
this paper, multidimensional contours o satisfying this con-
sistency condition are guaranteed to produce correct results
for scattering amplitudes in any gauge theory, not only N =
4 SYM theory. The change of integration contour has the
effect of transforming the integrals in Eq. (1.1) into contour
integrals (which are easily evaluated by taking residues). By
making the various allowed choices of contours o one pro-
duces a set of linear equations satisfied by the integral coef-
ficients which can then be solved to determine them uniquely.

The set of linear relations between two-loop integrals
includes the set of all integration-by-parts (IBP) identities
[69—-87] between the various tensor integrals arising from the
Feynman rules of gauge theory; however, at present a com-
plete knowledge of such relations involving six-point two-
loop integrals is not available [88]. For this reason, in this
paper we will carry out the analysis following the leading
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singularity method, allowing any contour ¢. This approach
was shown to reproduce the result of a unitarity-based calcu-
lation [89] for the parity-even part of the two-loop six-point
MHYV amplitude in Ref. [67]. By expressing the full two-loop
amplitude (i.e., including both parity-even and -odd parts) in
terms of the same basis as used in Ref. [67], we therefore
expect the leading singularity method to also produce the
correct result for the parity-odd part of this amplitude.

The results of Refs. [60,63] are expressed in terms of a
different basis from that of Ref. [67], and thus it is not
meaningful to check agreement between individual inte-
gral coefficients in either representation. A quantity that
can be meaningfully compared is the two-loop integrand:
in general, in the planar limit of any field theory, the
loop integrand is a well-defined rational function of the
external momenta (which for example can be thought of as
being produced by the Feynman rules). We have evaluated
the integrand for a large number of randomly selected
momenta and in all cases find agreement with the recent
literature to high numerical accuracy [90].

An interesting spinoff of the calculation in this paper are the
potential applications of the intermediate results (in particu-
lar, the enumeration of the global poles of the integrand and
the expressions for the cut integrals). Once all the necessary
IBP relations do become available, we expect these results to
greatly facilitate the task of determining the maximal-cut
contours that allow the extraction of integral coefficients in
any two-loop six-point gauge theory amplitude.

A complementary approach is that of Refs. [91-95], in
which the heptacut integrand is reconstructed by polyno-
mial matching in similarity with the approach of Ossola,
Papadopoulos, and Pittau (OPP) [21]. A recent paper by
Zhang [96] adds tools required in such an approach for
reducing integrands to a basis of monomials.

This paper is organized as follows. In Sec. II, we explain
conventions and introduce notation used throughout the
paper. In Sec. III, we compute the heptacuts of the general
double-box integral and of the factorized double box with
six massless legs. In Sec. IV, we apply these heptacuts to the
ansatz for the two-loop six-point MHV amplitude of N =
4 SYM and employ the leading singularity method to obtain
linear equations satisfied by the integral coefficients. We
discuss how these equations can be used to directly obtain
the parity-even part of the integrand. We then explain how
to evaluate numerically the full N = 4 SYM integrand
(i.e., including both parity-even and -odd parts) as obtained
by the leading singularity method and report agreement
with the resultin Refs. [60,63]. Finally, in Sec. V we provide
conclusions and suggest directions for future investigation.
In Appendix A, we provide full details of all the heptacuts of
the two-loop six-point MHV amplitude.

II. NOTATION AND CONVENTIONS

In this section we explain conventions and introduce
notation used throughout the paper.
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All external momenta in an amplitude are outgoing and
will be denoted by k;. We will make use of the spinor
helicity formalism [97-104] in which a given massless
four-dimensional momentum is written as a tensor product
of two massless Weyl spinors,

kl}-t = uy(k)otu, (k) = u_(k)o u_(k;). (2.1
We define the spinors
Ai=ua(k), A= u-(ky), 2.2)

and the Lorentz invariant inner products formed out of the
spinors,

(ijy =G 1j") = u_(ku.(k)),

- (2.3)
[ij] = G"1i7) = uy (ku—(k;),
which satisfy
pljil = 2k; « k;. 2.4)
Spinor strings are defined as follows
(K7 1P+ Q1K) = (KT IPIK) + (KT 1QIKT)  (2.5)
<Ki_|]?’|Kj_> = (K;P)[PK;] if P> =0. (2.6)

We will use the following notation for sums and invariant
masses of external momenta,

kiji =k + otk (2.7)
Siyiy = (ki + 00+ kg )? (2.8)
S; = K}. (2.9)

Throughout we will make use of the “flattened”” momenta
introduced in Refs. [21,23]: for a pair of momenta K, K5,
define the quantity

Y= = (K| - Ky) = A, Ay = (K, - K,)* — KiK3,

(2.10)
which can take two different values if both momenta are

massive (i.e., if 15, # 0). For a given value of y; one
defines a pair of massless “flattened” momenta as follows

Kb, = K = (81/712)K;
- 1=8,8:/7i.
K> — (S2/v1+)K,
1= 5152/7%45
If one of the momenta K; or K, is massless, v+ can only

take one value, and we will use the following abbreviated
notation:

>

(2.11)
KZbi =

v1=2K,-K,
K{’=K1 _(Sl/’}’l)Kz .
K2"=K2—(S2/y1)K1

$185,=0 = (2.12)

Similarly, we will use the notation
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(2.13)

, Ky —(S4/v2+)Ks

K = 1 — S4Ss/y2.
> T (2.14)

Kb — Ks — (Ss/v2+)Ky

> 1 - 5455/7§¢
Y2 =2K, Ks

$485=0 = K=Ky~ (S4/72)Ks . (2.15)

K:=Ks—(Ss/v2)K,

Finally, we will denote the elements of the dihedral group
Dy as follows

o1 =1(01,2345,6)
03=103,4561,2)
05=1(56,1,273,4)
07 =1(6,54321)
09 =1(4321,6,5)
o =12,1,65,4,3)

0, =102,345,61)
o,=14,56,1,23)
0 =1(6,1,2,3,4,5)
03 =1(543216)
op=03216754)
o =1(1,654732).

(2.16)

III. HEPTACUT TWO-LOOP INTEGRALS

As preparation for computing the generalized-unitarity
cuts of the two-loop six-point amplitude, in this section we
compute the heptacuts of the general double-box integral
and the factorized double-box integral, illustrated below in
Figs. 1 and 5. These integrals are part of the linear bases in
which the two-loop six-point N =4 SYM helicity
amplitudes were expanded in Refs. [67,89,105]. In this
paper we shall use the (overcomplete) basis in Ref. [67]
(illustrated for convenience in Fig. 7 in Sec. IV). As
explained further in Sec. IVA, the heptacuts of the remain-
ing integrals in this basis are easily obtained from the
heptacuts of the double box integrals by multiplying

K

Ky \ / Ky
A Y A
. / b by \
K1 K5
K
FIG. 1. The general double-box integral.
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additional factors (involving propagators and possibly
numerator insertions) onto the integrand of the latter.
From the knowledge of the generalized cuts of all basis
integrals, the cuts of the amplitude are easily obtained, as
will be explained further in Sec. IV.

We emphasize that the generalized cuts considered
throughout this paper are strictly four-dimensional (as
opposed to (4 — 2e)-dimensional). Moreover, we will
suppress the Feynman ie-prescription when writing propa-
gators. Finally, the internal lines in all diagrams are taken
to be massless.

A. The maximal cut of the general double box

In this section we will compute the maximal cut of the
double box integral where the vertex momenta K; shown in
Fig. 1 are typically sums of several lightlike momenta,
K; =k + -+ +k with k%j = 0. Setting D = 4 — 2¢,
this integral is defined by

dP¢, dP¢, (1 1 1
QmP Qm)P 5% (€ — K1)2 (€, — K, — K2)2
% 1 1 1 1 )
(€ + € + Kg)* €5 (€, — Ks)* (6, — K4 — K5)*)
(3.1)

where the integration is over real Minkowski space for both
loop momenta. By considering the heptacut of the general
double-box integral we can easily obtain the heptacuts of
all the double boxes appearing in the basis in Fig. 7 (in
Sec. 1V) by taking appropriate vertex momenta to be
massless. As will be explained in Sec. IIIAS, in the
case of six massless external momenta, there are three
qualitatively distinct ways of distributing the momenta at
the vertices of the double box. In order to streamline the
presentation we will first compute the heptacut of the com-
pletely general double-box integral, making no assumptions
about masslessness of any vertex momenta. Subsequently,
we will describe each of the three cases in turn.

Formally speaking, the four-dimensional heptacut of
(3.1) is obtained by replacing each of the seven propagators
by a §-function whose argument is the denominator of the
propagator in question, and replacing the D-dimensional
integration measure by the corresponding four-dimensional
measure (up to factors of 27, depending on conventions).
Thus, the heptacut replaces the double-box integral in (3.1)
by the integral

Jroma = f A 05(62)5((0, — Ky)?)

X 8((6) — Ky = K2)?)8((€) + €5+ Ke)?)

X 8(£3)8((¢, — K5)*)8((€; — Ky — K5)?).  (3.2)

However, this integral only receives contributions from
regions of integration space where the loop momenta solve
the joint on-shell constraints
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=0 (3.3)

(6, —K)>=0 (3.4)

(€, — K —K)*=0 (3.5)
=0 (3.6)

(€, — K52 =0 (3.7)

(€, — Ky — Ks5)> =0 (3.8)
(€, + €, + K¢)> =0, (3.9)

which in general only have solutions for complex loop
momenta (¢, {,) € C* X C*.

The natural definition of &-functions with complex
arguments involves contour integrals—integrating out a
variable ¢ in an integrand involving &-functions will fix
g to some value gg; in the language of contour integrals,
this corresponds to integrating in the complex g-plane
along a small circle centered at ¢,. Indeed, as observed
in Refs. [106,107], Cauchy’s residue theorem implies that
the localization property

j dqd(q — q)f(q) = f(go). (3.10)

remains to hold if we define 8(q — ¢q,) = ﬁ ﬁ and take

the integral to be a contour integral along a small circle in
the complex g-plane centered at ¢.

By analogy, taking the four-dimensional heptacut of the
double-box integral (3.1) should really be understood as a
change of integration range from R? X RP to a surface (of
real dimension 8) embedded in C* X C* while leaving the
integrand in Eq. (3.1) unchanged. The maximal-cut inte-
gral is thus a multidimensional contour integral whose
contour is in general a linear combination of tori encircling
the so-called global poles of the integrand. These are
points (€;, €,) € C* X C* where all seven propagators in
(3.1) become on-shell [108]. The change of contour away
from real Minkowski space renders the double-box integral
IR and UV finite, and one can therefore disregard the
dimensional regulator part of the measure d 2¢€¢,d 2¢{,
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and the (—2€)-dimensional components of the loop
momenta.

In the following we will continue to write multidimen-
sional contours symbolically in terms of §-functions, as in
Eq. (3.2), as we find the latter notation more suggestive. As
it turns out, in all cases considered in this paper, the only
respect in which the multidimensional contour integrals do
not behave like integrals of §-functions is the transforma-
tion formula for changing variables: Given a holomorphic
function f = (fy, ..., f,) : C* — C" with an isolated zero
[109] at a € C", the residue at a is computed by the
integral over the contour I'.(a) ={z € C": |fi(2)| =
€,i=1,...,n}. This contour integral satisfies the trans-
formation formula

1 h(z)dzy A -+ ANdz,  h(a) G.11)
(2771)” Ic(a) fl(z) e fn(Z) det,-ng—!f, .

which, crucially, does not involve taking the absolute value
of the inverse Jacobian. This ensures that this factor is
analytic in any variables on which it depends, so that
further contour integrations can be carried out.

In order to visualize the multidimensional tori in ques-
tion, it turns out to be convenient to use the following
parametrization of the loop momenta:

b b — _
O = a K" + an KoM 4 as(KP T |y#IKS )

+ g (K5 ly# K ) (3.12)
th = ﬂlK:M + 321{;# + By(Ke ly*IKE)
+ ByKET|yPIKE ). (3.13)

The virtue of this parametrization is that it linearizes as
many of the cut constraints as possible, and in turn it
becomes easy to locate the positions of the global poles
of the integrand in the coordinates «y, ..., ay, 81, .- ., Ba-
The multidimensional tori discussed above are then easily
obtained as products of small circles each encircling one of
the entries of a given global pole.

After changing variables from the components of the
loop momenta €} and €} to the parameters «; and 3;, the
heptacut of the double-box integral becomes

J= f]'[ da;dB, (det ‘W)(d t aﬁj)c‘i(a]az 4a3a4)5((a1 - 1)<a2 - %) - 4a3a4)5<<a1 _5_ 1)

7172

S
X az_;_

(,32 S 1) - 4,83,34)5((61 + €, + Ko)*lparam)»

1) ~ dasa)3(B1a - 4B3B4)5<<Bl

- %)(ﬂz — 1)~ 4p:8,)5((

1 Y1

S
__5_1>
Y2

(3.14)

where the subscript “param’ on the argument of the §-function in the last line indicates that it is to be evaluated in the
parametrization (3.12) and (3.13) and where the Jacobians associated with the change of variables are, respectively [110]
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et €%
M)ia—l = l'}/%, det 2
a;

det L2
yJ 8181

=iyd (315

In the parametrization (3.12) and (3.13), the six on-shell
constraints (3.3), (3.4), (3.5), (3.6), (3.7), and (3.8) which
only involve a single loop momentum are solved by setting

) = Y1(S2 + v1) = §182(8y + v1)
7’%_5152 ’ 7’1(5152_’)’%)’
L SIS(S )8+ yy)
azy = — 4(’)/% — 5152)2 (316)
_ 8485(S5 + 7)) ~ 7Sy t+ )
Bi=_—co 0y BT i
¥2(84Ss — ¥3) Y2 — 8485
S4S5(Ss + 75)(Ss + 72)
BBy = — 42504 TVal0s T 3.17)

4(y3 — S485)?

We observe that the integrations of the &-functions in
(3.14) unambiguously fix the values of «y, a,, B, B>.
After imposing the last on-shell constraint (3.9), the four
variables a3, a4, B3, B4 are subject to three relations, and
one is free to choose either one of them to be an uncon-
strained free complex parameter z. Each of these four
choices give rise to different contributions to the heptacut
of the double box. As will be explained further in
Sec. II A5, these contributions correspond to the various
existing classes of solutions to the on-shell constraints
(3.3), (34), (3.5), (3.6), (3.7), (3.8), and (3.9), and the
heptacut (3.14) is an appropriately weighted sum of these
contributions.

In Sec. IIT A 1 below we compute in detail the contribu-
tion to the heptacut obtained by letting z = a3 be the
unconstrained parameter. The results for the remaining
contributions are quoted in Secs. IIIA2-IITA4 and
are obtained in an entirely analogous way. Finally, in
Sec. [T A5 we explain how to assemble the heptacut of
the double-box integral from its various contributions.

1. Leaving 7 = a5 as the free parameter

In this example, we aim to leave z = a3 as the uncon-
strained parameter, and we will therefore integrate out «/,
oy, ay and By, By, Bz, B4. This will proceed in three
stages: first we integrate out the three é-functions involv-
ing only the a-variables; then we integrate out the three
o-functions involving only the B-variables; finally, we
integrate out the remaining S-variable.

Thus, we start by considering the following integral
whose integrand consists of all the d-functions in (3.14)
that only involve the a-variables,

PHYSICAL REVIEW D 86, 085032 (2012)

Jo= fdaldazda48(a1a2 —dasay)

X 5((01 - 1)(“2 _%) —4a3a4)

Y1 Vi

This integral is the inverse Jacobian associated with the
change of integration variables from the a-parameters to
the arguments of the &-functions. It is straightforwardly
evaluated to yield

1

Jo=—cs—0, (3.19)
4(1 =2 )ay

where we recall that the &-functions in Egs. (3.14) and
(3.18) are a short-hand notation for multidimensional con-
tour integrations. As these are subject to the transformation
formula in (3.11), which involves the Jacobian of the
transformation rather than its absolute value, there is no
absolute value in Eq. (3.19).

Second, we consider the following integral whose inte-
grand consists of all the &-functions in (3.14) that only
involve the B-variables,

1= [[aB1dp:dp.5(5: 6~ 4p35)
o( (& —%)(ﬁz ~1)-4pspy)

xa((ﬁl—%—1)(&—%—1)—433&) (3.20)

In addition to integrating out 3;, 3,, we have here chosen
to integrate out B,. Alternatively, we could have imagined
integrating out (3; but this would ultimately lead to the
same final result. Once again, the integral Jg is a Jacobian
and is straightforwardly evaluated to yield

1

Jg= v —. (3.21)
P a0 - 2B,

Putting together the partial results in Egs. (3.15), (3.19),
and (3.21) and applying the loop momentum parametriza-
tion to the argument of the remaining factor §((€; + €, +
K¢)?|param) in Eq. (3.14) one finds the expression

Y172 fda3d.33
32(y7 — S182)(¥3 — 84S5) asfs3
X 8(B1B3 + By + B_1B3'),

(3.22)
where
By = (K ly K2 Yo K™ + a K"

+ as(Ky T Iy#IK3 ) + K3 Iy K T) + KE)
(3.23)
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By = (B1K;, + K3, + Kq,)
b b _ _
X (a K"+ ay K + ay(Ky ™ |y#IK:™)

1
+ a3y KT ) + Kg) = 5 S (3.24)
B —_ S485(S4 + ¥2)(Ss + v K2 |y, |K;™)
B 4(y5 — 84S5)?
X (a]K{’/‘ + azK;" + a3(K1b7|'y“|K2t’7>
+ ay(K3 " ly*IKP ) + KE). (3.25)

We can integrate out 35 using
d _ _
[ s + B+ BB = (8 — 4B
3
(3.26)

In conclusion, leaving z = a3 unconstrained and integrat-
ing out the remaining loop momentum parameters from
(3.14) produces the following contribution to the heptacut
of the double box,

Jl = Y172
TN 32(y3 = 8182)(v3 — S485)

<4 L By —4B,()B_, ()2 (327)
Z

where we have relabeled a; = z and made the dependence

of By, By, B_; on z explicit. Although the factor (- - -)~!/2

appears to have a branch cut, the radicand turns out to be a

perfect square in all cases considered in this paper, and the
1

integrand in Eq. (3.27) always takes the form - As we

will discuss further in Sec. IV, we will allow the integration
contour in Eq. (3.27) to encircle any individual singularity
of the integrand.

Note that the form of the final result (3.27) does not
depend on the order of integration: if one instead chooses
to integrate out ¢y, oy, a4 and By, B,, B3 from (3.14) and
subsequently integrates out B4, one finds (3.27) as may
easily be checked.

2. Leaving 7 = «, as the free parameter

Integrating out «;, a,, a3 and B;, B, B3, B4 from
(3.14) produces

Jl _ _ Y17Y2
T 32(yT = 8182)(¥3 — 54S5)
d
x f B - BB ) (329
where

. _ _ b b
B[(Z) = <K: |'}’,u,|K5b >(a1K1M + aZKQM
+ ay(KPTlyHIKy ) + (KT lyRIKET) + KE)
(3.29)
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By (2) = (B1K;, + BaK2, + Key)
b b _ _
X (a K"+ a,K)* + (K~ |y#|KS™)

1

 84S85(Sy + ¥,)(Ss + Y XKe |y K 7)
4(7% - 5455)2

b b _ _
X (K" + a K" + as(KP lyHIKS ™)
+ Ky ly*IKE ™) + KE).

B, (2) =

(3.31)

Again this result is independent of the order of the
integrations.

3. Leaving z = 35 as the free parameter

Integrating out a4, a,, as, a4 and B, B,, B4 from
(3.14) produces

Jl _ _ Y172
TP 30(y1 = 8,8,)(¥3 — S4S5)

<§ B A2 — 44 (DA ()2 (3.32)
Z

where
Ay(2) = (K}~ ly* K3 )B1KS, + BaK2,
+ 2Ky ly K ) + BKS ™ |yl K2 ™) + Ko,)

(3.33)
A()(Z) = (alKlbﬂ + azK;’“ + Kg)
X (BK:, + BaKE, + (K |y, lKE™)
1
+BUKE Iy KE ) + K~ 58 (334

_8i18:(8 + y)(S, + YIXKE™ | y#IKP ™)
4(3’% - 5152)2

X (Bi1K;, + BoKs, + 2Ky 1y, |KS™)
+ ,34<K5L’7|7M|Kk7> + Kop)-

Again this result is independent of the order of the
integrations.

Aﬂ(Z) =

(3.35)

4. Leaving 7 = 3, as the free parameter

Integrating out «;, a,, a3, a4 and By, B,, B3 from
(3.14) produces

Joep, = Y172
TP 32(yt = 5180)(v3 — S4S5)

X }(%(A(;(z)2 —4A% (A, (2)712, (3.36)

where
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A} (2) = (Kp~ ly*IKE™)(B 1KY, + BaKE,
+ By(KS ly |Ke™) + ZKE |y, |KET) + K,,)

(3.37)
Aj(z) = (alKII’“ + azK;“ + K})
X (ﬁﬂqﬂ + ﬁzK;M + B(K; |y lK2™)
1
+ Z(KE |y |KET) + Kg,) — = S6 (3.38)

2

~85185(8; + yi)(S, + yiIXK: ™ lyHIKE™)

A (2) =
Sl 4(yi = 515,)
X (B1K}, + BaKE, + Ba(K: |y, lKe™)
+ K|y, |KE7) + Kep) (3.39)

Again this result is independent of the order of the
integrations.

In the section below we will explain how to assemble the
heptacut double-box integral from the individual contribu-
tions in Egs. (3.27), (3.28), (3.32), and (3.36).

5. Assembling the heptacut double box from
its contributions

As alluded to in the beginning of this section, there
are three qualitatively distinct ways of distributing six
massless external momenta at the vertices of the double
box. In this section we shall describe the classification
of these cases, and how to assemble the heptacut
double-box integral from the individual contributions in
Egs. (3.27), (3.28), (3.32), and (3.36) in each of these
cases. Before proceeding to describe the classification of
the three cases, it is useful to appreciate that the indi-
vidual contributions to the heptacut arise from the differ-
ent existing classes of solutions to the joint on-shell
constraints (3.3), (3.4), (3.5), (3.6), (3.7), (3.8), and (3.9).
Indeed, these seven constraints leave one unfixed degree of
freedom z in the two loop momenta €, {5, and in general
there are several classes of solutions. Each class is parame-
trized by a free complex variable z and has the remaining
seven loop momentum parameters «;, 3; fixed to specific
values. Two classes S and S’ are identical if and only if
there exists an invertible holomorphic function ¢(z) that
maps one class into the other; that is, ¢(a;|s) = a;|s and
P(Bils) = Bils fori=1,..., 4.

The classification into the three cases is given as stated
below.

(i) Casel: all three vertical propagators in Fig. 1 are part
of some three-particle vertex. There are six classes of
kinematical solutions to the on-shell constraints
(3.3), (34), (3.5), (3.6), (3.7), (3.8), and (3.9), illus-
trated in Fig. 2. The heptacut double-box integral is
J =36 J; where
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[given inEq.(3.32)]

—a iven in Eq.(3.27
[given inEq.(3.36)]

[given inEq.(3.28)].

Ji = Jl=p,
Jy=Js=Jl|
I3 =Jl:=p,
Jy=Js = le:a4

This case encompasses heptacuts #1-5 and #8, dis-
cussed in detail below in Secs. IVA, A2-A5and A 8
where one can also find explicit results for the
on-shell values P;, Q; etc. quoted in Fig. 2. To
determine, for example, the function B(z) in solu-
tion Ss, one expresses the loop momenta appearing
in the on-shell constraint (€, + €, + K¢)*> = 0 in
their parametrized form (3.12) and (3.13), sets the
values of the parameters «;, B; equal to those quoted
in Egs. (3.16) and (3.17) and below solution S5 in
Fig. 2 and then solves the on-shell constraint for 5.

(i) Case II: the left- and rightmost vertical propagators

in Fig. 1 are part of some three-particle vertex, but
the middle one is not. There are four classes of
kinematical solutions to the on-shell constraints
(3.3), (3.4), (3.5), (3.6), (3.7), (3.8), and (3.9), illus-
trated in Fig. 3. The heptacut double-box integral is
J =% J; where

Jy = Jl=p, [given in Eq.(3.32)]

J, =J|,— [given in Eq.(3.36)]
2Tk (3.41)

Jy ==, [given inEq.(3.28)]

Jy = Jl=a, [given inEq.(3.27)].

This case encompasses heptacut #6, discussed in
detail below in Sec. A 6 where one can also find
explicit results for the on-shell values P, Q; etc.
quoted in Fig. 3.

(iii) Case III: the two rightmost vertical propagators in

Fig. 1 are part of some three-particle vertex, but the
leftmost is not. There are four classes of kinemati-
cal solutions to the on-shell constraints (3.3), (3.4),
(3.5), (3.6), (3.7), (3.8), and (3.9), illustrated in
Fig. 4. The heptacut double-box integral is J =
>+, J; where

Ji=Jy=1J
Jy=Jy=Jl.—p,

=B, [given inEq.(3.32)]
[given inEq.(3.36)].

(3.42)

This case encompasses heptacut #7, discussed in
detail below in Sec. A 7 where one can also find
explicit results for the on-shell values P7", Q5 etc.
quoted in Fig. 4. In this case, because both K| and
K, are massive, there are two solutions for yi
[given in Eq. (2.10)] and therefore two pairs of
flattened momenta (K}, K5.) [see Eq. (2.11)].
The on-shell values of the loop momenta are inde-
pendent of which sign is chosen,
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Ky

e

/7/ 0 Lo /7/ 0 LI
K1 K5 Kl KS
Solution Sy, obtained by setting Solution Sy, obtained by setting
ag =Py B3 =z Qg =~z B3 = Q%
Oé4:0 54:0 Oé4=0 54:0
Kix Q /1/K 4 [Qm Q /Z/K 4
/_7/ i /AL\ {y - /7/ b /“\ 2 .

- . x . .
1 K K5 1 K Ky
Solution Ss, obtained by setting Solution &4, obtained by setting
a3 =0 B3 =0 az =0 B3 =0
ay =P Bs=2 ay =2z Bs =1

=
x
=

K K
Solution Ss, obtained by setting Solution Sg, obtained by setting
az =0 B3 = B3(2) az =z ps =0
g =z Bs=0 as =0 B = Ba(2)

FIG. 2. The six kinematical solutions to the heptacut constraints for the double-box topology in case I. For all solutions, the loop
momentum parameters («, a,, B}, B,) are set equal to the values given in Egs. (3.16) and (3.17). Any blob connecting more than three
legs does not have a well-defined chirality and its sign should be ignored. For S5 and S, the parameters 85 and B, are determined by
solving the on-shell constraint (£; + €, + Kg)?> = 0 for the respective parameter. The on-shell values P, Q; etc. are functions of the
external momenta; examples may be found in Secs. IVA, A 2-A 5 and A 8.
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ks ks by ks ks ko
\'\ ! Y ! fr/ \'ﬁ ! Y ! //
I \/ I } I \/ I I
| Y | | /Y |
' / ! T \j T
VAR BT VA R
k ks k k
! k6 K ! ]{?6 E
Solution Sy, obtained by setting Solution Sy, obtained by setting
(ki K lks ) (2—QF) _ = =
a3 =~y Ps=2 =0 Pz =0
_ ? _ — <k5 ‘km“% ) (2—Q1) ﬁ _
as =0 Pi=0 = 3 h(eska)-Q5) P4 Z
ks & ky Ky ks ka

y

k ke

Solution Ss, obtained by setting

— _ Q3(P—Ps)(2—P1)
a3 =0 Bs =5 mm

Ba=0

gy = Z

)
W/

k o ks,
Solution Sy, obtained by setting
Q3 = 2 ﬁg =0
=0 By= Q2(P3 —Pg)(2—P7)

T TPE-PG-PY)

FIG. 3. The four kinematical solutions to the heptacut constraints for the double-box topology in case II. For all solutions, the loop
momentum parameters («;, a,, B}, B,) are set equal to the values given in Egs. (3.16) and (3.17). The on-shell values P;, O, etc. are
functions of the external momenta and may be found in Sec. A 6.

Gaf, af, af, af) =4 (a], a5, a5, a])
(3.43)

(BT, By, BT, By) = €2(Br. By, By By):
(3.44)
£t = 8188y F y)(S + ) (3.45)

4(yi? — 815,)°

B. Heptacut of the factorized double box

For the double-box integral considered in Sec. IIT A
there are various ways of distributing six external momenta
at the vertices, and we therefore computed the heptacut
with an arbitrary number of external legs. In contrast, the
factorized double-box integral

e 11 1 1
( 2m)P (5_% 6, — k1)2 €, — k12)2 € — k123)2)
e, 11 1 1
( Q)P 6 (b — ke)? (€3 — kse)? (€5 — k456)2),
(3.46)

with which we shall be concerned in this section, admits a
unique way of distributing six (cyclically ordered) external
momenta at its vertices, and we therefore restrict ourselves
to this case. The factorized double box with six massless
legs is illustrated in Fig. 5 below.

We consider the heptacut defined by imposing the fol-
lowing joint on-shell constraints

©Z=0 (3.47)

085032-9
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by
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ki

>

oFf = P B3 ==z
+
=g A0
ky ks
) J
——
——
ko b . u\
kl k6
Solution Ss3, obtained by setting
_ & -0
d- B
af = PljE Ba =z
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ks

e

R

ke
Solution Ss, obtained by setting
of = LU 5o
af = i:c Ba=0
ks

ke
Solution Sy, obtained by setting
043 = % B3 =0
+_ ¢ QF =-QF

Ba=2

ar = X2
4 PE* QT 2-Q;3

FIG. 4. The four kinematical solutions to the heptacut constraints for the double-box topology in case III. In this case, because both
K, and K, are massive, there are two solutions for yi- and therefore two pairs of flattened momenta (K f’t, K;t). For all solutions, the
loop momentum parameters (@, @y, 81, B,) are set equal to the values given in Egs. (3.16) and (3.17). The on-shell values Py, Q5 etc.
are functions of the external momenta and may be found in Sec. A 7. The quantity £~ is defined in Eq. (3.45).

(€ — ky)? = (3.48)
(6, — k1) =0 (3.49)
3Z=0 (3.50)

(€, — ke)* =0 (3.51)
(€ = ksg)* =0 (3.52)
(€, — kysg)? = 0. (3.53)

This is not a maximal cut: we deliberately leave one degree
of freedom z in the loop momenta unfrozen to make
manifest the singularities in the Jacobians arising from

changes of variables. This in turn makes the global poles
of the integrand easy to identify.

We will use the following parametrization of the loop
momenta

O = a ki + aokh + asky |y ks ) + aglky [y*lky)
(3.54)

€5 = BikE + Bokl + Balks ly#lkg ) + Balkg 1y#1k5).
(3.55)
The constraints (3.47), (3.48), (3.49), (3.50), (3.51), and (3.52)
form a special case of Egs. (3.3), (3.4), (3.5), (3.6), (3.7), and
(3.8) after appropriately relabeling the external momenta.
From Egs. (3.16) and (3.17) we then find that the constraints
are satisfied by setting

085032-10
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ks ky

ko ks

FIG. 5. The factorized double-box integral with six massless
external momenta.

A3y = 0

B3B4 = 0.

a; =1, a, =0,

B =0, B, =1,

(3.56)

The final on-shell constraint (3.53) combined with
Eq. (3.56) turns out to have four classes of solutions which
can be conveniently expressed by defining the spinor ratios

k3 k4
kg k5
0yl
kq ke
Solution &y, obtained by setting
a3 = 2, 53 = QI
ag=0, B4=0
ks ky
ko ks,
by
k‘l ]C6
Solution Ss3, obtained by setting
Qg zZ, 54 =0

PHYSICAL REVIEW D 86, 085032 (2012)
_ (45) _ [45]
2(46)’ 2[46]

Thus, the four classes of solutions to the joint on-shell
constraints (3.47), (3.48), (3.49), (3.50), (3.51), (3.52), and

(3.57)

0, o1

(3.53) are
81:{a3=z’ '83=Q1.;
ay = 0, 34 =0
82:{as=z, B;=0 :
a, =0, By=0 (3.58)
83:{0[3:0’ /33=Q1’;
ay, =2z Bs=0
=0, =0
S, {013 B3
ay, =2z Bi=0

where the parameters «;, a,, 81, B, are put equal to the
values quoted in Eq. (3.56). The solutions are illustrated
below in Fig. 6.

Since we are not cutting all propagators, the relevant
quantity to compute is not the heptacut of the factorized
double-box integral itself, but rather the Jacobian

ks k4

kq kg
Solution Sa, obtained by setting
a3 =z B3 =0
ag=0, B1=Q
ks k4
ko ks
0y Uy
kl kﬁ
Solution Sy, obtained by setting
=z, Pr=GC

FIG. 6. The four kinematical solutions to the heptacut constraints given in Egs. (3.47), (3.48), (3.49), (3.50), (3.51), (3.52), and (3.53)
for the factorized double box with six massless external momenta. The on-shell values Q; and Q7 are defined in Eq. (3.57).
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1= ([aeawene, - s - k)
< ([ @816 ~ ko ~ kso))
X 8((6: — ko)), (3.59)

since from this one can easily obtain the heptacut of any

given object, as we will see below. The &-functions in

Eq. (3.59) may be integrated out along the lines described

in Sec. III A 1, and one finds that for all four kinematical
solutions S; the contribution to the Jacobian J is given by

1 dz
Ng = § &
16512845556 Jr, 2

Then the heptacut factorized double-box integral is

fori=1,...,4 (3.60)

1 2 }( dz 1
- —_—— , (3.61)
16512545556 =14 < €, — k123)2 S;

where the subscript (- - *)|s, indicates that the propagator
is to be evaluated in the parametrization (3.54) and (3.55)
with the parameters set equal to the values in
Egs. (3.56) and (3.58). Likewise, the heptacut (3.47),
(3.48), (3.49), (3.50), (3.51), (3.52), and (3.53) of the two-
loop amplitude is

dz &
— JTA%(2) |S‘. (3.62)

1 4f
16512545556 = JT, 2 j=1

l

IV. GLOBAL POLES OF THE TWO-LOOP
SIX-POINT INTEGRAND

In this section we apply the heptacuts discussed in
Sec. I1I to compute the two-loop six-point MHYV integrand
in 2N = 4 SYM theory. The parity-even part of this inte-
grand was first calculated in Ref. [89] and was later reex-
amined using the leading singularity method in Ref. [67].
In Sec. IVA we give a pedagogical review of the use of the
leading singularity method to determine the two-loop six-
point integrand. In particular, we discuss how one can set
up linear equations to determine the parity-even part of the
integrand directly. The approach here is similar to that of
Ref. [67], but differs in the use of the loop-momentum
parametrization (3.12) and (3.13) as well as (3.54) and
(3.55), which has the virtue of making the multidimen-
sional contours associated with the heptacuts completely
explicit. It is also worth remarking on the similarity
between the approach followed here and that of Forde in
Ref. [23]: the heptacut at two loops, in analogy with the
triple cut at one loop, leaves one a priori undetermined
contour integration. The associated contour may be chosen
to encircle the various poles coming from the measure or
from additional propagators, allowing the determination of
the integral coefficients by use of the residue theorem.

PHYSICAL REVIEW D 86, 085032 (2012)

The main result of this paper is contained in Sec. IV B in
which we report on a numerical check that the result
produced by the leading singularity method for the full
(i.e., parity-even and -odd) two-loop six-point MHV
integrand is in agreement with recent predictions in the
literature [60,63].

In general one can apply integral reductions to any two-
loop six-point amplitude to express it as a linear combina-
tion of integrals in some sufficiently large basis. Due to
the special symmetries of N = 4 SYM theory amplitudes,
it is natural to include integrals in the basis that reflect
these symmetries (in particular, dual pseudoconformal
integrals), and in this paper we shall use the basis in
Ref. [67], for convenience illustrated in Fig. 7 below.
Note that in order to express the parity-odd part of the
amplitude, this basis contains additional (non—dual confor-
mal invariant) integrals beyond those included in the bases
of Refs. [89,105] and as such is overcomplete. We shall
discuss the consequences of the overcompleteness in detail
in Sec. IVA.

Thus, we will use the following ansatz for the planar
two-loop six-point MHV amplitude of N =4 SYM
theory

o _1
Agmny = > ricio o, 4.1

i=1,...,24
j=112

in which it is expressed as a linear combination of the basis
integrals illustrated in Fig. 7 whose symmetry factors r; are
given as follows,

1 11
> > s ] ) = _yly_y_ylyl
(r1 I, ¥3, I'y, Fs r6) (4 272 )
11 1
> > > s > = _y_ylyl)l)_
(V7 g, ¥o, 10, 7'11 ”12) (4 ) 2) .5
( )_(111111) 4.2)
13, I'14, 15, 16, 717, 718 4227

111111)

(119, 720, 7215 722, 1235 724) = (2: b by

Thus, the task of computing the two-loop amplitude
reduces to determining the coefficients Cig, a5 functions

of the external momenta. This is achieved by applying
generalized cuts to both sides of Eq. (4.1) which has the
effect of turning either side into a contour integral in the
complex plane. More specifically, the left-hand side of
Eq. (4.1) is turned into a product of tree amplitudes whose
external states coincide with either the external states of the
two-loop amplitude or with the states traveling along the
propagators that are becoming on-shell. On the right-hand
side of Eq. (4.1), the generalized cut has the effect of
removing all the integrals that do not contain the propa-
gators being cut, and turning the remaining integrals into
contour integrals.

To limit the number of terms remaining on the right-
hand of Eq. (4.1) as much as possible, it would therefore be
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FIG. 7. The integral basis in terms of which the two-loop six-point amplitude is expressed. The integrals shown here are recorded in
the o; permutation where the external momenta are labeled clockwise starting with k; at the position of the arrow. The basis is
overcomplete, giving rise to nonuniqueness of the integral coefficients in Eq. (4.1).

natural to start by imposing as many simultaneous four-
dimensional cut constraints as possible, which at two loops
would lead us to consider octacuts. Thus having obtained
the coefficients of integrals that admit an octacut, we could
then proceed to relax one cut constraint to allow the con-
tributions of the double-box integrals in Fig. 7 and in turn
determine their coefficients. This, however, is not the route
we will be following: instead, we will focus our attention
on the heptacuts of Eq. (4.1). Indeed, imposing seven on-
shell constraints on two four-dimensional loop momenta
leaves an unconstrained parameter z, and this makes it easy
to survey the global poles of the integrand (to be defined
properly in Sec. IVA 3) on the right-hand side of Eq. (4.1).
This in turn will make it straightforward to determine the
tori encircling the global poles, which we shall refer to as
leading singularity contours.

It is important to distinguish between these leading
singularity contours and the maximal-cut contours.
Indeed, as explained in Ref. [34], the maximal-cut contours
are particular linear combinations ¢ of these tori whose
coefficients are determined by the requirement that any
function that integrates to zero on R? X R? should also
integrate to zero on o. This constraint ensures that two
Feynman integrals which are equal, possibly through some
nontrivial relations, will also have equal maximal cuts. As
argued in Ref. [34], multidimensional contours o satisfying
this consistency condition are guaranteed to produce correct
results for scattering amplitudes in any gauge theory, not

only N = 4 SYM theory. It would therefore be very inter-
esting to determine these maximal-cut contours.

Such an analysis is, however, not currently possible: the
set of linear relations between two-loop integrals includes
the set of all integration-by-parts (IBP) identities between
the various tensor integrals [111] arising from the Feynman
rules of gauge theory, and at present a complete knowledge
of these relations is not available. Nevertheless, all the
details needed to carry out this analysis (in particular, the
enumeration of the global poles of the integrand and
the expressions for the cut integrals) are provided in the
intermediate results in Sec. IVA and in Appendix A, and
the correct heptacut contours can therefore be determined
immediately once the IBP relations do become available.

With the cyclic ordering of the external momenta shown
in Fig. 7, the two-loop six-point helicity amplitudes in
N =4 SYM theory admit nine different heptacuts, dic-
tated by the eight double-box integrals and the factorized
double-box integral in Fig. 7, respectively I ,,, I3 4,5 14 &, »
15,0.1, 16,0'1’ 17’0.], 116,0'1’ 117,0.], and 11,0'1' We label these
heptacuts respectively #1, ..., #9 and study them in turn in
Secs. IVA, A 2-A 9.

In attempting to obtain the integral coefficients Cig, in

Eq. (4.1) from generalized four-dimensional cuts, one
encounters two technical issues. The first point is that the
basis is overcomplete, and the integral coefficients are
therefore not uniquely defined. This feature will manifest
itself as the appearance of free parameters in the solutions
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of the linear equations satisfied by the integral coefficients.
This in turn means that one has to set a subset of the
integral coefficients equal to specific values in order to
obtain unique solutions for the remaining coefficients. The
nonuniqueness of the integral coefficients is accounted for
by the existence of various linear relations between the
integrals in Fig. 7, as was explained carefully in Ref. [67].

The second point is that the coefficients of the
p-integrals 114, and I;5, (thus called because their in-
tegrands contain factors involving the ( — 2¢€)-dimensional
part of the loop momenta) are of @(€) in the dimensional
regulator and hence are not obtainable from four-
dimensional cuts [112]. As we restrict ourselves to taking
four-dimensional generalized cuts in this paper, we shall
therefore not be concerned with these integral coefficients.

A. Example: evaluation of heptacut #1

This section is intended as a pedagogical example of the
use of the leading singularity method to obtain integral
coefficients of two-loop scattering amplitudes in N = 4
SYM theory. In this example, we evaluate both sides of the
two-loop Eq. (4.1) resulting after imposing the simplest of
the nine heptacuts that the six-point amplitude admits,
labeled #1. This heptacut is defined by the on-shell con-
straints in Egs. (3.3), (3.4), (3.5), (3.6), (3.7), (3.8), and (3.9)
with the vertex momenta

Ky = ko3
K4 = k5

K2=k4
Ks = ke

K3=

4.3)
K6 =0
After having evaluated this heptacut of Eq. (4.1), we will set
up equations satisfied by the full integral coefficients (i.e.,
including both parity-even and -odd parts) and solve these
equations explicitly. Along the way, we also present the 22

k, ks ky
2o+ 1+t + o
Jeg L1
ky k, ke ky
k, s
+ 018,0'1 kg @ -oofrennan +4..@
L h
k k
2 kl 6
(I + ke)?
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tori encircling the global poles of the integrand associated
with this heptacut. Finally, we comment briefly on how the
linear equations obtained from the remaining heptacuts
#2,...,#9 (details of which are provided in Appendix A)
can be used to obtain the parity-even part of the two-loop
six-point integral coefficients directly and report agreement
with the results originally found in Ref. [89].

1. Heptacut #1 of the right-hand side of Eq. (4.1)

Applying heptacut #1 to the right-hand side of Eq. (4.1)
will leave the linear combination of cut integrals shown in
Fig. 8 below.

We will use the loop momentum parametrizations in
Egs. (3.12) and (3.13). Furthermore, it will be convenient
to define the spinor ratios

_ (K7ke) Ky ok~ s
= , 2T T b7 o
2K ke) (K5~ |kl K7 ™)
(K°ky) (KPK}?)
P3= - lbl 4:_%, 4.4)
2K k) AKEKS)
o LKIKS]
1 - = ’
2[KIK?]
and their parity conjugates
P'=—[K{>k6] o _Kiko—3sn
YOoAKSk]) 7 (KT IKalKETY
pe_ K] [KIKY] is
37 b 4T T e e 4.5)
2[K3 k] 2[K:K}]
0f — — (K7 K$)
! UKPKE)
ks ks ks
: ks :
T T+ + C19,04 4 4
: T ,
noob L h
ke ! e
k, ks
ks :
+ 08,01 [ STTTE SRR ---@
ky }
L h
K, ke
(I + ke)?

FIG. 8. The integrals remaining on the right-hand side of Eq. (4.1) after applying the heptacut labeled #1. The cut propagators are
illustrated by the inclusion of an additional orthogonal line. This heptacut is defined by the on-shell constraints in Egs. (3.3), (3.4), (3.5),
(3.6), (3.7), (3.8), and (3.9) with the vertex momenta given by Eq. (4.3).
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This heptacut belongs to case I treated in Sec. III: each of
the vertical propagators in the double-box integral I ; is
part of some three-particle vertex. There are thus six
kinematical solutions (shown in Fig. 2) to the on-shell
constraints. The heptacut of the double-box integral
receives contributions from each of the kinematical
solutions. These contributions were found in Sec. III [see
Eq. (3.40)] and take the form

fr | dzJ(z),

where, using the notation in Egs. (4.3), (4.4), and (4.5), the
Jacobians are

(4.6)

1
7z = 32v17,
(KPTIKEIK, Yz(z — P))™" for i =2,6
o (K~ |KEIKP )z(z — Py)~' fori=4,5
(K:TIKENKE D2z — Q7)™ fori=1 '
(KETIKPIKE Ye(z — Q1) fori=3
A4.7)

Accordingly, the heptacut right-hand side of Eq. (4.1),
displayed in Fig. 8, receives contributions from each of
the six kinematical solutions of the form

0o €190
dzJ,»(z)(c o A 71
fF; > (€ — k) (€] — ky)?
Cigo, (€ + ke)* | g0, (€ + k6)2) 4.8)
() — kyp)? () — ky)? s '

where the subscript in (- - -)|s. indicates that the function is
to be evaluated in the parametrization (3.12) and (3.13)
with the parameters set equal to the values

B1 =0, B2 =1
and those given in Fig. 2 with the functions B3(z) and B4(z)
quoted below solutions S5 and Sg being given by
_ (keka)(z — P1)
2ksky)(z — Py)

ap =1, ay =0, 4.9)

Bi(2) = (4.10)

 [keky)(z — PY)
2kskyl(z — P3)

Instead of displaying all six contributions individually, we
can make use of the fact that the kinematical solutions
come in three parity-conjugate pairs. Namely, the contri-
butions coming from two parity-conjugate solutions are
obtainable from each other by the replacements

(i) <= Lij]

(K7 IPIK;) = (K7 IPIK;)

Balz) = 411

(4.12)

(4.13)
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P, - P! (4.14)
0« 0; (4.15)
ay o ay (4.16)
B3 < Bu, (4.17)

where the replacement rules (4.16) and (4.17) specify that
if one solution has, e.g., z = «a; as the free parameter, then
the parity-conjugate solution should be understood as
having z = a4 as the free parameter.

Putting everything together, the result of applying hep-
tacut #1 to the right-hand side of Eq. (4.1) is

1 6
i ; fr | dzJ(2)K;(2),

where the Jacobians are given in Eq. (4.7) and the kernels
evaluated on the six kinematical solutions (illustrated in
Fig. 2) are

(4.18)

1 €20,
2 (K} Kl KX (P — PS)

K(z) = €0, —

1 c19,0']
2 (K} Ik K3 )(PT — PS)

(4.19)

_ 1 €220,

2 (K} [KnlK3 )z — P3)
_ 1 C19,0,

2 (K; "Ik IKS )z — P3)
_ Cis0 (KKK )z — PY)

(KE™ 1Kol K3~ )z — P3)

g0 (K7 K IKS )z — PY)
(Kr~ K| K3 )z — P3)

Ky(z) = €20,

(4.20)

K;(z) = parity conjugate of K;(z)

[obtained by applying Egs.(4.12)—(4.17)] 4.21)

K,(z) = parity conjugate of K,(z)

[obtained by applying Egs.(4.12)—(4.17)] (4.22)

1 2.0,

2 (K3~ Kl Ky )z = Py)

1 19,0,

2 (K3 IKIKT ) = Py)

B 018,01<Kf_|k6|Kf_>(Z - Py)
(K2~ kil Ky )z — Py)

_ Cs,ol<K2b_|%6|K1b_>(Z - Py)
(K3~ 1K |K} ™)z = P3)

Ks(z) = €00 —

(4.23)
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K¢(z) = parity conjugate of K5(z)

[obtained by applying Egs.(4.12)-(4.17)].  (4.24)

2. Heptacut #1 of the left-hand side of Eq. (4.1)

For MHV configurations in N = 4 SYM theory, the
ratio of the two-loop amplitude to the corresponding tree-
level amplitude is independent of the distribution of the
helicities of the external states [113,114]. Without loss
of generality, we will therefore assume throughout the
paper that the helicities of the external states are
(17,27,3%,4%,5%,6"). In this case, the result of applying
heptacut #1 to the left-hand side of Eq. (4.1) is

6 6
3 fr el @A)
i= i Jj=

where the cut amplitude evaluated on the six different
kinematical solutions yields

, (4.25)
S

6 .
l
lle}ree(Z) S = _RAtieE++++
= i
(1 (1_ 1 o
m(z Z—Q1> for l —3
_ 1 11 .
NG J4(2) (Z*P} m) for i=4
- Jsl(z) (Z*lPl - #) for i =35
LO fori=1,26,
(4.26)
with the tree-level amplitude given by
i{12)3
Alree = . 4.27
R e G YNAENEISN AN (4.27)

The expressions in Eq. (4.26) can be obtained by first
exploiting momentum conservation to simplify the hepta-
cut amplitude ]'[16-:1 Af®¢|s, as much as possible and then

substituting the parametrization of the loop momenta in
Egs. (3.12) and (3.13) to obtain the heptacut amplitude as a
function of z. To further simplify, one can make use of the
fact that, for N" = 4 SYM theory, the function

. 6
02 = 1, [T
=1

tree
AT

, (4.28)
s,

only has simple poles in z and has residues *1 or 0 at finite
poles, and O at infinity [52,65], [115].

Denoting all finite poles of ¢;(z) by X;, these facts
combined imply that

Res._x ¢i(2)
pi(a) =) ————.

(4.29)
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It is from this latter form of ¢;(z) that the expressions in
Eq. (4.26) were extracted.

3. Extraction of integral coefficients

To summarize the results of Secs. IVA 1 and IVA 2, we
find that applying heptacut #1 to both sides of Eq. (4.1)
produces the equation

6 6
> fr el @[ ]45)
i= i Jj=

1 6
Si_ 4_1 FZ] ﬁ"; dei(Z)Ki(Z),
(4.30)

where the Jacobians J;(z), the cut amplitude n?: AT (2)

and the kernels K;(z) are given in Egs. (4.7), (4.26), (4.19),
(4.20), (4.21), (4.22), (4.23), and (4.24), respectively. The
kernels K;(z) contain the integral coefficients, and by
making various appropriate choices of the contours I,
Eq. (4.30) produces a system of linear equations which
can be solved to obtain the integral coefficients.

Before proceeding to discussing how Eq. (4.30) may
be used to determine the integral coefficients of an ampli-
tude, let us first remind ourselves of the relation of this
equation to the original two-loop Eq. (4.1). As we found
in Secs. IVA1 and IVA?2, the on-shell constraints in
Egs. (3.3), (3.4), (3.5), (3.6), (3.7), (3.8), (3.9), and (4.3)
for heptacut #1 are solved by setting the parameters «;, 3;
equal to the values quoted in Eq. (4.9) and in Fig. 2,
with the spinor ratios P;, Q, etc. and the functions B5(z),
B4(z) being given in Egs. (44) and (4.5) as well as
(4.10) and (4.11), respectively. For any of the six solutions
to the on-shell constraints shown in Fig. 2, one of the loop
momentum parameters «;, (; is set equal to an uncon-
strained complex parameter z.

The leading singularity contour is, by definition, a torus
consisting of circle factors centered around the seven on-
shell values of the parameters left fixed and where, in
addition, one makes a choice of contour for the uncon-
strained degree of freedom z. The contour in z can be
chosen to encircle the poles of the Jacobians (4.7) or
the poles of the loop momentum parametrization
(3.12) and (3.13) at which one of the loop momenta be-
comes infinite [see Eqs. (4.10) and (4.11)]. The point
(ay, ..., a4 By, ..., Bs) € C* X C* encircled by the torus
is referred to as a global pole of the integrand of the right-
hand side of Eq. (4.1).

Defining

7= Cy (1) X C,b,(0) X Cg (0) X Cp,(1), (4.31)

the six sets of on-shell values of the loop momentum
parameters quoted in Fig. 2, combined with the various
possible choices of contours in z, give rise to the following
22 tori corresponding to heptacut #1,
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Ts, 0

= 7 X Cy,(P}) X Cy,(0) X Cg,—,(0) X Cg,(0)

i=1273

Ts,pr = 71X Co,(P}) X Cy,(0) X Cp,—.(P}) X Cg,(0)

Ts,0 =T X Cq,—(0) X Cy,(0) X Cg,(Q7) X Cg,(0)

Ts,pr = 7 X Co=(P]) X C¢,(0) X Cp,(Q7) X Cp,(0),

Ts,0 =T X Cqo(0) X Cp, (Py) X Cp,(0) X Cg,—.(0)

Ts,p, = T X Ca,(0) X Cp (Py) X Cp,(0) X Cpg,—.(Py)

Ts,0 = T X C¢a,(0) X Cq,—;(0) X Cp,(0) X Cg,(Q1)

Ts,p, = T X Co,(0) X Cy,—(P;) X Cp,(0) X Cg,(Qy), i=1273
Ts,0 = 7 X Ca,(0) X Cp,—(0) X Cpg,(B3(2)) X Cp,(0)

Ts,p, = T X Co,(0) X Co,—.(P;) X Cp,(B3(2)) X Cp,(0), i=1,...,4
Ts,0 =T X Cq,—;(0) X C,,(0) X Cp,(0) X Cp,(B4(2))

Tsopr = T X Co—(P]) X Co,(0) X Cp,(0) X Cp,(Ba(2)), i=1,....4

PHYSICAL REVIEW D 86, 085032 (2012)

(4.32)

where the indices in T's, x refer to the kinematical solution
S, associated with the given torus, and X is the pole around
which the z-contour is taken. Furthermore, C,, (X) (e.g)
denotes a small circle in the «;-plane centered around
a; = X; in addition, we write CQI:Z(X) whenever the
a;-variable in question is left unfixed by the heptacut
constraints. Finally, the spinor ratios Py, Q; etc. and the
functions B3(z), B4(z) are given in Egs. (4.4) and (4.5) as
well as (4.10) and (4.11), respectively.

The relation of Eq. (4.30) to the original two-loop
Eq. (4.1) can now easily be stated: the former equation is
obtained from the latter by changing the integration con-
tour from the real slice R? X R” to an arbitrary linear
combination of the 22 tori given in Eq. (4.32). The con-
tributions from, e.g., the first two terms in this linear
combination ag, ¢Ts, o + as, p: TSI,P; + - -+ are found by
integrating out all parameters except z = [35; this leads to
the I';-integral in Eq. (4.30) where I'y = ag, (Cg,-.(0) +
as, p; Cg,—(PY).

Thus having explicitly stated the relation of Eq. (4.30) to
the original two-loop Eq. (4.1), let us now return to the
question of how the Eq. (4.30) may be used to determine
the integral coefficients of an amplitude. As explained
in the beginning of this section, the class of contours
2.i;4i;Ts, x, that will produce correct results for the inte-
gral coefficients in any gauge theory amplitude are those
that annihilate all functions that integrate to zero on the real
slice RP? X RP. Determining such contours requires the
knowledge of all integration-by-parts identities at six
points; however, as a complete knowledge of all such
relations is presently not available, we will here proceed
as in Ref. [67] and assume that any contour is valid. Indeed,
as already mentioned above, the purpose of this section is
mainly to provide a pedagogical exposition of the use of
the leading singularity method to obtain integral coeffi-
cients of N' = 4 SYM amplitudes.

Below we will use the following notation: C.(X;) de-
notes a circle centered around z = X, of some appropri-
ately small radius € (i.e., small enough to not enclose any
other poles), and I'; = &, ;C(X;) denotes a contour which
is zero on all six sheets except for the sheet supporting
kinematical solution S ;5 on this sheet, the contour is a
small circle centered around X;. From Eq. (4.30) we then
find, for example, that

(i) setting I'; = 8;5C(P;) produces the equation

1(0 1 €220,
A\ 2 (K Kl K TYPy — Py)

1 19,0, )
2(K; kK~ )(Py — Py)

= =277, P (KT IKsIKP YA (4.33)

(ii) setting I'; = 6;5C.(P,) produces the equation
l(_l €20,
4\ 2(K3lknlKy )
3.0, (K; " K6l Ky )Py — Py)
(K3~ 1Kl K7 ™)

) =0, (4.34)

(iii) setting I'; = 8, 5C(P3) produces the equation
1 1 C19,q,
Z(‘E (K5 Ik 1K)
3o (K3 IKslKT )Py — Pl))
(K3~ KK ™)
= 27,y,P3(P3 — P)KS|Ks|KP YA |
(4.35)
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(iv) setting I'; = 6,;,C.(P7) produces the equation

1( 1 C22‘01
J\C20 T 5 — — . .
4\ 2 (KKl KPPy — P3)

o 1 cl9,a'1 ) =0
2(K}IK K )(PY — PS) ’

(4.36)

(v) setting I'; = 6,,C.(P3) produces the equation
l<_ 1 me
4\ 24Ky lKnlK )
 cigo (KUK IKSTM(PS — PY)
(K™ lkalK3 )

) =0 (437

(vi) setting I'; = 8;,C.(P3) produces the equation

1 _1 C19,q,
Z( 2 <K%_|%1|K2b_>
o (K2 IKIKE(PS — PY)
(Ky~IK1K3™)

) =0. (4.38)

We have here deliberately chosen an overcomplete system
of equations as a consistency check on the method. We in
fact find that the six equations (4.33), (4.34), (4.35), (4.36),
(4.37), and (4.38) are consistent, and that expressed in
terms of the quantity

Y = =8y 7P (K5 |Ks|KPA™
% (1 A(KPTIKIKS )Py — P;))‘
(K3~ Ik K )Py = Py))

the solution of Egs. (4.33), (4.34), (4.35), (4.36), (4.37), and
(4.38) takes the following form

(4.39)

Crg, =Y (4.40)
e =0 4.41)
Clo.0, = 2AKPTIKIKS )P — PY)Y (4.42)
Cig,g, =0 (4.43)

_(KpTIKIKS ) @.44)

C o — — .
S (K Kl KE )

In the following it will be useful to consider the two-
loop amplitude normalized with respect to the tree-level
amplitude,

@ Agy 1
_ AgMHV _ _
M6,MHV - Alree - Z ‘ Z rici,ajli,a-jy
MHVY ki

(4.45)

where the normalized coefficients are defined by
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Cio.
_ _ Yo

T A

(4.46)

because this object is independent of the distribution of the
helicities of the external states [113,114]; that is, for
example, Mf,f)__ g = Mg)_ ++++—- Moreover, the inte-
grand of Mé,zli/lHV can be decomposed into two terms that
are even and odd under parity and which respectively
coincide with its real and imaginary parts.

Thus, the parity-even part of the coefficients found in
Eqgs. (4.40), (4.41), (4.42), (4.43), and (4.44) is obtained by
dividing by the tree-level amplitude A", , . ., and taking
the real part, yielding

Re(i) — D¢ ,es2 4.47)
Atree 45956 .
——++++
Re( S ) =0 (4.48)
——++++
Re(%i . ) =0 (4.49)
ATy
R C18,0, .
|\ qmee ) =0 (4.50)
ATy
R c8,0'| _
€ Aree )T 2556(51235234 — S56523), 4.51)
——++++

where the equalities have been found to hold numerically.
The expressions on the right-hand sides of Eqgs. (4.47), (4.48),
(4.49), (4.50), and (4.51) are in agreement with the results
originally found in Ref. [89] and reproduced by the leading
singularity method in Ref. [67]. Due to a Ward identity
[113,114,116] valid for N° = 4 supersymmetry, the coeffi-
cients of the cyclically permuted integrals can simply be
obtained by cyclic permutation of the results found here.

For the remaining heptacuts #2, . . ., #9 (details of which
are provided in Appendix A), the leading singularity
method provides similar linear equations satisfied by the
integral coefficients. However, when solving the linear
equations for these more complicated heptacuts, the over-
completeness of the basis in Fig. 7 entails a problem,
carefully discussed in Ref. [67]: due to linear relations
between various integrals in the basis, the integral coeffi-
cients are not unique. This feature will manifest itself as the
appearance of free parameters in the solutions of the linear
equations. Thus, one has to set some of the integral coef-
ficients equal to specific values in order to obtain unique
solutions for the remaining coefficients.

This “gauge fixing” can be easily done for the parity-
even part of the integral coefficients as analytic results for
these were already obtained in Ref. [89], and one can
proceed as follows. For a given heptacut, encircle a pole
and its parity conjugate to obtain equations of the sche-
matic form
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acy + Bey, =y (4.52)

a“c; + Bcy =6, (4.53)

where, for example, a* denotes the complex conjugate of
«. From this pair of equations immediately follows

+5
(@ +a*)Esven + (B + B*)egen = Re(A—trZe ) (4.54)
—— 4t
o meven -5
(@ —a*)Esven + (B — B*)egven = zIm(AitrZe ) (4.55)
—

where the parity-even part of the coefficients is simply
given as the real part of the (normalized) coefficient,

Eﬁvjjﬁ = Re¢; . (4.56)
The pair of equations (4.54) and (4.55) thus allows one
to solve directly for the parity-even part of the integral
coefficients. In order to obtain unique answers for these,
we make the following “‘gauge choices”: we set

~even —
Clle; = So;(61)50,(12)50(123)

—even _—

Clz,gj Sa'j(456)(s(rj(345)strj(456) - Sa,(12)5q/-(45))

&y =0
forj=1,...,12 4.57)

and also recall that Clao, = Cls.0, = 0 for the full coeffi-
cients of the w-integrals. With this choice, the equations
produced by taking leading singularities of both sides of
Eq. (4.1) and then projecting out the parity-odd part of the
coefficients in analogy with Egs. (4.54) and (4.55) have a
unique solution which is in agreement with the results for
the parity-even coefficients originally found in Ref. [89]; in
particular, one finds that

~eéven _—

... — meven _
¢ 19,0 - ¢

o, , (4.58)
in agreement with the parity-even part of the amplitude
being dual conformally invariant.

B. Leading singularities vs loop-level recursion

In this section we report on a comparison between
results for the full (i.e., parity-even and -odd) two-loop
six-point MHV N = 4 SYM integrand as produced by the
leading singularity method on one hand and recent predic-
tions in the literature based on a BCFW-like loop-level
recursion relation [60,63] on the other. Because the results
of these papers are expressed in terms of a different basis
from the one used in this paper, it is obviously not mean-
ingful to check agreement between individual integral
coefficients in the two representations.

A quantity that can be meaningfully compared is the
two-loop integrand: in general, in the planar limit of any
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field theory, the loop integrand is a well-defined rational
function of the external momenta (which for example can
be thought of as being produced by the Feynman rules).
In our case, the two-loop integrand is the quantity under
the integral sign in Eq. (4.45), obtained as the sum of the
integrands of the 24 basis integrals lis, weighted by the

integral coefficients ¢;, and symmetry factors r;, where

the summation is taken over all dihedral permutations o;
of the external momentum labels. Agreement between the
two-loop integrand as computed by either method would
imply agreement between the integrated expressions; that
is, the results for the amplitude [117].

We have performed the comparison of the two-loop
integrands numerically, by verifying agreement to high
accuracy for a large number of randomly selected external
and internal momenta. Accordingly, the remainder of this
section will be devoted to discussing how, given a set of
randomly generated momenta, one may evaluate the inte-
grand of Eq. (4.45)—that is, how the integral coefficients
are obtained, and how the integrands of the basis integrals
I; 7, are added in a meaningful way.

The integral coefficients are determined in analogy with
the procedure explained in Sec. IVA 3. However, in that
context we were concerned with obtaining analytical
results for the coefficients and could find the coefficients
of all dihedral permutations of, for example, I,, by
applying the appropriate permutation to the algebraic
expression for ¢, . This is obviously not possible when
one is aiming to find numerical results for the coefficients.
Instead, one must act on the external momentum labels
implicit in Eq. (4.30) with each of the dihedral permuta-
tions o; € D¢ in turn so as to produce distinct linear
equations for ¢;, . Again, because of linear relations
between the basis integrals, the solutions of the linear
equations will, for the more complicated heptacuts
#2,...,#9, contain free parameters. Accordingly, one
must set some of the coefficients equal to specific values
in order to obtain unique solutions for the remaining
coefficients. In analogy with Eq. (4.57), we choose the
“gauge fixing”

Cllo; = Sa,(61)50;(12)50;(123)
Cio,o; = Strj(456)(s(rj(345)s(rj(456) - Saj(12)so,(45))
524,0'/- =0

forj=1,...,12

whereby ¢99¢ = ¢99¢ = 594 = 0. We then find unique
i * [

(4.59)

results for the remaining coefficients with the property that
Reéi”’./ - Ele\:fe/n

Expressed as functions of internal and external
momenta, the integrands of the basis integrals cannot be
added in any meaningful way as the value of any term
would depend on the labeling of the internal lines of the

corresponding graph (i.e., which propagators are labeled €
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and €,). To remedy this, the integrand must be expressed in
terms of dual x-space coordinates, defined by

X~ Xip1 =k; i=1,...,6 (mod6)
x(,j(l)—x7=€1 ng(l)_xg:_€2 j=1,...,6
x,,j(6)—x7=—€1 xg/_(G)—x8=€2 j=1...,12

Xjj=X;—X; i,j=1,...,8, (4.60)

with the additional requirement that, for any given graph,
€, and ¢, be offset by appropriate translations by external

momenta so that all propagators take the form . Finally,
Xij

the integrand must be symmetrized in x; and xg. Namely,
any assignment of these points to a given graph will fail
to be invariant under vertical reflections of the graph; to
ensure that the value of the integrand is not dependent on
how its contributing graphs happen to be drawn, one
must therefore average over the two possible assignments
of these points. The integrands of the basis integrals in
Fig. 7 have been presented in Sec. A 1 for convenience.
In summary, given a set of random internal and external
momenta, the evaluation of the integrand of Eq. (4.45)
proceeds in three steps. First, the integral coefficients
are obtained by solving the linear equations that follow
from taking the leading singularities of Eq. (4.45). Second,
the integrands of the basis integrals are computed after
converting the momenta into the dual x-space (which is
achieved by solving Eq. (4.60) and choosing, e.g., the base
point x¢ = 0). Finally, the intermediate results are com-
bined, weighting the contributions by the appropriate sym-
metry factors (4.2) of the integrals. This is essentially the
procedure followed by our code [118] which is available
online. As a simple consistency check of the code, we
remark that the results produced for the integrand indeed

satisfy crossing symmetry; that is,
integrand of M glz/mv (x1,...,x¢)
= integrand ofMgKAHV(xUj(l), cXg,(6)) foro; € Dy,

(4.61)

TABLE 1.
chosen sets of points (xy, ...
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We have evaluated the two-loop six-point MHV integrand
for a large number of randomly selected rational momenta
[119] and in all cases find agreement with Refs. [60,63] to
high numerical accuracy [90]. In Table I below we have
provided a few sample points to allow the curious reader to
reproduce our results. Further data points can be generated
by the Mathematica notebook [118] available online.

Finally, let us observe that we only made use of the
assumption that the two-loop amplitude is MHV when
evaluating the heptacuts of the left-hand side of Eq. (4.1).
The form of the heptacuts of the right-hand side of Eq. (4.1)
is independent of the external helicities, and the results
presented in this paper can therefore straightforwardly be
extended to obtain the NMHYV integrand as well.

The two-loop six-point integrand as computed in this
paper was expressed in terms of the basis in Fig. 7 which
does not include integrals containing subloops with less
than four propagators. The exclusion of such integrals from
the basis owes to the observation that cutting two propa-
gators would factor out a subtriangle or sub-bubble—but
the latter integrals are known not to contribute to one-loop
amplitudes in N = 4 SYM. This strongly suggests that
the uncut two-loop integral would appear with zero coef-
ficient if included in the basis expansion.

One possibility which cannot be rigorously ruled out by
this argument, however, occurs when the two-particle cut is
shared between several integrals containing subtriangles or
sub-bubbles: in principle, the coefficients of the respective
cut two-loop integrals could be nonzero, but such that the
contributions cancel.

Ruling out such a scenario completely would require
extending the analysis of this paper to consider hexacuts,
pentacuts etc. Two-loop integrals whose subloops contain
at least three propagators all admit 78-integration contours
[analogous to those in Eq. (4.32)] that appropriately define
such cuts. Moreover, the cut integrand is a holomorphic
function, and the contour integrations can thus be performed
directly by means of the global residue theorem [52]. In
contrast, two-loop integrals with bubble-subloops do not
admit T8-contours: for example, the bubble-box integral

Values of the two-loop six-point MHV integrand (normalized with respect to the tree-level amplitude) at three randomly
, x¢) and (x5, xg) in dual x-space, respectively encoding external and internal momenta as prescribed by

Eq. (4.60). The parity-even and -odd parts of the integrand of Mgl{/mv respectively coincide with its real and imaginary parts. Further
data points can be generated by the Mathematica notebook [118] available online.

(xq, ..., xq) (x7, xg) integrand of Mﬁmv
111 5 7 729 13 1 11 _ 31230748253 _ 994276085 -
((_2 2’0 0), (__2 64 0). (=3 _2 12 0), (_Z 36’ 18° _ﬁ)y ((Z’Z’Z’ 1).(0,0,2,0)) 22094 130240 981961 344

23 35 28 0
( 18’54’27’ 2_) (0 O O 0))

7 157 3 _ 1 _1
(8 ' 24 6’ 6) G 24 6’ 6) 120’ 8’ 30’ E)’
69 1 _ 73 5 _
400~ 8 30’ 6) 90’ 54° 135 27) (0 0,0,0))

17 _ 1

((12 3’ ’4) (96’ 24 8 %2) (48’ 6’32 ﬁ)’

560 —otg — ) Giag g — 35 (0.0,0,0)

4777009 838 357 4 _1802603 853899

(( ’ 3 .0, 2) (0 0,1, 1)) 201230 662913280 © 259 652 468 275 200

3393 545258977272 __

43 045 877 862 533 664 i
16 669 297 265

(3.4.3.0).3,0,0,0) 183 362 269 915
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rather admits a 7° X S contour. Several approaches are
available to deal with bubble-inherited S? contours, among
the more elegant ones is that of Mastrolia [120], exploiting
Stokes’s theorem; a related approach is that of Arkani-
Hamed et al. in Ref. [121]. However, we leave such exten-
sions for future work.

V. CONCLUSIONS

In this paper we have provided a check that recent
results in the literature [60,63] for the full (i.e., parity-even
and -odd) two-loop six-point MHV integrand of N =4
SYM theory can be reproduced by the leading singularity
method. Equivalently, assuming the validity of Refs. [60,63],
one can view the analysis carried out in this paper as a check
that the leading singularities of the N° = 4 SYM integrand
evaluated in strictly four dimensions (as opposed to in
D = 4 — 2¢ dimensions) are sufficient to detect the parity-
odd part. This has already been shown to be the case for the
two-loop five-gluon N = 4 SYM amplitude in Ref. [66],
but the six-gluon MHV amplitude provides a much richer
testing ground owing to the larger number of global poles of
the integrand and of integrals in terms of which the ampli-
tude is expressed. As the main part of the results presented in
this paper are independent of the helicities of the six external
states, the NMHYV integrand can be straightforwardly ob-
tained by supplementing the requisite helicity-dependent
data. We leave this as an open problem.

For any two-loop integral, the leading singularities are
obtained by changing the integration range from R? X RP
into tori of real dimension 8 (embedded in C* X C*) that
encircle the global poles of the integrand. As explained in
Ref. [34], the maximal cuts are particular linear combina-
tions o of these tori whose coefficients are determined by
the requirement that any function that integrates to
zero on RP X RP should also integrate to zero on o.
This constraint ensures that two Feynman integrals which
are equal, possibly through some nontrivial relations, will
also have identical maximal cuts. As argued in Ref. [34],

integrand,; , =

integrand,

integrands

integrandy

integrands

N = = = == D= N~

integrandg

integrand; , =
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multidimensional contours o satisfying this consistency
condition are guaranteed to produce correct results for
scattering amplitudes in any gauge theory, not only
N = 4 SYM theory.

The set of linear relations between two-loop integrals
includes the set of all integration-by-parts (IBP) identities
between the various tensor integrals arising from the
Feynman rules of gauge theory; however, at present a
complete knowledge of such relations is not available.
Thus, an interesting open problem to be pursued once all
necessary IBP relations do become available is to deter-
mine the maximal-cut contours that allow the extraction of
integral coefficients in any two-loop six-point gauge theory
amplitude. We expect the intermediate results provided in
this paper to greatly facilitate this task.
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APPENDIX A: DETAILS OF HEPTACUTS #2,...,#9

1. Integrands of basis integrals in dual coordinates

The expressions below are the four-dimensional inte-
grands of the basis integrals in Fig. 7, expressed in dual
x-space coordinates (related to the internal and external
momenta through Eq. (4.60)). The results are recorded in
the o permutation of the external momentum labels; the
integrands for the remaining dihedral permutations may be
obtained by applying Eq. (A2) below.

((xf723,x3, X3 g xgg X3 x35) ' + (7 < xg))
((xf7x37x3, 03 X7 xggx35) ' + (7 > xg))
((xf7x3, x4, x5 X7 xggx3g) ! + (7 < xg))
(237055035015 x35x55) ' + (7 < xg))
((xf7x3,x3, x5 x5 x3x35) ™! + (27 > xg))
(237055035 X5 X35 x55) ' + (7 = xg))

«ﬁﬂ%ﬂ%ﬂ%s%sx%sxis)71 + (x7 < xg))
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. x2
integrands ,,, 5 61 + (7 & XS))

2 2 2 2
x17x27x47x57x78x18x68x58

x
7] 672 PN +(x7<—>x8))
x17x27x37x47x78x18x68x48

X2
> 67 > + ()C7 « x8))
X l7x27x37x47x78x18x68x58

(
(
(
(2 L +(x7<—>x8))
(
(

integrandy

integrand, ,,

integrand,; ,,

2 2
x17x27x37x47x78x18x68x58

x2,x3
. S8
integrandy o, X2 X5 X2 X2 X2 X g X2 X2 X +(X7Hx8))
17%27%37 47 78X 18X 68¥58%48
2

xZ.x

S0
2 + (X7 - Xg))

2 2
X 17x27x37x47x78x 18x68x58x48

integrand,; ,,

integrand,4 ,,

integrand,s ,,

integrand;¢ ,, (3 x37x2, x5 x 3 x20x2e) 1 + (x7 > xg))

integrand,; (x},x3,x3, X35 x 25 X3 x3) 1 + (%7 > xg))

integrandg
! XT7X37 X347 X5, X7 ¥ g Xgg X3

(
X672 ) + (.X7 e x8))
(

integrand, g ,, (x},x35x57 X2, x5 xT e x2ex2e) ! + (x7 < xg))

((F7x37 X3, X379 ¥ g XggXag) ' + (X7 = Xg))

integrandy

integrandy, 5, (7235237033 X1 g 035) ! + (7 > X))

integrandy, (23,03, x2 a3 x3ex2ex2e) T+ (x7 — xg))

(X373, X3, X5 Vg Xgg X3 X3g) ' + (7 < xg))

integrandy; ,,

= =R == N= == O O N= N= N= N= = N

2
( . + (7 o x8>). (Al)

integrand,
Lo 22 2 2 2 2 2 2 2
X17X27X37X47X78 X 18X 68X 58X 48

The integrands for the remaining dihedral permutations o; € Dg can be obtained from Eq. (A1) by applying

integrand, . (x(,j(l), Xg @) -+ +r Xa,(6)} X7, xg) forj=1,...,6

integrandi,gl_(xl, X3, ..., X X7, Xg) = (A2)

integrand; o, (X, (6)» Xor(1)> - - -» Xor(5)3 %7, Xg)  for j=7,..., 12

2. Heptacut #2

This heptacut is defined by the on-shell constraints in Egs. (3.3), (3.4), (3.5), (3.6), (3.7), (3.8), and (3.9) with the vertex
momenta

Kl = kl2 Kz = k3 K3 =0 K4 = k45 KS = k6 K6 = 0. (A3)
Applying this heptacut to the right-hand side of Eq. (4.1) leaves the following linear combination of cut integrals
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k ks ky
1 kS
} i }
C3o1 T T + 20,0, — T T
ky h L b
k, / ke
ké kl
e A ky
ks '
+ 20,04 T T + C9,09
K, ks
+ C24,04 + C13,04

We define the spinor ratios

(K} ko)
Py = -7, ) =
2AK; ke)
Ql:_}1+$9M?KH
2[K; K]

and their parity conjugates

+ C24,019

_ (K}ky) :_Klb'k56+%s56 _ (KPKE)
2Kz k1)’ K sslKTY T AK3KD)
_ (L4 59KS - kss — 5556 (4 29Kk ]
= — —, = (A4)
(K2~ |Ksel K3 7) 2[Kok]
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ppo-likd oy KWL Kketaw I
2[K3 ke] 2K ki] (K7~ Ksel K3 7) 2K K]

or = U7 IHKEKY) or = U7 JIKS - ks — 55 L L+ 9K k) A5)
: KKy ’ (Ki WsslKs™) ’ AKik)

This heptacut belongs to case I treated in Sec. III A, and there are thus six kinematical solutions (shown in Fig. 2).
Parametrizing the loop momenta according to Egs. (3.12) and (3.13), the on-shell constraints in Egs. (3.3), (3.4), (3.5), (3.6),
(3.7), (3.8), and (3.9) are solved by setting the parameters equal to the values

Sy

ag :1, a2=0, B] :0, ﬁ2:1+y_, (A6)
2

and those given in Fig. 2 with

S.\ (KEKEYz — P))
Bs(z) = _(1 + _4) < = 53 5 (A7)
Y2 2<K2 K4 >(Z - P4)
for kinematical solution Ss. The heptacut double-box integral I3, is 3'9_, fl“,- dzJ(z) where
(((1+ )k 1REIKS e — P fori = 2,6
§<1 sIK; )2z 1) ori =2
-1
Ji(z) = < ((1 + %)<K21’7|K2|K1|’7>Z(z - Pl)) fori =45 (A8)
32v17,
(KSR IKE z(z — ) 7! fori=1
(KKK, )z(z — @) 7! for i = 3.
a. Heptacut #2 of the right-hand side of Eq. (4.1)
The result of applying heptacut #2 to the right-hand side of Eq. (4.1) is
6
12§ K, (A9)
43 Jr
where the kernels evaluated on the six kinematical solutions are
Ki(2) = c —|—1 €230, 1 €20,0,
! YA KYTIRIK KSRl KS )P — P3)(e — 03) 2 (KT IKIKS )P} — P3)
4 1 024,01<K:7|]512|K5L’7>(Z - Q7))+ C24,0'7<K1b7|]é56|K2I77>(P1. - P3)+ 024,0,‘)<K4|1’7|151|K5t’7>(2 - 03)
2 Ky 1K K™ XK: ™ [Ksgl K2 )Py — P3)(z — Q3)
C13.0 (K [Kse| K5 XK Kial K2 )P — P3)(z — OF) 1 20,0,
(Kp I K3~ XK ™ ksl KE)(PY — P3)(z — Q3) 2 (K. |KsolKE )z — 03)
012,01<K1b_|1556|K2|’_><Kf_|1(1|K5L’_>(P1' - P})(z—03) 09,04<Kf_|k12|K§_>(Z -07) (A10)
(Kp |k K2 XK lKsgl K2 )P — P3)(z — 03) (K2~ |ksolKE )z — 03)
1 C3 o 1 C20,0
K(Z)=CU+_ — — — ]]— . . ) — ’—l .
? YA (KT IKE XK T KselKE )@ — P3)(0F — 03) 2Ky IKIKE )z — P3)
4 1 024,04<K1b7|]56|K2b*>(Z —-P})+ C24,U7<K{,7|%56|K§7>(Z - P3)+ 024,010<Kf7|](1|K§7>(Q1° - 03)
2 (KPS XK [Kssl K2 )z — P3O — 03)
13,0 (K} 1Kl K3 XK IKIKS )z — PO} — 05) 1 20,0,
(KE™ KK XK Kssl K2 )z — P3)(Q} — 03) 2 (K lksslKE7)0O7 — 03)
o (K sl KEXKS RS = POT = 03)  cour (Y IKlKE )z = PP) Al

(K} Ik KS XK ksl K3 ™)z = P3)(QF — 03) Ky~ 1K K5 ™)z = P3)
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K;(z) = parity conjugate of K;(z) [obtained by applying Egs.(4.12)—(4.17)] (A12)
K,(z) = parity conjugate of K,(z) [obtained by applying Egs.(4.12)—(4.17)] (A13)
1 23,0
Ks(2) = c34, T 5 7 — o o .
° > 4 (K5I K XKE [Ksel K2~ )z — Py)(Bs(z) — 03)
1 oo (KL K1l K27 )(B3(2) — OF)

2 (K5I K )KE  Ksel K )z — Po)(B3(z) — 03)
4 1 24,0, (K5 WK | K2 )z = Py) + €45, (K3 " IKss| K7 ™)z — P3) + ¢4, (K11 IK2T)(B5(2) — 03)

2 (K3~ K ™KK ksl K3 ™)z = Po)(B3(2) — 03)
13,0, (K3 Kso| K7 XK~ Kl K2 )z — P3)(Bs(2) — OF) 1 20,0,

(K3 Ky~ XK~ ksl K3 )z — Po)(Bs(2) — Q3) 2(K5 1K Ky )z — Py)
13,0, (K2 Kl K2 XK1 IK2 )z — P)(B3(2) — Q3) 1 20,04

(KSI LK XK Ksel K27 )z — Py)(B3(2) — Q3) 2 (K2 Ksel K2 )(B3(2) — Q3)
12,0, (K3 " Kol Kt XK~ 1K1K )z — P3)(B3(2) — 03)  coq (K3 |Ks|Ky )z — Py)

(K3~ KKy XK [Kssl K2 )z — Po)(B3(z) — ©3) (K3~ 1K |IK? ™)z — Py)
10,0, K5 "Ikl K7 XK Kl K370z = PO(B3(2) = OF)  co0 (KL 1K1l KS ) (Bs3(2) — OF)

— — — — " — — ; (Al4)
(K31 K™ XKS ™ ksl K3 ™)z — Po)(Ba(2) — 03) (K}~ lksel K2 ™)(B3(2) — 03)
K¢(z) = parity conjugate of K5(z) [obtained by applying Eqs.(4.12)—(4.17)], (A15)
where B3(z) is given in Eq. (A7).
b. Heptacut #2 of the left-hand side of Eq. (4.1)
The result of applying heptacut #2 to the left-hand side of Eq. (4.1) is
6 6
i3 § do[]are]| (A16)
=1/ j=1 Si

where, assuming without loss of generality the external helicities are (17,27, 3%,4%, 5%, 6"), the cut amplitude evaluated
on the six different kinematical solutions yields

i L .
m(Z—Ql Z—Qz) for i 3

i
= AT, X 1 ( 1 _ 1 ) fori=4 (AL7)

S; 16 J4(2) \z— P, =P

6
[T45
j=1

0 fori=1,275,6.

3. Heptacut #3

This heptacut is defined by the on-shell constraints in Egs. (3.3), (3.4), (3.5), (3.6), (3.7), (3.8), and (3.9) with the vertex
momenta
Kl = k12 Kz = k3 K3 = 0 K4 = k4 KS = k56 K6 = 0 (A18)

Applying this heptacut to the right-hand side of Eq. (4.1) leaves the following linear combination of cut integrals
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ks ks ky ke
1 1 l] lZ k5
C T T k2 T
401 T T T + (23,0 + €20,010 T T
k L L ks .
ky ke ks 4
k6 k] kl k6 k() kl
Loy, ks Lo, ks Lo ks
k ' ks t i }
+ C20,0’4 2 T T + 09,0'10 o ® + 69704 > 3 °
k
ks ’ ks ) i ky L
(I + kse) (Iy + k12)?

)

)

+ C24,04

(I + kse)®
We define the spinor ratios
p— — (KPKE) Pz__<K1bk1> Py = — (K7 K7) = (K7 ke)
l - —’ - —’ - 7) - PN
2AK3K?) 2AK3ky) AK;K;) 2K ko)
[KPK!] [K:ke] [K:ki]
0/ =—-——123  g=-220 Qy=-_3 (A19)
2[K7 Ky ] 2[Ky ke] 2[Ky k]

and their parity conjugates
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pr— — [KPK:] . [KPK] . [KPK;] . [Kbk]
b 2AK; KT 2 2AK: kT 3 2[KIK?] 4 2[K: ko]
. _ _ (KIK3) . _ _ (Kike) . (KK
O ki T Takike P 2tk (A20)

This heptacut belongs to case I treated in Sec. III A, and there are thus six kinematical solutions (shown in Fig. 2).
Parametrizing the loop momenta according to Egs. (3.12) and (3.13), the on-shell constraints in Eqgs. (3.3), (3.4), (3.5), (3.6),
(3.7), (3.8), and (3.9) are solved by setting the parameters equal to the values

ap =1, a =0, B1 =0, Br=1 (A21)

and those given in Fig. 2 with

_ (K5K2)(z — Py)

7) = , A22
PO = Tk k- Py (422
for kinematical solution Ss. The heptacut double-box integral I, ,, is Z?:l fFf dzJ;(z) where
(K7 IKSIKs )2z = PY))™! fori=2,6
1 Ky“|KEKE Yz(z — Py)™ ! fori=4,5
J,'(Z) _ % « 2 |K5| 1 >Z(Z 1)) l (A23)
32y172 (KETIKEIKE )2z — @) fori=1
(K:TIKT 1K, Yz(z — Q)" for i = 3.
a. Heptacut #3 of the right-hand side of Eq. (4.1)
The result of applying heptacut #3 to the right-hand side of Eq. (4.1) is
18
12§ dK ), (A24)
4=
where the kernels evaluated on the six kinematical solutions are
K2 =c +1 €234, _ co.0 (K5 K12l K27 )z — OF)
e K IIKS XK KK )P — P — 03)  (K: IKsIKE )z — 03)
4 1 024,01<Kf_|](12|K5b_>(Z -07)+ C24,a4<Kf_|](6|K2b_>(P1° - P+ 024,01(,<K:_|](1|K5I’_>(Z - 03)
2 Ky~ KK XK~ K lKE )P — P3)(z — 03)
13,0, (K? Kl KS XKL I IKE )P — Pz —03) 1 20,0
(KP~ 1K K3~ XK~ Kl K2 )Py — P3)(z — Q3) 24Ky 1K K2 )Py — P3)
C1o,0 (K IKs| K5~ XK ™ IKial KE™)(PY — P3)(z — 0F) 1 €20,0, (A25)
(Ky~ 1K K5~ XK~ [KglK2 )Py — P3)(z — Q3) 2(K; ksl K™ )z — 03)
K,(2) = ¢ —|—l €23, _ 9.0, (K7 " kss| K3 )z — P3)
P A (KT IRIKS XKL TR = P30 - 03)  (KETIKIKE ) - P3)
4 1 024,04<K1b7|]56|K2b*>(Z - P+ C24,U7<K{,7|%56|K§7>(Z - P})+ 024,010<Kf7|](1|K§7>(Q1° - 03)
2 Kyl K3~ XK~ 1Kl K2 )z — P3)(QF — Q3)
13,0, (K7 K| K5 XKL 1K IKE )z — P3)(QF — 03) 1 20,049
(KP~ 1K KKK~ Kl K2 ™)z — P3)(QF — 03) 24Ky IKIKS ™)z — P3)
oo (KY ™ IKsol K3~ XK; ™ 1K K2 )z — P})(QF — 03) 1 20,0, (A26)
(Ky~ 1K K5~ XK~ [KslK2 ™)z — P3)(QF — Q3) 24K [KslK2 ™)@ — 03)
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K(z) = parity conjugate of K;(z) [obtained by applying Egs.(4.12)—(4.17)] (A27)
K,(z) = parity conjugate of K,(z) [obtained by applying Egs.(4.12)—(4.17)] (A28)
1 €23,
Ks(2) = cap, +— - — - oL n
T ARSI, XK KK )z — PY)(Bs(2) — 03)
1 C24,01<Ki’_|]512|K5b_>(ﬁ3(2) - 07)

2 (KT IK XK T K IKE ™)z — Py)(B3(2) — 03)
. 1 024,04<K2bf|]56|K{’7>(Z - P, + C24,0’7<K2I97|]é56|K1L77>(Z - P)+ 624,0'10<Kk7|%l |K:)(B3(z) — 03)

2 (KKK~ XK Kl K2 )z — Po)(Bs(z) — 03)
613,0'1<K2L,7|k56|K1l,7><K£7|%12|K5b7>(z — P)(B5(z) — O}) 1 €20,00

(KS 1K XK K| K2~ )z — Py)(B3(z) — 03) 2 (K5I} 1K)z — Py)
13,0, (K3 K| K? XKL ™I IK2 )z — P)(B3(2) — Q3) 1 €20,0,

(K™K | KE XK 1Kl K2 ™)z — Py)(Bs(2) — Q3) 2 (K2 |kl K2 )(B3(2) — Q3)
12,0, (K3 Wss|K? XKL 1K IKE ™)z — P1)(B3(2) — 03) B Co,00(K5 " Kss| Kt )z — Py)

(K3~ 6K XK~ ksl K2 )z — Po)(B3(2) — 03) (K3~ KK )z = Py)
. 012,07<Kgl°_|](6|K1b_><K4|f_|%12|K5b_>(Z — P)(B53(z) — 07) _ C9,o4<Kf_|%12|K5b_>(,33(Z) - 07) (A29)
(K51 LKy~ XK Kl K2~ )z — Py)(B3(z) — 03) (K2~ Kl KE)(B3(z) — 03)
Ke(z) = parity conjugate of K5(z) [obtained by applying Eqs.(4.12)-(4.17)], (A30)
where B5(z) is given in Eq. (A22).
b. Heptacut #3 of the left-hand side of Eq. (4.1)
The result of applying heptacut #3 to the left-hand side of Eq. (4.1) is
6 6
j dzJ, Atee A31
l,-ZifFi Z(Z),Dl @, (A31)

where, assuming without loss of generality the external helicities are (17,27, 3t 4% 5% 6%), the cut amplitude evaluated
on the six different kinematical solutions yields

6

l_[ A;_ree (Z) )

j=1

. 1 | I | H—
= _LAEeE++++ X m(Z_PZ Z_P4> fori =35

T (A32)
0 fori=1,273,406.

4. Heptacut #4

This heptacut is defined by the on-shell constraints in Egs. (3.3), (3.4), (3.5), (3.6), (3.7), (3.8), and (3.9) with the vertex
momenta

Kl = kl Kz = k2 K3 =0 K4 = k34 KS = k5 K6 = k6‘ (A33)

Applying this heptacut to the right-hand side of Eq. (4.1) leaves the following linear combination of cut integrals
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ks . ks ke K
. . ¢ b /)
t t . '
C5.01 T T T + C23,03 + C21,04 4 1 1
b l, '
ki ke ks ! k
ky ks ke
. ks 1, .11
& t r +
+ C20,06 T T + 22,05 = T+ T
I, } :
I ‘.
ke ks ks
ky ks kg
k,
1 ! lz Ill
k - ! _ ks )
+ Co,04 . . + C18,05 (3
1 ; "
2
ke ks kY
. Iy k
(I + kse)? (I2 + ker)*

ks ky ks ke k k

(I, + ]ﬂsti)z(l‘z + A‘fs)z

ki

We define the spinor ratios

_ UHIKS - (Ki+k) v Ky ke K}k b KD ks T Lsss
1 KN +59KE+ Kl ) 7 (KSelkE T (KE Kl
p _ (KTIKY + KslKS ) p _ KP ks + 5sase
! AKIKDIKIKT] 7 (KS asel K )
(L 3HKE - (Kp + ke) + K+ ke (L 3HKE - kas — sus
T AT o R/ oo T T S B
(1 +39K? - ke (1+ 39K -k
0; = _l,,yz—Sb, Q4= _b,yz—sb,y (A34)
(KE™ 1Kol ) (KE 1K IKE ™)
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and their parity conjugates

(159K - (K} + ke) + K} - ke Kb ke

P. _ , °« __ _ , Po __

! (KYI(L+59KE + KolK5 ) 2 KTIKIKE ) ’
Py = C(KSTIKY + Kol K T) pe — K} - kuse T 5 s6

2AKIK;KKEKY) : (K? ™ [Kasel K5 )

Q.__(1+%)K§.(K{’+k6)+K1b.k6 Q.__(1+%)K5b'k45_%5'45

! (K2~ 1K} + KolKE™) ’ ? (K~ KsslKs™) 7

Saygrb . Saygb .

0 - (1+39K% - kg (1 +3KE -k

KIS T KKK
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_ Ky kso 585
(KP ™ lksol K3 ™)

(A3)5)

This heptacut belongs to case I treated in Sec. III A, and there are thus six kinematical solutions (shown in Fig. 2).
Parametrizing the loop momenta according to Egs. (3.12) and (3.13), the on-shell constraints in Egs. (3.3), (3.4), (3.5), (3.6),

(3.7), (3.8), and (3.9) are solved by setting the parameters equal to the values

S
B =1+=2,
Y2

a1=1, a2=0,

B =0,

and those given in Fig. 2 with

Q;(Pz_P4)(Z_P1)
(Py— P)(z—Py) ’

B3(2) =

for kinematical solution Ss. The heptacut double-box integral /s, is >, fF[ dzJ(z) where

(s [+ 2 Yoo )

e (G (R Ry A L S
Y172
(K;TIKY + Kol KE )2z — 7)) 7!
L(KETIKY + Kol K5 )z(z — 01)) 7!

a. Heptacut #4 of the right-hand side of Eq. (4.1)
The result of applying heptacut #4 to the right-hand side of Eq. (4.1) is

1 6
i l:zl fr’_ dzJ(2)K(2),

where the kernels evaluated on the six kinematical solutions are

085032-30
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(A37)
fori =26
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fori=1
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Ki(2) = ¢54, — ! = = = 623’”3_ -1 = CZI’T
T AR K IKS XK T s KETYPY — P3)(z — Q3)  2(K: Kysl K2 )z — 03)
. 1 €20, n 1 €20,
2(K! K|l K2)(Py — P3)  2(K: Kol K2 )z — 03)
1 20,0, (K7 Kss|K2 )P} — P3)

2 (KT ol K XKS  IKas| K2 )P — P3)(z — 03)
1 024,06<Kf7|]561|K5b7>(Z - Q)+ 624,08<K{>7|%456|K2177>(PI - P3)+ 624,011<Kk7|k6|K5b7>(Z - 03)

2 (K7™ 1Kol K3~ XK3 ™ [Kas| K27 )(PY — P3)(z — Q3)
3o (K Kl KE XK IR IKE )P — P — 03) 10,6, (KE ™ K |KE )z — OF)
(KP K| K5~ XK KysI K2 ) (P — P3)(z — O3) (K2 KslK2 )z — 03)
_ Cl3,a8<Kf7|](456|K2bi><KfiUéﬁl|K5bf>(Pf - P3)(z— 0}) + C9,0'6<K1bi|k56|K2bi>(Pl. - P3)
(K7~ 1Kol K3~ XK3 ™ [Kas| K27 )(PT — P3)(z — Q3) (Ky~ |kl K3 )P} — P3)
_ 612,03<K1L,7|I(4SG|K2177><K4%7|K6|K5L’7>(P1. = P3)(z— 03) N Cls,a3<KJf7|/(61|K5%7>(Z - 07)
(K7~ 1Kol K3~ XK} ™ WKasl K2 ) (PT = P3)(z — 03) (g Kl K3 7)== 03)
_ 012,0'8<K1b7|](56|K2L’7><K:7|%61|K5L’7>(PI - P3)(z— 0Q}) _ C11,a3<K4§’7|/€6|K5L’7>(Z - 03) (A40)
(K7~ lks| K37 XK: ™ IKas| K3 ™)PT — P3)(z — 03) (K™ lhas| K3 ™)z = 03)
Ky(2) = ¢54 -1 - - - C23’03,
A (KT KKK Kas| KT )(z — P3O — 03)
_1 21,04 +1 €20,05
2(K; ksl K2™XQT — 03)  2(KP Ikl K )z — P3)
n 1 €22, 4 N o0 (K™ IKss| K2 )z — P3)
24K; " KslK2 )0 — 03) (K?~ ksl KS )z — P3)
1 20,0, (K7 " WKss| K3 )z = P3) + €245 (K} ™ [Kass| K3 ™)z = P3) + Cog o, (K2 K| KET)QT — 03)
2 (K7~ Kl K5~ XK; ™ [Kas| K2 ™)z — P3)(QF — Q3)
_ C13,0, (K [Kss| K3 XK ™ ksl K2 )z — P3)(Q} — 03)
(K?~ 1Kl K3~ XK~ [Kas| K2 ™)z — P3)(QF — Q3)
_ Cino (K27 ksl K2 )QF — 03)
(K3~ lKaslK2™X(Q7 — 03)
cioo (K Iasel K5 XKS ™ IKIKE )z — P3O} — 03) (A4D)
(K7~ Kol K5~XK; ™ [Kas| K2 ™)z — P3)(QF — Q3)
K;(z) = parity conjugate of K;(z) [obtained by applying Egs.(4.12)—(4.17)] (A42)
K4(z) = parity conjugate of K,(z) [obtained by applying Egs.(4.12)—(4.17)] (A43)
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Ks(z)=c ! 21,0, L 20,06 41 0,0,
5 5,09 2<K}f_|]é45|K5b_>(,83(Z)_Q5) 2<K2b_|](6|K{’_>(Z_P2) 2<K£_|%6|K513_>(B3(Z)_Q3.)
1 €230, Cl0.0,(K; [Ka1 K27 )(Bs3(2) — OF)

_Z<K§7|%6|K1}’7><K£7|%45|K5b7>(1 - Pz)(ﬂ3(2) - Qﬁ) <K:7 |](45|K5b7>(ﬁ3(1) - QE)
9,0, (K3 " kss| K} )z — P3) N C18,0,(K2 ™ K1 |IK2)(B3(2) — OF)

(K3 |Ks| K2 )z —Py) (K2~ Kl K2 )(B3(z) — 03)
1 C24,0,{K5 " [Ks6| K} ™)z — P3) 1 240K K61 1K27)(B3(2) — OF)
2(KE ksl Ky XKE ™ KasI K2 )z = P2)(B3(2) — Q3)  2(KE ™ ksl Ky XKL ks I K2 ™)z — P2)(B3(2) — Q3)
_ 11,0, (KL [Ksl K27 )(B3(2) — 03) 1 24,0 (K2 ™ [Kass| K ™)z — Ps)
Ky KislKE)(Bs(2) = 03)  24K5 1Kol K7 ™)K ™ IKas| K27 )z — Po)(B5(2) — 03)
1 Cono, (KE T NK|KET)(B3(2) — 03) _c13103(K2b_|](56|K1b_><K4'§_|]é6|K5b_>(z—P3)(,83(z)—Q3‘)

_§<K2L’7|lé6|K1L’7><Kﬁ7|](45|K5E’7>(Z —P,)(B3(2) — 03) (K3 ksl K7~ XK~ 1Kas| K2 )z = Po)(Bs(2) — 03)

_ 13,0 (K2 [Kass| K? XK ™ ko1 | K2 )z — Ps)(B5(z) — OF)
(K3~ ksl K7~ XK~ 1Kas| K2 )z = Po)(Bs(2) — 03)

_ C12,u3<K;_ |Kyssl K7 XK2 ™ 1Ks| K2 )z — Ps)(B3(z) — Q3)
(K2 Kl K7 XK Kys|KE ™)z~ Py)(B3(2) — 03)

_ 012,08<Kf_|K56|K{°_><Kf_|k61|K§_>(Z —P3)(B3(z) — O})

— — — — S (A44)
(K2~ ksl K2~ XKE ™ Has| K2~ Wz — Py)(B3(z) — 03)

K4(z) = parity conjugate of K5(z) [obtained by applying Egs.(4.12)—(4.17)], (A45)

where B5(z) is given in Eq. (A37).

b. Heptacut #4 of the left-hand side of Eq. (4.1)
The result of applying heptacut #4 to the left-hand side of Eq. (4.1) is
6 6
DI REC) s ERCHE (A46)
i=171i j=1 S;

where, assuming without loss of generality the external helicities are (17,27, 3%,4%, 5%, 6"), the cut amplitude evaluated
on the six different kinematical solutions yields

1 1 1 O
m(z —Z—P2> fori =4

— _i tree X
S; 16A__++Jr+ ﬁ(i— L ) fori=6 (A47)

0 fori=1,223,5.

6

l_[ A}ree (Z)

=1

5. Heptacut #5

This heptacut is defined by the on-shell constraints in Egs. (3.3), (3.4), (3.5), (3.6), (3.7), (3.8), and (3.9) with the vertex
momenta
Kl = k12 Kz = k3 K3 = O K4 = k4 K5 = ks K6 = kﬁ. (A48)

Applying this heptacut to the right-hand side of Eq. (4.1) leaves the following linear combination of cut integrals
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ky ks ko ks ks
. : I [P
t t L h
C6,01 T T 7 T Co3,0y + 21,01 — T T
ks h L I
ky ks ks ks ky
ks k. ks ki ky ke
4 P ks
k: : h .l' : ¢ 2
2 T ks ' P t
+ C19,06 T T + C00 T T FCloee—X e .

+ C8 o

B

+ C13,0¢

We define the spinor ratios

P1=_K5b'k6+(K;+k6).Klb 2=_<K{,k]>
(K3~1KS + Kol K} ) AK3ky)
p._ _ (Kike) _ _ (Kiks) _ (KKt KlKET)
3 N/ b7\ 4 — A~/ b7 \’ 5
2K ke) 2AK? ks) AKSKK2KT]
Ql:_Kf.kéJrKg-(K{wrké) 2=_[K5L’k6] 3=_K§’-k61+%s61
(KETIK + KelK27) 2[K} ko] (K™ |KeilK; )

and their parity conjugates
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P.=_K5b~k6+(K5';+k6)-K{” P.Z_[K{’kl]’
: (KP71KS + Kol K37) g 2[K;3 k]
pr = [K?ke] . [KPks] ’ . (KUK +KslK )
(K ke] 4 (K ks] 3 AKIK KKEK?)
QI:_Klb'ké"'Ksb'(Kf"'kﬁ)’ Q.:_<K5l:k6>, Q.:_Ksb'k61+%s61. (A50)
(KE|KD + KslK2™) : 2K} ke) : Ky KsrlKET)

This heptacut belongs to case I treated in Sec. III A, and there are thus six kinematical solutions (shown in Fig. 2).
Parametrizing the loop momenta according to Egs. (3.12) and (3.13), the on-shell constraints in Egs. (3.3), (3.4), (3.5), (3.6),
(3.7), (3.8), and (3.9) are solved by setting the parameters equal to the values

ap =1, ay =0, B1 =0, Br=1 (A51)
and those given in Fig. 2 with

Q3(P3 — Ps)(z — Py)

(2) = : (A52)
A = PG — Py
for kinematical solution Ss. The heptacut double-box integral I, is ¥0_, §p dzJ;(z) where
(KTTIKS + KslK37)e(z = P! fori=2,6
1 Ky IK: + KslK: )2z — Py)™' fori=4,5
o | KEIRS RIKT )= PO fori =45 A5y
32viva | (K TIKY + KelKS)2(z — 7)1 fori=1
(KSTIKT + KslK; )z(z — Q)™ fori=3
a. Heptacut #5 of the right-hand side of Eq. (4.1)
The result of applying heptacut #5 to the right-hand side of Eq. (4.1) is
1 &
-y f dzJ(2)K,(2), (A54)
4 = Jr,
where the kernels evaluated on the six kinematical solutions are
1 Clo 1 €19, 1 €20,0,
K(Z):CU]__ — ;]00 .+_ — ;6. o+_ - ;4 .
: T 2K NP — P3) 2 (KT IKIKE NPT — P 2 (KS Ik lKE )z — 03)
_1 623,0'1
4 (Ky I K3 XK IKsIKS )P = P3)(z — Q3)
1 o0 (KL K12l K2 )z — OF) + 4.0, (K7~ IKg|KS NPT — P3) + 240, (KE WK1 |IKE )z — 03)
2 (K~ 6K ™K~ kg lKS )P — P3)(z — Q5)
_ 013,04<K{7_|l€6|K2b_><K)€_|k6l|K5I’_>(P1. —P3)(z— 03) n C9,o4<Kf_|k612|K5l’_>(Z - Q1)
(K=K XK~ K6l K™ )(PY = P3)(z — Q3) (K~ Kl KS )z — 03)
_ C1o,0 (K IKsl K5~ XKE " WKsial K2 )(PY — P3)(z — O}) _ o KT T IK6IK2 (P — P3) (ASS)
K} TR XKE KlKE(PT = Pz — 0F) Ky IR )PT = P3)
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1 21,0 1 C19,0, 1 €0 o
Ky(2) = co0, — 5 7 N — - 76 — = — 204 _ _
’ “T (KPR Nz — Py) 2 (KPTIKIKE )z — P3) 2 (KET IRl KE Q) — 03)
1 €230, n Cs,a6<Kf_|/f56|K2L’_>(z - P})

4 (KE I KS XK ks|KE )z — P3)(0F — 03) (KP™ ksl K5~ )z — P3)
1 21,0 (KE T IKs K5 ™)z — P3) + o0 (K7 " Ksol K2 ™)z = P}) + cag 0 (KE T K1 |IKET)QOF — 03)

2 Ky~ K3 XK 1Kl K3 )z — P3)(QF — 03)
_ Cl3,0'4<K1b7|](6|K2bi><Kk7|]€61|K5I,7>(Z - P3)(07 — 03) ClO,o'lo<K]b_|k56|K2b_>(Z - P3)
(Ky~IKIKS XK~ [KslK2 ™)z — P3)(QF — Q3) (K Ik 1K)z — P3)
_ ch,(r,<K1L,7|l€56|K2l,7><K£7|k61|K5t’7>(z - P07 — 03) 011,UIO<KF_|1(6|K2L’_>(Z - P3) (A56)
(Ky~ 1K K2 XK~ Kl K2 ™)z — P3)(QF — Q3) Ky~ Ik K3 )z — P3)
K3(z) = parity conjugate of K,(z) [obtained by applying Egs.(4.12)—(4.17)] (A57)
K4(z) = parity conjugate of K,(z) [obtained by applying Egs.(4.12)—(4.17)] (A58)
1 Col,oy, 1 €19, 1 20,0,
Kl = oo = 3 RETRIKE ) — P+ 2 (KT TlKE e — Po) 2GRS IKIKE )8 — 3)
1 €230, n 8,0 (K2 IKss|KE )z — Py)
4 (K5 IKIKE XK ™ Kl K2 ™)z — Py)(Bs(z) — Q3) (K3~ IKs|K7 ™)z — P3)
. C9,U4<K4I1)_|k612|K5b_>(B3(Z) -07) 1 €240, (K2~ Kool K2 )(B3(2) — OF)
(K3~ ksl K2 )(B3(2) — 03) 24K KKy~ XK~ K6l K2 ™)z — Py)(B3(z) — Q3)
1 24,0 (K3 IKs| K2 )z — P3) + ca4,5. (K3 K56l K7 ™)z — P1) + Coa0,, (K2 Kot [KET)(B3(2) — OF)
2 (K3~ K? XK~ 1Kl K2 )z — Py)(Bs(2) — 03)
_ 13,0, (K3 Kss K7 XK K12l KS )z — P1)(Bs(2) — OF) _ 10,00 K5 " Ikss| K )z — Py)
(K3~ 1K1Ky~ XK~ K6l K2 ™)z — Po)(B3(z) — Q3) (K3~ KKy ™)z — Py)
_ c13,0,(K5 " WKs| K XK ™ 1K1 1KE ™)z — P3)(B3(2) — 03) _ 110, (KS ™ IKg|KE )z — P3)
(K51 LKy~ XK K| K27 )z — Py)(B3(z) — 03) (K5~ IH KMz — Py)
_ 012,0-1<K2L,7|](56|K1L'7><K£7|](61|K5L’7>(Z — P)(B3(2) — 03)
(K3~ KKK K lKE )z — Po)(Bs(z) — 03)
_ 612,07<K2L’7|k6|Kf7><Kk7|k612|K5L’7>(Z — P3)(B;3(z) — Q) (A59)
(K3~ 1K K~ XK~ Kl K2 ™)z — Po)(B3(z) — Q3)
Ke(z) = parity conjugate of K5(z) [obtained by applying Eqs.(4.12)—(4.17)], (A60)
where B5(z) is given in Eq. (A52).
b. Heptacut #5 of the left-hand side of Eq. (4.1)
The result of applying heptacut #5 to the left-hand side of Eq. (4.1) is
6 6
l; fr | dzJi(z)jl:[lA;rec(z) 5 (A61)

where, assuming without loss of generality the external helicities are (17,27,3%,4%, 5%, 6"), the cut amplitude evaluated
on the six different kinematical solutions yields

; 1 1 ;=
— _ LAtree++++ X J4(2) (z—Pz z—P3> for i 4

: (A62)
S; 0 fori=1235,6.

6
l_[ A;ree (Z)
J=1
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6. Heptacut #6

This heptacut is defined by the on-shell constraints in Egs. (3.3), (3.4), (3.5), (3.6), (3.7), (3.8), and (3.9) with the vertex

momenta
K] = k] K2 = k2 K3 = k3 K4 = k4 K5 = k5 Kf) = kﬁ' (A63)

Clov T .7 . T T Bon

A I
2
k- ' ky 1
T 21,04 : T T + C2l03 T 7T + C21,04 T T
t t 3 }
2
k k
key ky ks 2 ke 5
ook ky 1 kg Kook
1 A l 1,
ks % + C ks ' ky %
+ C21,07 T T 10,010 o0+ C1() gy o tte@

+ C13,010

ks k,
(Iy + k) (Iy + ke1)? (Iy + kuse ) (ly + key)? (11 + ks6)?(ly + key)?
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(Iy + ke)*(lo + ke12)?

ky ke

ks oo g
:',|12 :"lll
+ Ci1,010 + +
ky ky
(l] + ]{6)2 (lQ + I{?G)Z
k4 k3 k2

+ C24,0¢

(I + k1)

We define the spinor ratios

Pl:_KSL’-(Kf+k6)+Kf-k6’ P, — Kf’-km—%smy Py = - (K7 ke) L= <K1bk5>’
(K3~ 1K3 + KslK7™) (K3~ [Kiosl K7 ™) 2(K3 ko) 2AK3ks)

__KEWGRIK) KT RIKS) K (KD k) KT ks

i AKT KKK KD T (K5 KIKEK] 1 (KSIKT + Kslks )

0, = — K: '_k345 - %%45) 0, = — [K: ke] 0, = — [K:ki] ’ 05 = — (K;71Ks + k6|K1b_>,
(K2~ lKsas K5 7) 2K, k] 2K k] 2Ky K; KK K3)
(A64)
and their parity conjugates
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K2 - (Kp + ke) + K} - ke K} ki =351

Pk gk 0 T T Rk
po KD Kiks)
2[K75 ke 2[K7ks]
pr— _KCIKEHKIK) (KK KK
2K KKEKE] 6 2AK:K;KKEKYE)
Q1'=—K5b.(£{,+k6)+Klb,.k6, Q5=—K5b 'f345_%si45’
(KSIK? + KslK2™) (K™ ks K2T)
0r — - (K2ke) A (Ksk) 0: - (KPR + KlK3 )
2K ke) 2K k) UKy KKK ]

(A65)

This heptacut belongs to case II treated in Sec. IIT A, and there are thus four kinematical solutions (shown in Fig. 3).
Parametrizing the loop momenta according to Egs. (3.12) and (3.13), the on-shell constraints in Egs. (3.3), (3.4), (3.5), (3.6),

(3.7), (3.8), and (3.9) are solved by setting the parameters equal to the values
a; =1, a, =0, B =0, B =1

and those given in Fig. 3. The heptacut double-box integral I; o, is 3} §y dzJ;(z) where

(K2TIKY + Kol K )z(z — 1)~ fori =1
L (KETIKY + KlKL T )z(z — Q1) fori =2
2viv2 | (KSTIKE + KK )z(z — P))™! fori=3

Ji(z) =

(KPTIKE + KslKy)z(z = Py) ! fori = 4.

a. Heptacut #6 of the right-hand side of Eq. (4.1)
The result of applying heptacut #6 to the right-hand side of Eq. (4.1) is

1 4
i ; }{F,- dzJ(2)K;(2),

where the kernels evaluated on the four kinematical solutions are

1 €23,
K(z) = €104 =

21,009

4 (KP ™Kl K5 XK 1Kl K2~ Yas(z) — P3)(z — Q3)

1
2 (K} Kol K3 )as(2) — P3)

1 €230, 1 21,04

AR K KE XK Kagsl K Y as(2) — Pz — 03) 2 (Ky IKsuslKE )z — 03)

1 €21, 0 1 21,0, _ 10,0, (KT " IKss| K3 )az(2) — P3)

T KIS Naa(@) — P 2 (KL I )= 03 (K" THmlKE Nan(@) — P3)

1 Cano (K2 K12l K2 )z — Q3) + 24,0, (K7 ks K2 Ma3(2) — P3)

2 (Kb~ K13l K5 XK ™ Kl KE M as(z) = P3)(z — Q3)
1 Cono (K [Kss K5 Mas(z) — P}) + 024,0,0<Kk7|]561|K5l’7>(Z - 07)
2 (K? Ko | K5 XK 1Ks| K2~ Mas(z) — P3)(z — Q3)

100K Kt 1K)z — OF)
(K3~ ks K2 )z — 03)
1 024,03<K1b7|]556|K2I’7>(6¥3(Z) - Py)+ 6’24,”6<Kk7|](61|K5l’7>(Z -07)
2 (KPR K2~ XK [Kaus K2 Nas(z) — P3)(z — 03)
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1 21,0 (K " [Kass| K2 Y az(2) = P3) + cag o, (K2 IKsl K27 )z — O3)
2 (K™Kl K3 XK ™ IKaas| K ™)z (2) — P3)(z — 03)
100K} K6l K3 )az(2) — P})

(K}~ ksl K3 Masz(z) — P3)

_ 13,0 (K [Kssl| K5 XK ™ WKsial K2 Mas(z) — P})(z — 03) n 100, (K2 ka1 |IK2 )z — OF)
(K?~1Kios | K3 XK Kl KE )3 (z) = P3)(z — Q3) Kz ksl KE )z — 03)

_ cl3,0’3<K{’_|K56|K;_><K:_|k6|K5b_>(a3(Z) - P})(z— 03)
(K™Kl K3 XK} Kaas| K ™)z (2) — P3)(z — 03)

_ 13,00 (K 1Kl K2 XK Koy K2 Nars(z) — P3)(z — OF)
(K}~ [Kisl K3~ XKG ™ ksl K™ )as(2) — P3)(z — 03)

_ c13,0,(K? " WKass| K5 XKL ™ [Kei K2 Yas(2) — P3)(z — OF) _ Cino, (KKl K2 Yaz(2) — P3)
(K?~ 1Kl K3 ™)K~ 1Kaas| K2 ) a3(z) = P3)(z — 03) (K™ |Kia3l K2 )as(z) — P3)

_ Cig, (K2~ ksl K5~ XK K1 |KE ™ Mas(z) — P})(z — OF) _ Cr1,o, (K27 [Ksl K27 )z — 03)
(K? 1 Kios | K3 XK Kl KE ) as(z) = P3)(z — Q%) (K; ™ Ksus|KE )z — 03)

_ C1o,0o (K IRl K2 XK 2 [Ko12l K2 ) ar3(2) — PS)(z — 03) n 110Kt [Kaissl K2 ) az(2) — P3)
(Kp~ K13 | K5~ XK~ Kl K2~ )as(z) — P3)(z — Q3) (K?~ 1Kl K2 ™ Mas(z) — P3)

_ C12,a'3<K{’_|K456|K2I9_><K:_|k6|K5b_>(a3(Z) - P5)(z— 03) 4 C11,0'7<K4I1’_|k612|K5|’_>(Z -03)
(K?~ 1Kl K3~ XK ;™ [Kaas| K2 ) a3(z) = P3)(z — 03) (K3~ lkslK ™)z = 03)

o (K sl K37 XK, K1 1K™ Mas(2) — P})(z — OF)
(K7~ Kol K3~ XK~ Kaas| K2 Nas(z) — P3)(z — Q3)

(A69)

K,(z) = parity conjugate of K;(z) [obtained by applying Egs.(4.12)—(4.17)], (A70)
where as(z) can be read off from the on-shell values quoted below solution S; in Fig. 3.

1 €230, B 1 Col,0y0
4 (K5 | ioal K- XKL 1Kol K27 )z — Pa)(B3(2) — Q3) 2 (K2 [Kisl K7~ )z — Py)
€230, 1 21,04
(K2 K| Ky~ XK ™ Kags| K270z — P3)(Ba(2) — Q) 2 (K:™ lKsusl K2 )(Ba(z) — Q3)
C21,0 _leng (K:™ K12l K2 )(B3(2) — 03) + cag o (K2 K| K7 ™)z — P3)
<Kf_|](6|K1b_>(Z —-P;) 2 <K2b_|%123|K1b_><K4|19_|](6|K5b_>(Z — Py)(B3(2) — 03)
21,0, 1 24,0 (K3 WKss|K? )z — Py) + ¢4, (KS K1 |IK27)(B5(2) — OF)
(K:™1Ksl K2 )(Ba(z) — 03) 2 (K2 |#ias K XKE ™ 1Kl K2 )z — P)(Ba(z) — Q3)
24,0 (K3 " K56l K ™)z — P1) + o450, (KL K1 1K) (B5(2) — QF)
(K5 ksl K7™ XK ™ IKaas| K27 )z — P3)(Bs(2) — 03)
20,0 (K3 [Kass|K? )z — Pa) + cag 0, (K2 IKsl K27 )(B3(2) — 03) _ c10,0,,(K2 " IKss|KE )z — Py)
(K2 1Kol K7 XK Kus| K2 )z — P3)(B3(z) — 03) (K3 lKisl K7 )z = Py)
_ C13.0, (K2 |Ksel K~ XK WKsial K27 )z — P)(B3(z) — 03) _ 10.0,(K2 ™ K1 |K2)(B3(2) — OF)
(K5 |#1asl K XKE ™ 1Kl K2 )z — P2)(Ba(z) — Q3) (K™ |MsasI K2 )(B3(z) — 03)

KS(Z) = C7,(r| -

+

|
= D= = = A=

+

\S]
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130 (K3 sl K XK, ™ Kl K2 ™)z — P1)(B3(2) — 03) n C10,0o{K3 " ksl K} ™)z — Py)

(K5 1kl K? XK [Kags| K2 )z — P3)(Ba(z) — Q3) (K5~ |Ks|KP )z — P3)

_ 13,00 (K3 K| KE XK ™ Kot K2 )z — P3)(B3(z) — OF) N 10,0, (K2 ka1 IK2)(B3(2) — OF)
(K3~ Kis Ky~ XK ™ Kl K2 )z = Po)(B5(2) — 03) (K3 ksl K3 )(Bs(2) — 03)

_ c13,0,(K3 " WKass| K XKL [Kei 1KE ™)z — P2)(B3(z) — 0F) _ 11,00 K5~ K6 KE )z — P3)
(K2 Kol K7 XK Ksas| K2 )z — P3)(B3(2) — 03) (K3 ki3 Ky )z = Py)

_ Cro,0 (K3 [Kse| K? XK ™ Ksi|KE ™)z — P)(B3(z) — OF) _ 110 (K27 IKsl K27 )(B3(2) — 03)
(K2 [Kis | Kp XK ksl K2 )z — Py)(B3(z) — 03) (K™ |Maas| K27 )(B3(z) — O3)
_ 1o, (K3 K| KE XKL ™ [Ks12l K2 )z — P3)(B3(2) — 03) n Cin,o0(K3 " WKass| K )z — Py)

(K3 1Hios | Ky XK ™ Kl K37 )z — Po)(B3(2) — 03) (K3~ lks| K} ™)z = P3)
_ 12,0, (K3 ™ [Kass| K XK ™ IKs| K27 )z — Po)(B3(z) — 03) 4 ciro (K2 [Ks12l K2 )(B3(2) — 03)
(K3~ Kol Ky~ XK; ™ [KsusI K2 ™)z — P3)(B3(2) — 03) (K}~ Kl K3 )(B3(2) — 03)
oo (K5 Ksel K TXKL Kt 1K ™)z — P)(Bs(2) — OF) (A71)
(K3~ 1Kks| K7~ XKS ™ [Kas| K3 ™)z — P3)(B3(2) — 03)
K,(z) = parity conjugate of K5(z) [obtained by applying Eqs.(4.12)—(4.17)], (A72)
where 35(z) can be read off from the on-shell values quoted below solution S; in Fig. 3.
b. Heptacut #6 of the left-hand side of Eq. (4.1)
The result of applying heptacut #6 to the left-hand side of Eq. (4.1) is
4 6
iy j( a1 []A=6) | (AT3)
i=1 7L j=1 Si

where, assuming without loss of generality the external helicities are (17,27,3%,4%, 5%, 6), the cut amplitude evaluated
on the four different kinematical solutions yields

=0 fori=1,...,4 (A74)
s

6
ERE
j=1

7. Heptacut #7

Note that in this section we will leave the = in y;, P;-, Q; etc. implicit and simply write vy, P;, Q; etc. for notational
simplicity. The heptacut considered here is defined by the on-shell constraints in Egs. (3.3), (3.4), (3.5), (3.6), (3.7), (3.8),
and (3.9) with the vertex momenta

Kl = k12 Kz = k34 K3 =0 K4_ = k5 K5 = k6 K6 = 0. (A75)

Applying this heptacut to the right-hand side of Eq. (4.1) leaves the following linear combination of cut integrals
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ky "
k3 / 1 lz

k
C16,01 T T T + €4 =2 1 1 + Co24e 22 L 1

ky

k2 k] k() k3 k4
(ll+kﬁ>2
We define the spinor ratios
_ (KPKE) v1(Sy + 1) _ [KEKE] S1S5(1+S1/v1)
1 — » 2 =
2AK5KE) ¥ — 515, 2[KPKE] v =815,
_ [KEKZ] S1S5(1+81/v1) = — (KPky) v1(Sy + 1)
- Y= ’
AK K1 vi— SiS, AKSky) ¥ — 8515,
(So+y1) b . _ 518,81 t+y1) wrb . _ _
771?—27539;[{1 ks W‘SI?Z)KQ ks = 3(s13 + $23) VA _ [K5ki] S;S:(1+S,/v))
2AK k] v — 515,

’

3

Pg=— — — s Ps
AKSIKsIKE )

Y1) b .. _ S +y) b 1
_;g_zslszl Ky - ks 7]1(;,%_131312)1(2 ks 2(313"‘323)*'\/K

2AK:GIK? )
Y1(Sy + Y XKEKPIKP K21+ S185(1 + Sy /vy XKEKSKEKE]

O T F yDKEKKI KT + $15,(1 + S /7y KKIKKIKS) 227

5

_ [KyK¢]
2[K7K;]

(A76)
and their parity conjugates

_KYKS] vi(Sy ) . _ (K;KS) S18:(1+81/v1)
AKTK] vi=818: " 7 XAKIKY) v = 815

. (K5K?) S1S,(1+8,/v1) .« [KP kil v1(Sy + 1)
Py = b b 2 Py = b 2 )
UK K v~ SiS: 2[K3ki] vi — 815>

YiS+y) grb L SiSHSity) b oL 1 _
e s K ky = JEESESKS ks = §s1 + s3) — VA
¢ 2K KK ) ’

pr =

Y1S2+y) grb . _ 5158+ y) gb . _1
_ (K2ky)y Si18,(1+8,/v1) ylf—ZSIS; Ky ks vi(vfiSISl)KZ ky = 5(s13 + s23) + VA

_2<K1bk1> Y1 — 8515, 2Ky IK1K; ™)
Yi(Sy + Y KKEKKLKE] + S1S,(1 + 81 /v XKEKKEKE]
2y1(Sy + yIXKEKDKEKE] + S1Sy(1 + 81 /v XKL KK KED)'

where the discriminant appearing in Pg, P;, P¢, P7 is given by

PS. ) P‘;:_ ’

. (KIKD)
% KRy (A7

0f = -

4818,(S; + y1)(S2 + 1)

S8 (1 + S /vy)
(’}’% = 515,)°

yi— 815,

K! ks (K? - k3)(KS - ks).

¥1(S2 + 1) 1 2
A= (—] 2 ! Kzl’ . k3 _5(513 +S23)) +

yi— 815,
(A78)

This heptacut belongs to case III treated in Sec. III A, and there are thus four kinematical solutions (shown in Fig. 4).
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Parametrizing the loop momenta according to Egs. (3.12) and (3.13), the on-shell constraints in Egs. (3.3), (3.4), (3.5), (3.6),
(3.7), (3.8), and (3.9) are solved by setting the parameters equal to the values

(S + ) 81581+ v)
= i lss T 585 =)
Y1 $18, Y1(515, ’)’1)

and those given in Fig. 4. The heptacut double-box integral /¢, is %Zi pa fri dzJ7(z) where

ay B =0, By =1 (A79)

(3272(62 T yKETIRGIRS D) + %(1 + %)<Kk-|xs|1<g—>)z<z - Q;>)‘1 for i = 1,2

-1 (A80)
(3272((52 Ty KKK + %(1 + %)m;*m;m:f))z(z - Ql)) for i = 3,4

Ji(z) =

and where we recall that the =+ in y7, K},, O etc. have here been left implicit.

Heptacut #7 of the right-hand side of Eq. (4.1)
The result of applying heptacut #7 to the right-hand side of Eq. (4.1) is

—Zz_y( dzJ; (2K (2), (A81)

* i=1

where the kernels evaluated on the four kinematical solutions are

KE() = crpp — €20, P . €220, P (A82)
b U 24Ky GRS TP = PE)(PY — P3) 2Ky IKIK; )P — P3)(PT — PS)
Ky(z)=c _1 ¢2,0,23(2) 1 2,0, @3(2)
? 7 2 KTTIBIK M as(2) — Pas(d) = P5) 2 (KT IR M as(2) — P (as(2) = P3)
1o (KT IKS ) (a3(2) = PY)(a3(2) = P3) 15,0, (K7 ™ IKsIKE ™ )a3(2) = P})(as(z) — P3) (AS3)
(K7~ ls1 K5~ Nas(2) = Pg)as(z) — P3) (K7~ 1K1K Nas(2) — P3)(as(z) — PS)
K5 (z) = parity conjugate of K (z) [obtained by applying Eqs.(4.12)—(4.17)] (A84)
K} (z) = parity conjugate of K5 (z) [obtained by applying Egs.(4.12)—(4.17)], (A85)
where a;(z) is given in Fig. 4.
Heptacut #7 of the left-hand side of Eq. (4.1)
The result of applying heptacut #7 to the left- hand side of Eq. (4.1) is
6
—Z Z f dzJF ) [JA* @) | . (A86)
= i=1JL =1 Si

where, assuming without loss of generality the external helicities are (17,27, 3%,4™,5%,6™), the cut amplitude evaluated
on the four different kinematical solutions yields

6
[TAreG)| =0 fori=1,....4 (A87)
j=1 Si

Heptacut #8

This heptacut is defined by the on-shell constraints in Egs. (3.3), (3.4), (3.5), (3.6), (3.7), (3.8), and (3.9) with the vertex
momenta

Kl = kl Kz = k2 K3 =0 K4 = k3 KS = k4 K6 = k56‘ (A88)

Applying this heptacut to the right-hand side of Eq. (4.1) leaves the following linear combination of cut integrals
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ks ks ks ky

(11 + kase) (I + kgt )

ks ke K
15 ,9.11

Ky ..--‘.: ' 4
ks ky ks ke ks ) ko

(I + kase)* (I + ks6)? (I + ks)* (I + kse1)? (I + kso)

ke ks k,
A ;’.lz
+ C11,0’11 L et of T

(l2 + kﬁGl)z (I + k456)2 (la+ k56)2

We define the spinor ratios

Pl:_K;’-K6+%S(,+(K§+K6)-K{> = Kb kg
(KST1KE + KelKP™) (K3 |KslK?™)
p. — K} ksg t+ 3556 ~ (KETIKE A+ KelK2T)
3 oo b—17 1o b —\ 4 —
) AKIKIKEK?]
KP Ko +4iS.+ (KP + K) - K?! K: -k K! ks +1s
0, — KU KetaSex K+ Ke) K5 ) 5 Q; = -2 D0 1% (xg0)

(KL IK? + KolKE) C(KEIRsIKE Y (K IRselKE)

and their parity conjugates
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P;=_K§~K6+_%S6+(K§+I_(6)'Kf’, pr— -
(KYTIKS + KlK3™)
pr— - K} '_k56 + %SEG pr— C(KETIKY + KolK )
’ (Kt~ |KselK3) 2[K:KEKKEKY)
K} K +385+ (Kb + Kg) - K

(K;™1KY + KolKs™)

Klb - ke
Ky~ ksl K5 ™)

b. 1
Ky - ksg + 75556

Ksb * k5
(K™ |KsolKE™)

_ , A90
K 1K) (A%0)

o1 = : 0; = 05 =

This heptacut belongs to case I treated in Sec. IIT A, and there are thus six kinematical solutions (shown in Fig. 2).
Parametrizing the loop momenta according to Egs. (3.12) and (3.13), the on-shell constraints in Egs. (3.3), (3.4), (3.5), (3.6),
(3.7), (3.8), and (3.9) are solved by setting the parameters equal to the values

ap =1, a; =0, B1 =0, Br=1 (A91)

and those given in Fig. 2 with

_ (KZ71KE + KelKE )z — Py)

Bs(z) = , (A92)
’ AK; KKKz = Pay)
for kinematical solution Ss. The heptacut double-box integral /7 ,, is >, fri dzJ;(z) where
Ky~ IKS + KolK3)e(z — P~ for i =2,6
1 K:7|K: + KelKE)z(z — Py)™! for i =4,5
I = y (K37 1Ks + Kol K7™ )z( 1) . (A93)
32v1v» (KSTIKE + KelKe)z(z — Q3)7! fori=1
(K2IK? + KlK; )2z — @)™ for i =3
Heptacut #8 of the right-hand side of Eq. (4.1)
The result of applying heptacut #8 to the right-hand side of Eq. (4.1) is
1 &
12§ dK ), (A%4)
4=
where the kernels evaluated on the six kinematical solutions are
1 Col o 1 (SN2
Ki(z) = c176, + 3 — L + - — 73
1 T 2RI )(PY = P3) 2 (KE T IKSIKE )z — 03)
4 1 €23,04 n 100K " IKse1 |IKE )z — OF)
4 (K7™ ksl K3 XK~ [KsIKE )P — P3)(z — 03) (K;~lks 1K)z — 03)
4 1 21,0 (K IKss| K2 )P} — P3) + Ca4 0 (K2 [Ks1 1K)z — OF) + Coa0, (K™ Ksol K2 )z — 03)
2 (K7~ ksl K3 XK~ IKsIKE )P — P3)(z — 03)
C13,u3<K{°—|1556|K2b_><Kf_|]556|K§_>(Pf = P3)(z— 03) n Cl1,g3<KJf_|k56|K5b_>(Z - 03)
(K7~ ksl K3 XK~ 1KsIKE )P — P3)(z — 03) (K;™ k51K )z — 03)
C10,0 (K [Kss| K5 XK [Kser K2 )P — P3)(z — OF) . Cire, (KP IKssl K2 )P} — P3) (A95)
(K7~ ksl K3 XK~ 1KsIKS )P — P3)(z — 03) (K7~ ksl K37 )(P} — P3)
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K>(z) = cy7 +l “2Loy +l “otoy
T2 (KT Kl K3 )= — P3) 24K IKsIKS YO — 03)
n 1 €23,04 10,0, (K? " Kyse| K2 ™)z — P3)
4 (Ky~ Kl K2 XK~ 1KsIK2 ™)z — P3)(QF — Q3) Ky~ 1Kl K2 ™)z — P3)
4 1 o1, (K K6l K2 )z — P3) + 4.0, (K7 " [Kasel K3 ™)z — P}) + cag 0, (K2 IKss|KE)OF — 03)
2 (KP~ ksl K5~ XK 1KsIKE Mz — P3)(QF — Q3)
C13,zr3<K{°_|%56|K§_><Kf_|]556|1(§_>(2 - P3)(Q7 — 03) n 011,03<Kf_|K56|K5b_>(Q1° - 03)
(K?~ Kl K2~ XK; ™ [KsIK2 ™)z — P3)(QF — Q3) (K3~ lKsIKe™ )07 — 03)
C1o,0 (K [Kassl K5 XKE ™ Ksol K2 )z — P})(QF — 03) 4 Ciro, (K IKss| K2 )z — P3) (A96)
(K7~ IKs| K3~ XK 1KsIKS ™)z = P3)(QF — 03) (K7~ lKsIK3 ™)z — P3)
K;(z) = parity conjugate of K,(z) [obtained by applying Egs.(4.12)—(4.17)] (A97)
K,4(z) = parity conjugate of K,(z) [obtained by applying Egs.(4.12)—(4.17)] (A98)
Ks(2) = ci7,0 +l - oo 623’0,3
T AT Kl Ky TXK T KsIKE )z = Po)(B5(2) — O3)
1 24,0 {K3 " IKs6|KE ™)z — P3) + ca4, 0 (K2 K511 K27 )(B3(2) — OF) 1 21,0,
2 (K3~ KK~ XK~ 1Ks|K2 ™)z — Po)(B3(z) — Q3) 24K3 KKy ™)z — Py)
1 21,0 (K2 Kass|K? )z — P1) + ¢y 0, (K2 [Kssl K27 )(B3(2) — 03) +l 21,0,
2 (K3~ K| Ky~ XK~ [Ks|K2 ™)z — Po)(B3(z) — Q3) 2(K; KsIK2 ™) (Ba(2) — 03)
13,0, (K3 [Kss| K7 XK ™ Kssl K27 )z — P3)(B3(z) — 03) 4 10,0, (K2 IKyssl KE )z — Py)
(K3~ Kl K~ XK~ [KsIK2 ™)z — Po)(B3(z) — Q3) (K3~ Kl K ™)z — Py)
613,08<K57|K456|K{’7><K}f7|]é561|K5b7>(z — P)(B5(z) — 07) . 010,03<K£’7|]5561|K§’7>(,33(Z) - 07)
(K3~ 1Kl K XK~ 1KsIK2 ™)z — Po)(Bs(2) — Q3) (K3~ KsIK2™)(Bs(z) — Q3)
012,03<K57|K456|Kf7><K£’7|](56|K§’7>(Z — P)(B5(z) — 03) . 011,U3<K}f7|]556|K5b*>(ﬂ3(2) - 03)
(K2 ksl Ky~ XK~ K5I K2~ )z — Py)(B3(z) — 03) (K2 IKsIKE)(Bs(z) — 03)
10,00 K5 Wss|K? XKL ™ [Ksi [KE ™)z — P3)(B3(2) — QF)  cio, (K5 IKssl K7 ™)z — P3) (A99)
(K3~ KKy~ XK~ [Ks|K2 ™)z — Py)(B3(z) — Q3) (K3~ K| Ky ™)z — Py)
K¢(z) = parity conjugate of K5(z) [obtained by applying Eqs.(4.12)—(4.17)] (A100)
where B5(z) is given in Eq. (A92).
Heptacut #8 of the left-hand side of Eq. (4.1)
The result of applying heptacut #8 to the left-hand side of Eq. (4.1) is
6 6
l; fr | dzJ,-(z)jl:[lA}ree(z) s (A101)

where, assuming without loss of generality the external helicities are (17,27,3%,4%, 5%, 6%), the cut amplitude evaluated
on the six different kinematical solutions yields
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(1 (1_ 1 . _
m(z Z—Q£> for i =1
6 i 1 (1 __1 f i =4
[TAF@ | = =A™ sss X {7 ( P) o (A102)
j=1 i
1 f1_ 1 C
m(z Z*PI.) for i=6
L0 for i =235
Heptacut #9

This heptacut is defined by the on-shell constraints in Egs. (3.47), (3.48), (3.49), (3.50), (3.51), (3.52), and (3.53).
Applying it to the right-hand side of Eq. (4.1) leaves the following linear combination of cut integrals

ky

ky

C1,04 + C23,0;

+ Ci13,0¢ + C13,010
k, ky by
i }
+ Co1,07 — 4
1, [
3 ke ky
(Iy + ke)*(ly + kpo)?
ky ks ks
°
+ Cllor ks .- +

+ C24,04

(ll + k7()‘)2

We define the spinor ratios
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[ksks]
= [k3k2] , == <k1k6> L= — k1 : k56 + %S56 P4 _ _ <klk6> + ﬁ<klk5>
2[ksk;] 2kokg) ; (k3 |Ksel ki) 2((kykey + %(l{zkﬁ) (A103)
0, = (kyks) _ kerkintgsn 05— — [k1k6]
U 2kgkey ’ (ke [Krolks) P 2fkiks)
and their parity conjugates
(ksky)
pe — (k3k,) .« _ _ [k k] o hitksg t+ 1556 pe— _ [kike] + ks [k1ks]
b 2ksky) 2 2 kak] : (ki 1Ksslks ) 4 2([koks] + &89 [koks])
[kyks] ke - k1o + %Slz (kyke)
07 = , O =———F—7 7T 03 =~ . (A104)
b 2[kyk] : (ks |K1alkg ) } 2k ks)

This heptacut was treated in Sec. III B, and there are four kinematical solutions (shown in Fig. 6). Parametrizing the loop
momenta according to Eqgs. (3.54) and (3.55), the on-shell constraints in Egs. (3.47), (3.48), (3.49), (3.50), (3.51), (3.52),
and (3.53) are solved by setting the parameters equal to the values

| = 1, a, = O, Bl = 0, Bz = 1 (A105)

and those given in Fig. 6. The Jacobian associated with the heptacut (3.47), (3.48), (3.49), (3.50), (3.51), (3.52), and (3.53) is
1 1

Jf)=————— fori=1,..., 4. (A106)

16512545556 2

Heptacut #9 of the right-hand side of Eq. (4.1)
The result of applying heptacut #9 to the right-hand side of Eq. (4.1) is

1 &
i § A OK ), (A107)
where the kernels evaluated on the four kinematical solutions are
_ 1 L, - [ksks\=1 1 _ _
K10 = ~ i~ oL (el + Gakolial f ) - (o, v G k)
X (ks ki lkg Yz — P3)QT — Q3) + 4cip o Sk |Kselky Yks [Kylkg Wz — PI(QF — Q3) + 4cin 0, Sk 1Kslks)
X (ks [Kialkg Yz — P3)QT — O3) — Ak |Klky Mz — PY) (oo, + 2¢10,0,<ks [Kilkg Y(QF — O3)
+ 2¢11,0,k5 | K12lkg MQOT — 03)) + 2¢04 4, Sk | K12k QT — Q3) + 2¢04 4, ¢k [Kslhy Yz — P3)
+ 204 0, Sk Nselky Yz — P3) + 2¢04 4, ks Ky kg )(Q] — O3)
+ ders 6 Wk X izl )z = PR(OT — 03) ] (A108)
_ 1 L(, _ . (kskg\ =1 1 _ _
Ky(z) = 20k 1K1k 0 — PP I:Cl,o'] + §(<k1 |Kslky ) + (kyke) sk, ] (k6k4>) - (c3.0, t 4130, kT Kolky )
X (ko K1 1ks )z — P3)(Q1 — Q3) + dcin o ki [Ksolhy Xk 1K lks Yz — P3NQ1 — Q3) + 4cino, ki Kslky )
X (kg |Ki2lks Mz — P3)(Qy — Qa) — 2ky [Kslky Yz — PY)(cat o, + 2€10,0, kg [Ki k5 ) Q1 — O3)
+ 2¢11,0, (kg 1 Ki2lks XQ1 — 02)) + 2¢04 4 (kg [Kialks Y Q1 — Q1) + 2¢04 4, <k Koy Yz — P3)
+ 2004 0, Sk NKselky Yz — P3) + 2¢04 5, (kg 1Ky k5 IO — O3)
+ e g k7 Wsell Yo Hlks )G = P3(Q, — 02) | (A109)
K;(z) = parity conjugate of K,(z) [obtained by applying Egs.(4.12)—(4.17)] (A110)
K,(z) = parity conjugate of K,(z) [obtained by applying Egs.(4.12)—(4.17)]. (A111)
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Heptacut #9 of the left-hand side of Eq. (4.1)
The result of applying heptacut #9 to the left-hand side of Eq. (4.1) is

4 6
> Y(r el @ []A5 )
i= i Jj=

, (A112)
S

where, assuming without loss of generality the external helicities are (17,27,3%,4%, 5%, 61), the cut amplitude evaluated
on the four different kinematical solutions yields

(1]

(3]

6
JERE
j=1

i
s = EAt{eE++++ X
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14@)

(%—#) for i =2

1_ 1 .
(Z Z_Pz) fori =4
fori=1,3.
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