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We study the phase transition of a real scalar ’4 theory in the two-loop �-derivable approximation

using the imaginary time formalism, extending our previous (analytical) discussion of the Hartree

approximation. We combine fast Fourier transform algorithms and accelerated Matsubara sums in order

to achieve a high accuracy. Our results confirm and complete earlier ones obtained in the real time

formalism [A. Arrizabalaga and U. Reinosa, Nucl. Phys. A785, 234 (2007)] but which were less accurate

due to the integration in Minkowski space and the discretization of the spectral density function. We also

provide a complete and explicit discussion of the renormalization of the two-loop �-derivable approxi-

mation at finite temperature, both in the symmetric and in the broken phase, which was already used in the

real time approach, but never published. Our main result is that the two-loop �-derivable approximation

suffices to cure the problem of the Hartree approximation regarding the order of the transition: the

transition is of the second order type, as expected on general grounds. The corresponding critical

exponents are, however, of the mean-field type. Using a ‘‘renormalization group-improved’’ version of

the approximation, motivated by our renormalization procedure, we find that the exponents are modified.

In particular, the exponent �, which relates the field expectation value �� to an external field h, changes

from 3 to 5, getting then closer to its expected value 4.789, obtained from accurate numerical estimates

[A. Pelissetto and E. Vicari, Phys. Rept. 368, 549 (2002)].
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I. INTRODUCTION

It is well known that conventional perturbation theory
fails to describe the second order phase transition of a
’4 scalar model with Z2 symmetry in four dimensions,
and more generally of any system involving bosonic
degrees of freedom, because the perturbative expansion
is plagued with infrared divergences [1]. This great
sensitivity to the infrared corresponds physically to the
fact that a system of bosons becomes three-dimensional
(3D) near a second order or a weakly first order phase
transition. Several resummation procedures have been
put forward in order to cure the breakdown of the
perturbative expansion and thus to provide a correct
description of the phase transition in a given model,
including the order of the transition and, if the transition
is of the second order, the corresponding critical expo-
nents. The quality of the description of the phase tran-
sition depends usually on the level of approximation
considered within these methods.

The ring (daisy) resummation [2] was proposed in order
to cure the infrared divergences of a massless theory
through the resummation of the leading order thermal
effects which lead to the generation of a thermal mass.
This method produces in the effective potential a term
which becomes cubic in the field at the temperature where
the quadratic term vanishes (this is observed already at
the one-loop level of the original perturbation theory), and
as a result the phase transition turns out to be of the first-
order type [3,4]. However, it was argued in Ref. [5] that
one cannot rely on the ring-improved perturbation theory
in order to distinguish between a first- and a second-order
phase transition, because its loop expansion parameter
�T=meff becomes of Oð1Þ at the nontrivial minimum of
the potential, where the effective mass meff is Oð�TÞ.
An even larger class of perturbative diagrams is resummed

in the superdaisy [6] or self-consistent Hartree-Fock resum-
mation scheme which, like the daisy resummation, is a local
resummation scheme in that it results in a momentum inde-
pendent self-energy. Numerical studies and the use of the
high temperature expansion (HTE) revealed that this resum-
mation also fails to reproduce the true nature of the phase
transition [7,8]. Recently, the same conclusion was obtained
analytically [9].
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It was shown in Ref. [10] that in the SUð2Þ Higgs model
the phase transition in the Higgs-Goldstone sector turns
into second order when one goes beyond the superdaisy
resummation by including the scalar bubble diagram in
the propagator with which the one-loop effective potential
is calculated. There are other indications in the literature
that with the inclusion of the setting-sun diagram in the
effective action, the phase transition turns into a second
order one [11–15]. Recently, the type of the temperature
phase transition in the ’4 model was investigated using
Monte Carlo simulations on a lattice [16]. It was found that
for very small values of the coupling � � 10�3 the phase
transition is of first order, while for larger values the
transition is of second order.

The above results indicate that it is important to take
into account nondaisy-like diagrams in order to capture the
nature of the phase transition. Actually, as emphasized in
Ref. [17], the problems of the daisy and superdaisy resum-
mations rely on the fact that, while efforts were made to
include thermal effects in the effective quadratic coupling
of the theory, nothing was done concerning the quartic
coupling, which remained a constant. But in fact, as a
result of the running, the coupling constant vanishes at
Tc taming around this temperature the behavior of the
resummed perturbation theory, whose expansion parameter
�T=meff would blow up for fixed �. An instructive com-
parison of these resummation methods with the evolution
equation of the renormalization group (RG) method can be
found in Ref. [18]. A successful description of the second
order phase transition should be able to take into account
the fact that the effective coupling constant exhibits a four-
dimensional behavior in the ultraviolet and a 3D one in the
infrared. In the RG approach the running effective coupling
nicely interpolates between these two limits which allows
for the correct description of the second order nature of
the phase transition [17,19,20] and for the determination of
the related critical exponents [21].

In this paper we study numerically the thermal phase
transition of the one-component scalar field theory within
the two-particle-irreducible (2PI) formalism, which is
known to be a systematically improvable method to resum
the perturbative series [22,23]. We go beyond the lowest
order (Hartree) approximation used in Ref. [9] by including
in the 2PI effective action the field dependent setting-sun
diagram. This is the simplest truncation of the 2PI func-
tional that includes nonlocal contributions to the gap equa-
tion for the propagator, which we solve without further
approximations. In particular, we treat the momentum de-
pendence of the propagator self-consistently. We address
also the issue of ultraviolet divergences which, after being
regularized using a sharp cutoff, are removed using the
renormalization method recently developed and applied
in the context of the equilibrium 2PI formalism [24–27].

Our main result is that the transition turns into a second
order one, as compared to the Hartree approximation, at

least for the values of the parameters that we could access.
Another attempt to discuss the order of the transition from
higher contributions to the 2PI effective action was pur-
sued in Ref. [28] and in fact much more diagrams than
the ones we shall consider here were included, namely,
all those which contribute at next-to-leading-order in the
1=N expansion of the OðNÞ model. In this investigation
however, the propagator equation which becomes mo-
mentum dependent at this level of approximation was
solved with a momentum-independent ansatz, which
leads to a slightly stronger first order phase than in the
Hartree approximation, in disagreement with our present
results which, although they concern the simplest non-
local contribution to the 2PI effective action, involve a
complete treatment of the corresponding momentum
dependence.
We also compute several thermodynamical quantities, as

well as the critical exponents. Our conclusion concerning
the latter is that in the two-loop �-derivable approxima-
tions, their values remain equal to those in a mean-field
approximation. This is not surprising since, without the
inclusion of the ‘‘basketball’’ diagram in the 2PI effective
action, there is no wave-function renormalization in the
gap equation, and thus no possibility for an anomalous
dimension. It is nevertheless interesting to study what
happens if one implements some ideas coming from the
RG approach and let the coupling run with the temperature.
We find that the values of the critical exponents depart
from their mean field values and that some of them can be
even determined analytically, such as the critical exponent
� of the ‘‘magnetization’’ on the critical isotherm, which
becomes equal to 5. As we shall see, this is related to the
fact that, even though the approximation does not seem
sufficient to generate nonanalyticities in the field, the run-
ning coupling vanishes at the transition temperature. Some
of the critical exponents have been studied using more
elaborated truncations of the 2PI effective action by work-
ing directly in three dimensions and in the symmetric
phase; see Refs. [29,30].
Owing to the length of the text and in order to facilitate

the orientation of the reader, we give here a summarized
account of the remainder of the paper.
(i) Section II introduces the model, the approximation,

and some basic objects of the 2PI formalism. In
particular, we illustrate the known fact that in a given
truncation of the 2PI effective action, there exist two
inequivalent expressions for the two-point function
and three inequivalent expressions for the four-point
function. The cutoff regularization is also introduced
and discussed in details.

(ii) Section III motivates the fact that renormalization
of a given truncation of the 2PI effective action
requires an increased number of bare parameters.
These bare parameters are fixed by means of
both renormalization and ‘‘consistency’’ conditions,
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which we impose at a nonzero temperature T?

where the system is required to be in its symmetric
phase. The consistency conditions ensure that, de-
spite of their increased number, all bare parameters
are fixed in terms of only two renormalized parame-
ters: one renormalized mass m? and one renormal-
ized coupling �?. One nice feature of the two-loop
approximation is that the bare parameters are given
in terms of a finite number of perturbative sum
integrals and can thus be determined independently
of the resolution of the gap equation. Finally,
some ideas borrowed from the RG are implemented
within our particular renormalization scheme.
This allows us to define an RG-improved two-loop
approximation which is later compared to the stan-
dard two-loop approximation.

(iii) Section IV presents our numerical results on
the phase transition both in the two-loop and in
the RG-improved two-loop approximation. By
selecting some points in parameter space, we find
numerically that where in the Hartree approxima-
tion the phase transition is of the first order type, the
inclusion of the setting-sun diagram at the level of
the 2PI effective action turns the transition into a
second order type, with mean-field exponents. The
order of the phase transition is reflected also at the
level of the bulk thermodynamic quantities, such as
the heat capacity, speed of sound, and trace anom-
aly. We test the effects of the RG-improvement and
find that the values of the critical exponents depart
from their mean field value.

(iv) Section V is devoted to details concerning the
numerical method used to solve the model in the
imaginary time formalism. Our method is based on
the fact that, in the present approximation, the self-
energy at large external momentum receives only
logarithmic corrections. As a consequence the
leading part of the self-consistent propagator is
not modified as compared to the perturbative one.
Owing to this fact, to each integral involving the
self-consistent propagator we can subtract a similar
integral involving the perturbative propagator. This
leads to a sizeable acceleration of the convergence
of the Matsubara sums and to an increase in accu-
racy in the determination of convolution-type inte-
grals with the use of fast Fourier transformations.
This subtraction method is implemented in the gap
and field equations which are solved iteratively, as
well as in other quantities studied numerically,
like the curvature and the effective potential. We
investigate extensively the accuracy of our numeri-
cal method by testing the discretization and cutoff
effects. Some related technical aspects are dis-
cussed in Appendix B, where a collection of per-
turbative integrals is also given, and in Appendix C,

which is devoted to the acceleration of the
Matsubara sums.

(v) Section VI shows that the expressions for the
bare parameters obtained from the renormaliza-
tion and consistency conditions do renormalize the
gap and field equations, as well as the effective
potential. Some more technical parts are relegated
to Appendix A. This section has only theoretical
relevance in that it shows what needs to be done in
order to check explicitly the renormalizability of
the model in the present approximation, but the
finite equations derived here are not used to solve
the model numerically.

(vi) Section VII is devoted to conclusions and an
outlook.

II. THE TWO-LOOP �-DERIVABLE
APPROXIMATION

In this paper, we consider a real scalar ’4 theory in four
dimensions at finite temperature, defined by the Euclidean
action

S½’� �
Z
x

�
1

2
ð@�’Þ2 þ 1

2
ðr’Þ2 þm2

0

2
’2 þ �0

4!
’4

�
; (1)

where
R
x �

R1=T
0 d�

R
d3x and the inverse temperature sets

the range of integration over the imaginary time. The para-
meters m0 and �0 denote, respectively, the bare mass and
the bare coupling. To ensure that the spectrum of the under-
lying Hamiltonian is bounded from below, one should
restrict, in principle, to positive values of �0. We shall
discuss this condition in more detail as we treat renormal-
ization in Sec. III.

A. Effective potential and gap equation

The 2PI formalism provides a representation of the
effective potential �ð�Þ in terms of 2PI diagrams. It is
obtained as the value taken by the functional

�½�;G� � m2
0

2
�2 þ �0

4!
�4 þ 1

2

Z T

Q
½lnG�1ðQÞ

þ ðQ2 þm2
0ÞGðQÞ � 1� þ�½�;G�; (2)

at its stationary point G ¼ �G, that is, �ð�Þ is equal to
�½�; �G� with 0 ¼ ��½�;G�=�Gj �G. In Eq. (2), the variable
� represents a homogeneous field configuration and
GðQÞ � Gði!n; qÞ, an even function of the Matsubara
frequency !n � 2�nT and of the modulus of the 3D
momentum q � jqj. We have also adopted the notation

Z T

Q
fðQÞ � T

X
n

Z
q
fði!n; qÞ

� T
Xþ1

n¼�1

Z d3q

ð2�Þ3 fði!n; qÞ: (3)
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Our definition of the functional derivative in Fourier space
also implies a factor ð2�Þ3=T. With this convention, if
F ½G� is a functional of G which we evaluate for G ¼ �G,
the following chain rule applies

@F ½ �G�
@�

¼
Z T

Q

�F½G�
�GðQÞ

�������� �G

@ �GðQÞ
@�

: (4)

Finally, the functional ��½�;G� corresponds to the
sum of all 0-leg 2PI diagrams that one can draw in
the ‘‘shifted’’ theory S½�þ ’� � S½�� � ð�S=��Þ’ at
finite temperature, using the function G in place of the
free propagator. This functional cannot be computed
exactly. So-called �-derivable approximations consist in
retaining in �½�;G� only certain classes of diagrams.
In this paper, we consider the two-loop �-derivable
approximation:

�½�;G� ¼ �0

4
�2T ½G� þ �0

8
T 2½G� � �2

0

12
�2S½G�; (5)

which corresponds to the 2PI diagrams represented in
Fig. 1. We have introduced the notations

T ½G� �
Z T

Q
GðQÞ and

S½G� �
Z T

Q

Z T

K
GðQÞGðKÞGðK þQÞ

(6)

for the ‘‘tadpole’’ and ‘‘setting-sun’’ sum integrals, to be
used throughout this work. Similarly, we introduce the
notation

B ½G�ðKÞ �
Z T

Q
GðQÞGðQþ KÞ (7)

for the ‘‘bubble’’ sum integral. The setting-sun sum inte-
gral reads then S½G� ¼ R

T
Q GðQÞB½G�ðQÞ.

According to the above discussion, in order to evaluate
the effective potential, one needs first to determine
the propagator �G from the stationarity condition 0 ¼
��½�;G�=�Gj �G. This condition can be rewritten as
�G�1
�;TðQÞ � Q2 þ �M2

�;TðQÞ with Q2 � !2
n þ q2 and

�M 2
�;TðQÞ ¼ m2

0 þ
2��

�GðQÞ
�������� �G�;T

; (8)

which we refer to as the ‘‘gap equation’’. We have used
momentarily the subscripts � and T to stress the fact that
the propagator �G�;TðQÞ and the momentum dependent

mass �M�;TðQÞ depend both on the field � and on the

temperature T. In what follows, we shall omit this notation
unless specifically needed. A particular role will be played
by the value of �M2ðQÞ at Q ¼ 0, which we denote more
simply by �M2. In the two-loop�-derivable approximation,
the gap equation reads

�M2ðKÞ ¼ m2
0 þ

�0

2
�2 þ �0

2
T ½ �G� � �2

0

2
�2B½ �G�ðKÞ; (9)

which we obtained from Eqs. (5) and (8) by making use
of the functional identities

�T ½G�
�GðQÞ ¼ 1 and

�S½G�
�GðQÞ ¼ 3B½G�ðQÞ: (10)

B. Field equation and geometry
of the effective potential

The phase transition will be studied by monitoring the
position of the extrema of the effective potential as the
temperature T is lowered from an initial temperature T? at
which the system is required to be in its symmetric phase;
see the discussion in Sec. IV, down to zero temperature.
The ‘‘field equation’’, which codes the position of the
extrema, is easily obtained if one makes use of the statio-
narity condition 0 ¼ ��½�;G�=�Gj �G to express the first
derivative of the effective potential as

��

��
¼ @�½�;G�

@�

�������� �G
¼ m2

0�þ �0

6
�3 þ @�½�;G�

@�

�������� �G

¼ �

�
m2

0 þ
�0

6
�2 þ �0

2
T ½ �G� � �2

0

6
S½ �G�

�
: (11)

Note that the field equation, which is obtained by equating
this first derivative with zero, is coupled to the gap equa-
tion. Thus, for the purpose of determining the extrema of
the effective potential, the gap and field equations need to
be solved simultaneously.
Some valuable information can also be obtained from

the field derivatives of the effective potential, in particular,
from the second and fourth derivatives at � ¼ 0, at least
while the potential is defined around � ¼ 0. Taking a
second derivative with respect to � in Eq. (11) and eval-
uating the result for � ¼ 0, we obtain

M̂ 2
�¼0 �

�2�

��2

���������¼0
¼ m2

0 þ
�0

2
T ½ �G�¼0� � �2

0

6
S½ �G�¼0�:

(12)

FIG. 1. Two-particle irreducible diagrams contributing to
�½�;G� in the two-loop �-derivable approximation. Plain lines
represent the propagator G and circled crosses represent the
field �.
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We shall later use this formula in order to define and
determine the critical temperature in those cases where
the system undergoes a second order phase transition. We
could also derive an expression for the second derivative

M̂2 � �2�=��2 for any value of the field but it is substan-
tially more complicated than Eq. (12). Moreover, the defi-

nitions of �M2 and M̂2 generalize in a straightforward way
to any �-derivable approximation and, if no approxima-
tion was considered, these two quantities would coincide.

The fact that �M2 and M̂2 are not equal in a given approxi-
mation needs to be regarded as a truncation artifact: here

for instance, �M2
�¼0 � M̂2

�¼0 ¼ Oð�2
0Þ is a discrepancy that

lies beyond the accuracy of the present approximation.
This fact, and a similar one concerning the four-point
function that we discuss now, is the main motivation for
the renormalization procedure presented in Sec. III.

Similarly, we can take three field derivatives on Eq. (11).
Evaluating the result for � ¼ 0, we obtain

V̂�¼0� �4�

��4

���������¼0

¼�0þ3
Z T

Q

�
�0

2

�T ½G�
�GðQÞ

�������� �G�¼0

��2
0

6

�S½G�
�GðQÞ

�������� �G�¼0

�

�@2 �G2ðQÞ
@�2

���������¼0
; (13)

where we have used Leibniz rule for computing multiple
derivatives of the product of two functions, hence the
factor of 3, and the chain rule (4) together with
@ �G=@�j�¼0 ¼ 0. From Eq. (10) and @2 �G=@�2j�¼0 ¼
� �G2

�¼0@
2 �M2=@�2j�¼0, we obtain finally

V̂�¼0 � �4�

��4

���������¼0

¼ �0 � 3

2

Z T

Q
½�0 � �2

0B½ �G�¼0�ðQÞ� �G2
�¼0ðQÞ

� @2 �M2ðQÞ
@�2

���������¼0
: (14)

The quantity @2 �M2=@�2j�¼0 obeys a linear integral

equation which can be obtained from the gap Eq. (9)
using the same strategy as the one that leads to Eq. (14).
We obtain

@2 �M2ðKÞ
@�2

���������¼0
¼�0��2

0B½ �G�¼0�ðKÞ

��0

2

Z T

Q

�G2
�¼0ðQÞ@

2 �M2ðQÞ
@�2

���������¼0
: (15)

It will be convenient to introduce some additional nota-
tions. We shall write Eq. (14) as

V̂�¼0¼ �̂�¼0�3

2

Z T

Q
��¼0ðQÞ �G2

�¼0ðQÞV�¼0ðQÞ; (16)

with �̂�¼0 � �0, ��¼0ðKÞ � �0 � �2
0B½ �G�¼0�ðKÞ, and

V�¼0ðKÞ � @2 �M2ðKÞ
@�2

���������¼0
: (17)

The quantity V�¼0ðKÞ, whose value at K ¼ 0 we denote

more simply by V�¼0, obeys the linear integral Eq. (15)

which we rewrite as

V�¼0ðKÞ ¼ ��¼0ðKÞ �
���¼0

2

Z T

Q

�G2
�¼0ðQÞV�¼0ðQÞ;

(18)

with ���¼0 � �0.
1 This equation can be solved

explicitly as2

V�¼0ðKÞ ¼ ��¼0ðKÞ �
�V�¼0

2

Z T

Q

�G2
�¼0ðQÞ��¼0ðQÞ;

(19)

in terms of the quantity �V�¼0 such that

1
�V�¼0

¼ 1
���¼0

þ 1

2
B½ �G�¼0�ð0Þ: (20)

As it was the case for �M2
�¼0 and M̂2

�¼0, the defini-

tions �V�¼0, V�¼0 and V̂�¼0 can be generalized to non-

vanishing values of the field and can be defined for

1The reason for introducing two different notations �̂�¼0

and ���¼0 shall become clear in Sec. III.
2To see this, one writes first Eq. (18) as

Z T

Q

�
�ð4ÞðK �QÞ þ

���¼0

2
�G2
�¼0ðQÞ

�
V�¼0ðQÞ ¼ ��¼0ðKÞ;

where �ð4ÞðK �QÞ is the product of a Kronecker delta �nm for
the frequencies, and a three dimensional Dirac distribution
�ð3Þðk� qÞ. This equation can then be easily inverted in terms
of �V�¼0 because the definition (20) is equivalent to

Z T

K

�
�ð4ÞðP� KÞ �

�V�¼0

2
�G2
�¼0ðKÞ

�

�
�
�ð4ÞðK �QÞ þ

���¼0

2
�G2
�¼0ðQÞ

�
¼ �ð4ÞðP�QÞ:
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any �-derivable approximation. Moreover, when no
approximation is considered, they coincide with each
other and represent a unique definition for the four-
point function at zero external momentum. This is one
of the clues to understanding the renormalization of
�-derivable approximations [26], which we illustrate in
Sec. III in the case of the present two-loop approxima-
tion at finite temperature.

C. A few words on regularization

The equations derived in the previous sections will be
used throughout this work, but strictly speaking they do not
make sense in the absence of an ultraviolet regularization.
Before any practical application, it is therefore mandatory
to give them a precise meaning by choosing some regu-
larization. To obtain a proper regularization of the 2PI
functional, we start from the functionalW½J; K� defined by

eW½J;K� �
Z
D’exp

�
�1

2
’ � ðG0R�Þ�1 �’

�
�
R
D’expf�1

2’ � ðG0R�Þ�1 �’þSint½’�þJ �’þ 1
2’ �K �’gR

D’expf�1
2’ � ðG0R�Þ�1 �’g ; (21)

where we have introduced the notations J � ’ ¼R
x JðxÞ’ðxÞ and ’ � K � ’ ¼ R

x

R
y ’ðxÞKðx; yÞ’ðyÞ, withR

x �
R1=T
0 d�

R
d3x. We have written the quadratic part of

the action ’ � ðG0R�Þ�1 � ’ in terms of a regulating func-
tion R� which in 3D-momentum space cuts off momenta
q * � and obeys the property R�ðq � �Þ ! 1. In this
work we shall restrict to a sharp regulating function
R�ðqÞ ¼ �ð�� qÞ. However, in the remainder of this
section, we consider an arbitrary regulating function. We
have also introduced a normalization such that the second
factor of Eq. (21) is completely regularized by the presence
of R�, at least perturbatively and for sources K close to
K ¼ 0 (this can be checked by expanding the second factor
perturbatively since all the Feynman diagrams obtained in
this way involve the rapidly decreasing propagator G0R�).
The first factor of Eq. (21) requires its own regularization,
but this is straightforward since this factor is Gaussian.
It can be written as expð��0ðm0;�ÞÞ, where �0ðm0;�Þ
corresponds to the free energy per unit volume of the free
theory (obtained for Sint½’� ¼ 0):

�0ðm0;�Þ ¼
Z d3q

ð2�Þ3 R�ðqÞ½"ð0Þq þ 2T lnð1� e�"ð0Þq =TÞ�;
(22)

with "ð0Þq �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

0

q
. After Legendre transformation of

W½J; K� and restriction to homogeneous field configura-
tions, one obtains the ‘‘regularized’’ functional

�½�;G� ¼ �0ðm0;�Þ þm2
0

2
�2 þ �0

4!
�4

þ 1

2

Z T

Q

�
lnG�1ðQÞ � ln

Q2 þm2
0

R�ðqÞ
þQ2 þm2

0

R�ðqÞ GðQÞ � 1

�
þ�½�;G�: (23)

What is meant by a regularized functional is not com-
pletely straightforward. In fact, a given functional of G
can be well defined for certain classes of propagators
but not defined for others. The important fact about the

functional (23) is that it is well defined for a class of
propagators in the vicinity of its stationary point.3 In order
to check this statement, note first that the gap equation,
which defines the stationary point, reads

�G�1ðQÞ ¼ Q2 þm2
0

R�ðqÞ þ ��ðQÞ with

��ðQÞ � 2��

�GðQÞ
�������� �G

:
(24)

One can convince oneself that, due to the presence of
R�ðqÞ and even though the Matsubara sums are not cut
off by the regularization, any nonlocal contribution to the
self-energy ��ðQÞ is suppressed4 at large Q. Then, in this
limit, the self-energy ��ðQÞ approaches a constant ��1
which is entirely determined by the first two diagrams
contributing to �½�;G� (the only ones which give a local
contribution to the self-energy); see Fig. 1:

��ðQÞ ! ��1 � �0

2
�2 þ �0

2
T ½ �G� as jQj ! 1: (25)

At large Q, it follows then that

�GðQÞ ¼ R�ðqÞ
Q2 þm2

0

�
��1R2

�ðqÞ
ðQ2 þm2

0Þ2
þ . . . ; (26)

where the second term is subleading with respect to the
first one. From this, we deduce first that all the diagrams
appearing in the gap equation or in the effective potential
through the functional�½�;G� are regularized, which was
not obvious a priori. Moreover, the explicit sum integral

3More rigorously stated, the functional has an extremum
within the class of propagators for which it is defined. This is
in one to one correspondence with the fact that the functional
(21) is regularized in the vicinity of K ¼ 0.

4For instance, if one considers the perturbative bubble diagram
B½G�ðKÞ, after performing the Matsubara sum in Eq. (B15) of
Appendix B, it is clear that the regularized diagram behaves like
1=!2 at large ! and vanishes if jkj> 2�.
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085031-6



appearing in the 2PI functional (23) is well defined when
evaluated for G ¼ �G. This is because at large Q, we have

ln �G�1ðQÞ � ln
Q2 þm2

0

R�ðqÞ þQ2 þm2
0

R�ðqÞ
�GðQÞ � 1

� 1

2

��21R2
�ðqÞ

ðQ2 þm2
0Þ2

: (27)

For propagators G in the vicinity of �G, we expect this
behavior to be only slightly modified, which shows that
the regularized 2PI functional (23) is well defined in the
vicinity of G ¼ �G, as announced above.

For practical purposes, it is convenient to consider the
change of variables5 G ! GR�. In terms of this new
variable, the regularized 2PI functional becomes

�½�;G� ¼ �0ðm0;�Þ þm2
0

2
�2 þ �0

4!
�4

þ 1

2

Z T

Q
R�ðqÞ½lnG�1ðQÞ � lnðQ2 þm2

0Þ

þ ðQ2 þm2
0ÞGðQÞ � 1� þ�½�;GR�; (28)

where we have introduced an additional R�ðqÞ in the
explicit sum integral of Eq. (28), although it is not needed
a priori due to Eq. (27). This is convenient, however,
because the gap equation takes then the simple form [for
R�ðqÞ ¼ �ð�� qÞ, this equation needs to be understood
for q <�]

�G�1ðQÞ ¼ Q2 þm2
0 þ

2��

�GðQÞ
�������� �GR

: (29)

Moreover, the first derivative of the effective potential
�ð�Þ � �½�; �G� reads

��

��
¼ m2

0�þ �0

6
�3 þ @�

@�

�������� �GR
: (30)

It follows that the formal expressions obtained in the
previous sections for the gap and field equations and also
the different n-point functions can be regularized by
replacing each propagator G by GR. From now on, we
will thus consider that such a replacement has been done,
but we shall leave the regulating function implicit. As far
as the effective potential is concerned, it will be computed
by evaluating the functional (28) for G ¼ �G. In fact, it is
more convenient to use the following formula (m? denotes
for the moment an arbitrary parameter)

Z T

Q
R�ðqÞlnQ

2þm2
0

Q2þm2
?

¼
Z m2

0

m2
?

dM2
Z T

Q

R�ðqÞ
Q2þM2

¼
Z d3q

ð2�Þ3R�ðqÞ
Z m2

0

m2
?

dM2
1þ2n"q
2"q

¼�ðm0;�Þ��ðm?;�Þ; (31)

to rewrite the regularized effective potential (28) as

�½�;G� ¼ �0ðm?;�Þ þm2
0

2
�2 þ �0

4!
�4

þ 1

2

Z T

Q
R�ðqÞ½lnG�1ðQÞ � lnðQ2 þm2

?Þ

þ ðQ2 þm2
0ÞGðQÞ � 1� þ�½�;GR�: (32)

As a final remark, note that the regularization that we have
introduced, because it only cuts the modulus of the 3D
momentum, breaks explicitly the four-dimensional rota-
tion symmetry of the theory at zero temperature. However,
since the operators ð@�’Þ2 and ðr’Þ2 do not require any
renormalization in the present approximation6 (see below),
the continuum results obtained as the cutoff is sent to
infinity possess the four-dimensional rotation symmetry
at zero temperature.

III. RENORMALIZATION PROCEDURE

As in the case of the Hartree approximation [9], we will
show that it is possible to adjust the dependence of the
bare parameters in such a way that the results become
insensitive7 to the regulating scale � as the latter is
taken to infinity. In contrast to perturbation theory, and
due to certain truncation artifacts which appear within
�-derivable approximations, we will need to introduce
more bare parameters than usual. An important step will
then be to fix all these parameters in terms of the usual
number of renormalized parameters: one renormalized
mass and one renormalized coupling.

A. Multiply defined bare parameters

A general remark is in order first. The two-loop approxi-
mation is not renormalizable a priori in the form we have
presented it so far. To see why this is so, let us consider for

instance the quantities �M2
�¼0 and M̂2

�¼0. We have already

5Strictly speaking, if we want the exact identities M̂2 ¼ �M2

and V̂ ¼ V ¼ �V to hold true after this change of variables, we
should also transform the field according to � ! �

ffiffiffiffiffiffiffi
R�

p
in

momentum space. Note, however, that since we restrict our
study to homogeneous field configurations, the field in momen-
tum space is concentrated around its zero mode component
which is not affected by the change of variables since by
assumption the regulator is such that R�ðq � �Þ ! 1.

6At least as long as we restrict to homogeneous field
configurations.

7As explained in Ref. [31], the discussion of divergences in a
nonperturbative context such as the one considered here might
be different from that in perturbation theory. In particular, certain
divergences of the perturbative expansion do not appear as such
after resummation. However, they lead, in general, to the same
difficulty, namely to the fact that one cannot define cutoff
insensitive results with a high accuracy unless renormalization
of the mass and the coupling is considered. Throughout this work
the term ‘‘divergence’’ will be used in this somewhat extended
meaning.
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seen that these two quantities differ by contributions of
order �2

0. It follows that their quadratic divergences differ

by terms of the same order. On the other hand, a closer look
at Eq. (9) for � ¼ 0 and Eq. (12) shows that the bare mass
squared m2

0 enters both equations in exactly the same way,

that is as a tree level term. Then, �M2
�¼0 and M̂2

�¼0 cannot

be renormalized simultaneously using the same bare mass:
if one adjusts m2

0 to absorb the quadratic divergence in one

of the masses, there is an unbalanced quadratic divergence
in the other one and vice versa. Similar remarks apply to
the different definitions of the four-point function at

zero external momentum, �V�¼0, V�¼0, and V̂�¼0 which,

although they differ at order �2
0, involve the bare coupling

�0 at tree level in an identical manner, leading once more
to unbalanced divergences. Two attitudes are possible from
this point on: one can either consider that �-derivable
approximations are ill-defined regarding the issue of
renormalization, or one can try to cure these truncation
artifacts and define a sensible renormalization scheme.

There is actually a simple solution to the problem of
unbalanced divergences: in the case of the masses, one can
slightly modify one of the two equations, Eq. (12) for
instance, by introducing a second bare mass parameter
m2 in place of m0. Similarly, one can replace the tree level

contribution �0 by �2 in V�¼0 and by �4 in V̂�¼0. Despite

the apparent simplicity of this way out, it is important
to bear in mind that this procedure is only acceptable if
it provides a way to determine m2, �2, and �4 without
introducing more physical or renormalized parameters
than the ones which are usually present in a scalar ’4

theory and if it ensures that the discrepancy between m0

and m2 and between �0, �2 and �4 disappears as the order
of truncation is increased. We shall treat these matters in
the next subsection. For the moment, we just note that all
these changes can be formulated at the level of the regu-
larized 2PI functional (32) which reads now

�½�;G� ¼ �0ðm?;�Þ þm2
2

2
�2 þ �4

4!
�4

þ 1

2

Z T

Q
½lnG�1ðQÞ � lnðQ2 þm2

?Þ

þ ðQ2 þm2
0ÞGðQÞ � 1� þ�½�;G�; (33)

with

�½�;G�¼�2

4
�2T ½G�þ�0

8
T 2½G���2

?

12
�2S½G�; (34)

and where, as explained in the previous section,
each propagator GðQÞ in each diagram contributing to
�½�;G� is multiplied by R�ðqÞ ¼ �ð�� qÞ and the
explicit integral over q in Eq. (33) is cut off at the scale
�. There is an additional modification which we have not
mentioned so far: the bare vertex which appears in the
highest loop diagram, that is the setting-sun diagram, has
been replaced by �?, which will be identified below as the

renormalized coupling at some renormalization scale.
This replacement is again necessary if one wants to
avoid unbalanced divergences: keeping the bare vertex
in the setting-sun diagram would absorb divergences re-
lated to 2PI diagrams which are not present in the two-
loop approximation. Actually, this is also what occurs
in a perturbative calculation. However, in contrast with
the perturbative case where replacing �0 by �? in the
setting-sun diagram can be interpreted in terms of an
expansion in powers of �?, the situation is more subtle in
the case of �-derivable approximations and one needs to
provide a consistent and systematic way to fix the bare
coupling which appears in the setting-sun diagram and
more generally in higher loop 2PI diagrams. Such a pro-
cedure exists and is pretty similar to the one we shall
present below for fixing the additional bare couplings �2

and �4 but it lies slightly beyond the scope of the present
paper. In what follows, we shall then admit that the
replacement �0 ! �? at the level of the setting-sun dia-
gram is consistent at this order and refer to Ref. [26] for
further details.
With all these modifications taken into account, the gap

equation becomes

�M2ðKÞ¼m2
0þ

�2

2
�2þ�0

2
T ½ �G���2

?

2
�2B½ �G�ðKÞ; (35)

and the first derivative of the potential reads

��

��
¼ �

�
m2

2 þ
�4

6
�2 þ �2

2
T ½ �G� � �2

?

6
S½ �G�

�
; (36)

from which one obtains the field equation

0 ¼ ��

�
m2

2 þ
�4

6
��2 þ �2

2
T ½ �G ��� �

�2
?

6
S½ �G ���

�
: (37)

The expression for the second derivative of the effective
potential (the curvature) at � ¼ 0 is

M̂ 2
�¼0 ¼ m2

2 þ
�2

2
T ½ �G�¼0� � �2

?

6
S½ �G�¼0�: (38)

Finally, the various definitions of the four-point function at
� ¼ 0 are modified by replacing the previous definitions

of ��¼0ðKÞ and �̂�¼0 by
8

��¼0ðKÞ ¼ �2 � �2
?B½ �G�¼0�ðKÞ and �̂�¼0 ¼ �4:

(39)

Our results regarding renormalization concern this precise
formulation of the two-loop �-derivable approximation.
We will show that it is possible to fix the dependence of the
bare parameters m0, m2, �0, �2, and �4 with respect to the

8Note that ���¼0 and �̂�¼0 become two different quantities,
which explains why we introduced two different notations in the
first place.
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scale � such that the solutions to the gap and field
equations, and the effective potential converge as � is
sent to infinity. The proof is quite technical, in particular,
due to the fact that one needs to prove that the bare
parameters can be taken independent of the field � and
of the temperature T. For this reason, we postpone the
proof until Sec. VI, where the interested reader can find
all the details. For practical purposes, we only need to
know that such a proof exists. The expressions for the
bare parameters can then be obtained by imposing appro-
priate conditions, as we explain in the next two subsec-
tions. We will see, in particular, that these conditions are
not all independent because, despite the higher number of
bare parameters required to absorb the ultraviolet diver-
gences, the theory is to be parametrized in terms of the
usual number of physical or renormalized parameters.

B. Parametrization in terms of
two renormalized parameters

Allowing for more bare parameters than usual is only
acceptable if these are fixed in terms of the usual number of
renormalized parameters and also if the renormalization
procedure is such that the discrepancies between m2 and
m0 as well as between �4, �2, and �0 are pushed to higher
orders as one increases the number of loops of the
�-derivable approximation. In order to understand how
this is possible within a given �-derivable approximation,
the crucial point is to remember that the need for multiple
bare parameters arises from the existence of multiple defi-
nitions for the n-point functions, which coincide when
no approximation is considered at all. We have seen, in
particular, that it is possible to define the inverse two-point
function at zero momentum in two different ways and
the four-point function at zero momentum in three diffe-
rent ways. Now, if we imagine for a moment that these
quantities were measurable at some temperature T?, there
would be only one measured value for the mass at this
temperature, and only one measured value for the coupling
at this same temperature, in apparent contradiction with
the multiplicity of definitions for the two- and four-point
functions. It is then quite natural to adjust the different bare
parameters in such a way that these truncation artifacts
disappear at the temperature T?, where we would make
contact with a measurement.

All the bare parameters that we introduced in the pre-
vious section can then be fixed through the conditions

�M2
�¼0;T?

¼ M̂2
�¼0;T?

¼ m2
? and

�V�¼0;T?
¼ V�¼0;T?

¼ V̂�¼0;T?
¼ �?:

(40)

We can arrange the previous conditions in two categories.
Two renormalization conditions, for instance

�M 2
�¼0;T?

¼ m2
? and �V�¼0;T?

¼ �?; (41)

and three ‘‘consistency’’ conditions

M̂2
�¼0;T?

¼ �M2
�¼0;T?

; V�¼0;T?
¼ �V�¼0;T?

;

and V̂�¼0;T?
¼ �V�¼0;T?

:
(42)

The consistency conditions do not involve any renormal-
ized parameter. In this way, it is possible to fix the bare
parameters in terms of the usual number of renormalized
parameters. These conditions ensure also that the discre-
pancies between m0 and m2 or between �0, �2, and �4 are
beyond the accuracy of the approximation at hand, as we
will check on the explicit expressions for the bare parame-
ters that we obtain below. For practical purposes, we shall
use the consistency conditions in the form9

M̂2
�¼0;T?

¼ m2
?; V�¼0;T?

¼ �?;

and V̂�¼0;T?
¼ �?;

(43)

which are obtained trivially by combining Eqs. (41) and (42).
Note, finally, that m2

? needs to be taken positive in order for
the gap equation at� ¼ 0 and T ¼ T? to make sense. From

the consistency conditions, it follows then that M̂2
�¼0;T?

is

positive: the effective potential is thus convex around� ¼ 0
at the renormalization temperature T?. We will see later that
the effective potential is in fact globally convex at this
temperature. The system is then parametrized in the sym-
metric phase. We shall also see below that the sign of �?

needs to be taken positive.

C. Explicit expressions for the bare parameters

We now use the renormalization and consistency con-
ditions in order to determine the expressions for the bare
parameters m0, m2, �0, �2, and �4. As we show in Sec. VI,
these expressions are such that the solutions to the gap and
field equations, as well as the effective potential (up to
a field and temperature independent constant) become
insensitive to � at large �.
From Eq. (35) and the condition (41) for �M2, we obtain

m2
? ¼ m2

0 þ
�0

2
T ?½G?�; (44)

where T ?½G?� �
RT?

Q?
G?ðQ?Þ and G?ðQ?Þ ¼ 1=ðQ2

? þ
�M2
�¼0;T?

Þ ¼ 1=ðQ2
? þm2

?Þ is the propagator at temperature

T? and � ¼ 0. The notation Q? is used to emphasize the
fact that the Matsubara frequencies are considered at
the reference temperature T?, that is Q? � ði!?

n ; qÞ with
!?

n � 2�nT?. Since G?ðQ?Þ is a free-type propagator, we

9Another interesting possibility is to impose the consistency
conditions (42) at a temperature �T? different from T?, while
using the same renormalization conditions (41). This introduces
a �T? dependence which in some sense can be interpreted as
scheme dependence. They could then be used to test the con-
vergence of the �-derivable expansion by comparing the sensi-
tivity of the results to the scale �T? between two levels of
approximation, for instance, between the present two-loop ap-
proximation and the three-loop approximation. Although inter-
esting, this is beyond the scope of the present work.

BROKEN PHASE EFFECTIVE POTENTIAL IN THE TWO- . . . PHYSICAL REVIEW D 86, 085031 (2012)

085031-9



obtain an almost explicit expression for m0 in terms
of m?:

m2
0 ¼ m2

? � �0

2
T ?½G?�: (45)

From Eq. (38) and the condition (43) for M̂2, we obtain
similarly

m2
2 ¼ m2

? � �2

2
T ?½G?� þ �2

?

6
S?½G?�; (46)

where S?½G?� �
RT?

Q?

RT?

K?
G?ðQ?ÞG?ðK?ÞG?ðK? þQ?Þ.

We verify below that �2 � �0 ¼ Oð�2
?Þ from which it

follows that m2
2 �m2

0 ¼ Oð�2
?Þ, that is the discrepancy

between the two bare masses is beyond the accuracy of
the present approximation. This feature generalizes to
higher order truncations and is related to the use of the
consistency conditions.10

We proceed similarly for the bare couplings. The con-
dition (41) for �V�¼0 leads to

1

�0

¼ 1

�?

� 1

2
B?½G?�ð0Þ; (47)

where B?½G?�ð0Þ �
RT?

Q?
G2

?ðQ?Þ. As the cutoff � incre-

ases, there is a scale at which �0 diverges and above which
it becomes negative. This is the Landau scale �p defined

by the condition

0 ¼ 1

�?

�
Z T?

Q?

�ð�p � qÞ
ðQ2

? þm2
?Þ2

; (48)

where we have made the bubble sum integral and the
ultraviolet regulator explicit. If one wants to maintain �0

positive, one needs to choose �? positive and � below
the Landau scale �p. We shall work with values of the

parameters such that�p is much larger than all other scales

in the problem, namely m?, T?, T, � � �p. Then our

results will be pretty much insensitive to the cutoff� in the
regime m?, T?, T, � � �<�p. Note that, in the present

two-loop approximation, it is mathematically possible to
take �>�p at the level of the renormalized quantities,

and even consider their continuum limit as � ! 1. The
difference between these continuum values and the values
obtained for �<�p are pretty tiny.11

The bare coupling �2 is determined from the condition
(43) for V�¼0 and from the condition (41) for �V�¼0. Using

Eqs. (18) and (39), we obtain

�? ¼ �2 � �2
?B?½G?�ð0Þ

� �?

2

Z T?

Q?

G2
?ðQ?Þ½�2 � �2

?B?½G?�ðQ?Þ�: (49)

It is convenient to decompose �2 as �2 ¼ �2l þ ��2nl with

��2nl ¼ �2
?B?½G?�ð0Þ: (50)

It follows that

�?¼�2l

�
1��?

2
B?½G?�ð0Þ

�

þ�3
?

2

Z T?

Q?

G2
?ðQ?Þ½B?½G?�ðQ?Þ�B?½G?�ð0Þ�

¼�2l

�0

�?þ�3
?

2

Z T?

Q?

G2
?ðQ?Þ½B?½G?�ðQ?Þ�B?½G?�ð0Þ�;

(51)

where we have used Eq. (47). We arrive then at

�2l¼�0

�
1��2

?

2

Z T?

Q?

G2
?ðQ?Þ½B?½G?�ðQ?Þ�B?½G?�ð0Þ�

�
:

(52)

Finally, the condition (43) for V̂�¼0 given in Eq. (16) with

�̂�¼0 ¼ �4 leads to

�4 ¼ �? þ 3

2

Z T?

Q?

V?ðQ?ÞG2
?ðQ?Þ�?ðQ?Þ; (53)

where12

�?ðK?Þ � ��¼0;T?
ðK?Þ

¼ �2l � �2
?½B?½G?�ðK?Þ �B?½G?�ð0Þ� (54)

and

V?ðK?Þ � V�¼0;T?
ðK?Þ

¼ �? � �2
?½B?½G?�ðK?Þ �B?½G?�ð0Þ�: (55)

Then

�4 ¼ �? þ 3

2
�?�2lB?½G?�ð0Þ � 3

2
ð�2l þ �?Þ�2

?

�
Z T?

Q?

G2
?ðQ?Þ½B?½G?�ðQ?Þ �B?½G?�ð0Þ�

þ 3

2
�4
?

Z T?

Q?

G2
?ðQ?Þ½B?½G?�ðQ?Þ �B?½G?�ð0Þ�2:

(56)

Using Eqs. (47) and (52), this becomes

10In fact, there exists a systematically improvable class of

�-derivable approximations for which M̂2
�¼0;T ¼ �M2

�¼0;T and

thus m2
2 ¼ m2

0, see the discussion in Ref. [26]. Within this class
of truncations, one has also V�¼0;T ¼ �V�¼0;T and thus �2 ¼ �0.

However, V̂�¼0;T � �V�¼0;T and thus �4 � �0.
11In approximations where a Landau pole could appear as an
actual pole of the propagator, the continuum limit does not exist.
However, the effect of renormalization can still be understood as
an insensitivity with respect to the cutoff, up to terms of the order
of inverse powers of �, in the regime m?, T?, T, � � � � �p.

12We use the fact that V�¼0ðKÞ � V�¼0ð0Þ ¼ ��¼0ðKÞ �
��¼0ð0Þ.
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�4 ¼ �? þ 3
�2l

�0

ð�0 � �?Þ þ 3ð�2l þ �?Þ
�
�2l

�0

� 1

�

þ 3

2
�4
?

Z T?

Q?

G2
?ðQ?Þ½B?½G?�ðQ?Þ �B?½G?�ð0Þ�2;

(57)

and thus

�4 ¼ �2�? þ 3
�2
2l

�0

þ 3

2
�4
?

Z T?

Q?

G2
?ðQ?Þ½B?½G?�ðQ?Þ �B?½G?�ð0Þ�2:

(58)

Note that �2 � �0 ¼ Oð�2
?Þ, as announced above.

Similarly, �4 � �0 ¼ Oð�2
?Þ. Moreover, since �0 increases

strictly with � in the interval ½0;�p� from the value �? at

� ¼ 0þ to1 at� ¼ �þ
p , we deduce using Eqs. (50), (52),

and (58) that the bare couplings �2 and �4 are positive for
�<�p, that they are equal to �? at � ¼ 0þ and that they

diverge for� ¼ �þ
p . In the case of �2, this uses the fact that

B?½G?�ðQ?Þ �B?½G?�ð0Þ is negative, which we prove in
Appendix B. Thus, in the present approximation, although
we had to introduce different bare couplings to cope with
the problem of unbalanced divergences, the Landau scale at
which all these bare couplings diverge is uniquely defined.

All the bare parameters involve perturbative sum inte-
grals in terms of the free-type propagator G?. In fact, all
the bare parameters but �4 can be reduced to the tadpole,
bubble and setting-sun perturbative sum integrals (and
their mass derivatives), which makes their evaluation

relatively easy: the Matsubara sums are computed exactly
and the remaining integrals over the modulus of the
momentum are determined using adaptive integration rou-
tines. This is obvious form0,m2, �0, and ��2nl. For �2l, we
can use the formula

�2l ¼ �0

�
1þ �2

?

2

�
B2

?½G?�ð0Þ þ 1

3

dS?½G?�
dm2

?

��
: (59)

In the case of �4, we can reduce it to

�4 ¼ �? þ 3
�2
2

�0

� 3�?

�
3� 2

�?

�0

�
2

þ 3

2
�4
?

Z T?

Q?

G2
?ðQ?ÞB2

?½G?�ðQ?Þ: (60)

The last term cannot be reduced to simpler sum integrals
and is then evaluated directly as a double sum, that is using
a sum over a finite number of Matsubara frequencies and
a sum over a finite number of modulus of the momentum
(see Sec. V for details). The variation of the different bare
couplings with the cutoff � is shown in Fig. 2, for two
different values of the renormalized coupling �?. In the left
panel, corresponding to a large value of the coupling
�? ¼ 8, the Landau scale is relatively close to the scales
T? or m?. We observe the divergence of the three bare
couplings at the Landau scale. In the right panel, corre-
sponding to a small value of the coupling �? ¼ 3, the
Landau scale is pretty far apart from the scales T? and
m?. For cutoff scales � in the regime m?, T? � � � �p,

we observe a logarithmic dependence of the bare couplings
which mirrors the divergences of the gap and field

0.01 0.1 1 10 100 1000
2

4
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10

12

14

0.01 0.1 1 10 100 1000

FIG. 2 (color online). Variation of the three bare couplings �0, �2, and �4 with the cutoff �, for m2
?=T

2
? ¼ 0:04 and T? ¼ 1. The left

panel corresponds to a renormalized coupling �? ¼ 8 for which the Landau scale is �p=T? ’ 540. The right panel corresponds to a

renormalized coupling �? ¼ 3 for which the Landau scale is�p=T? ’ e39. The lines are obtained by performing exactly the Matsubara

sum and evaluating the integrals over the modulus of the momentum using adaptive integration routines, except for the last term of
Eq. (58) which is evaluated as a double sum. The points are obtained by evaluating the integrals in the expressions of the bare
couplings as a double sum using N� ¼ 210 non-negative Matsubara frequencies and Ns ¼ 3� 210 values of the modulus of the the
3D-momentum. The discrepancy between the points and the corresponding line is related to the discretization of the momentum
integrals. This will be used in Sec. V in order to discuss discretization effects. Note also that the Matsubara sum in the expression of �0

was accelerated using Eq. (C12).
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equations absorbed by these bare parameters. In particular,
the variation of �4 is rather important and shows that, if not
properly renormalized, logarithmic divergences can lead
to sizable cutoff dependencies, even though the coupling
is small.

As a final remark, note that starting from Eq. (33) one
can derive an expression for the difference ��ð�Þ¼
�ð�Þ��?ð0Þ, where �?ð0Þ¼�0ðm?;�Þ�ð�0=8ÞT 2

?½G?�
is the value of the potential at temperature T? and at vanish-
ing field.13 Hereinafter this difference will be referred to as
the subtracted effective potential. To derive it, we use the
expression (36) for ��=�� as well as the expression (45)
for m2

0. We arrive then at the following expression:

��ð�Þ ¼ �0ðm?;�Þ � �?
0 ðm?;�Þ þ 1

2

Z T

Q
½ln �G�1ðQÞ

� lnG�1
? ðQÞ þ ðQ2 þm2

?Þ �GðQÞ � 1� � �4

4!
�4

þ 1

2
�

��

��
þ �0

8
½T ½ �G� �T ?½G?��2: (61)

As far as the nature of the transition is concerned, it is
enough to concentrate on ��ð�Þ. The expression above is
useful on a practical level because ��=�� needs to be
computed anyway when solving the coupled system of
gap and field equations and we can then use the same
numerical routine. Moreover, Eq. (61) involves a difference
of tadpole sum integrals which can be computed efficiently,
as we explain in Sec. V. We will also prove in Sec. VI that
��ð�Þ is finite, whereas �ð�Þ is only finite up to a tem-
perature and field independent divergent constant.

D. Renormalization group improvement

In addition to solving the two-loop�-derivable approxi-
mation, we shall also consider an ‘‘improved’’ two-loop
approximation based on some ideas borrowed from the RG
and which we now explain.

In the renormalization procedure that we have presented
in the previous sections, the temperature T? played the role
of a renormalization scale �. In the exact theory, the
physical observables should not depend on �: any change
in � should be compensated by a ‘‘running’’ or ‘‘flow’’ of
the renormalized parameters m?ð�Þ and �?ð�Þ. In princi-
ple, if one is able to determine the running of the parame-
ters, it is then possible to describe the same theory from
different but equivalent points of view, each implying its
own renormalization scale and the corresponding renor-
malized parameters. In particular, in calculations at finite
temperature, one can choose a description in which the
renormalization scale � equals the temperature T.

The previous considerations become particularly inter-
esting in the presence of some approximation because
the different possible descriptions cease to be strictly

equivalent. It can then happen that taking into account
the running of the parameters leads to an ‘‘improved’’
approximation. Usually, the improvement is related to the
fact that the running resums higher order contributions.
In the present work, we shall see that the running will
have somehow the opposite effect in the sense that it will
remove certain fluctuations, namely fluctuations respon-
sible for some of the artifacts of the �-derivable approxi-
mation that we mentioned above.
In order to obtain the running of the renormalized

parameters with the scale T in the present approximation,
we choose Eqs. (45) and (47) and differentiate them with
respect to T? under the assumption that the bare parameters
m0 and �0 are fixed.14 Then, m?ðTÞ and �?ðTÞ can be
obtained by integrating the ordinary differential equations
for d�?ðT?Þ=dT? and dm2

?ðT?Þ=dT?, starting from the
initial temperature T? at which we fix the value of the
renormalized parameters:m2

?ðT?Þ � m2
? and �?ðT?Þ � �?.

In the present approximation, there is in fact an easier way
to proceed. Indeed, by comparing Eqs. (45) and (47) with

�M 2
�¼0 ¼ m2

0 þ
�0

2
T ½ �G�¼0� (62)

and

1
�V�¼0

¼ 1

�0

þ 1

2
B½ �G�¼0�ð0Þ; (63)

we see that, since �M�¼0;T?
¼ m? ¼ m?ðT?Þ and

�V�¼0;T?
¼ �? ¼ �?ðT?Þ, the dependence of m?ðTÞ and

�?ðTÞ on T is nothing but that of �M�¼0 and �V�¼0 on T.

This simple fact provides us with the following recipe to
implement the RG improvement:
(1) solve the gap equation (62) for �M�¼0 in terms of the

parameters T?, m?, and �?;
(2) compute �V�¼0 from Eq. (63), using the determined

�M�¼0;

(3) apply the replacements T? ! T, m? ! �M�¼0,

�? ! �V�¼0 in every equation of interest.

The replacements apply also to the bare parametersm2, �2,
and �4, which have to be redetermined and will be denoted
mRG

2 , �RG
2 , and �RG

4 when needed. The bare parameters m0

and �0 do not need to be modified since they are invariant,
by construction.
As an illustration of how the improvement works, let us

consider the curvature of the effective potential. Before the
improvement, it reads

M̂2
�¼0 ¼ m2

? þ �2

2
½T ½ �G�¼0� �T ?½G?��

� �2
?

6
½S½ �G�¼0� � S?½G?��; (64)

13This quantity is well defined because according to the renor-
malization condition for �M2

�¼0,
�M2
�¼0;T is defined for T ¼ T?.

14One can check that the corresponding differential equations
are UV finite. This is not true if we would fix m0 and �4 for
instance. This is most certainly an artifact of the truncation.
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where we have used the expression (46) for m2
2. After

implementing the RG improvement, it becomes

ðM̂RG
�¼0Þ2 ¼ �M2

�¼0 þ
�RG
2

2
½T ½ �G�¼0� �T ½ �G�¼0��

�
�V�¼0

6
½S½ �G�¼0� � S½ �G�¼0��

¼ �M2
�¼0: (65)

It follows that, in the RG-improved case, the two defini-
tions of the mass coincide at � ¼ 0 for any value of the
temperature (as long as the masses are defined), whereas
this was only true for T ¼ T? in the nonimproved case. The
improvement has then restored a certain number of exact
identities among the two possible definitions of the mass.
Similar remarks apply to the three different definitions
of the four-point function at � ¼ 0 and zero external
momentum. In the RG-improved case they are identical
for any temperature

VRG
�¼0 ¼ V̂RG

�¼0 ¼ �V�¼0: (66)

The equality VRG
�¼0 ¼ �V�¼0 is a particular case of the more

general result

VRG
�¼0ðKÞ ¼ �V�¼0 � �V2

�¼0½B½ �G�¼0�ðKÞ �B½ �G�¼0�ð0Þ�:
(67)

To derive the latter, we start from Eq. (19) and apply the
renormalization condition V�¼0;T?

¼ �? to obtain

V�¼0ðKÞ ¼ �? þ��¼0ðKÞ ��?ð0Þ

�
�V�¼0

2

Z T

Q

�G2
�¼0ðQÞ��¼0ðQÞ

þ �?

2

Z T?

Q?

�G2
?ðQ?Þ�?ðQ?Þ: (68)

We note next that, under the improvement, �?ðK?Þ ¼
��¼0;T?

ðK?Þ as defined in Eq. (54) becomes equal to

�RG
�¼0ðKÞ, from which it follows that the two integrals

in (68) cancel after the improvement. Equation (66) is
finally obtained by noticing that �? þ��¼0ðKÞ �
�?ð0Þ ¼ �? � �2

?½B½ �G�¼0�ðKÞ �B?½G?�ð0Þ�. Similarly,

using Eq. (16) and the renormalization condition

V̂�¼0;T?
¼ �?, we obtain

V̂�¼0 ¼ �? � 3

2

Z T

Q
��¼0ðQÞ �G2

�¼0ðQÞV�¼0ðQÞ

þ 3

2

Z T?

Q?

�?ðQ?Þ �G2
?ðQ?ÞV?ðQ?Þ: (69)

From the definition of V?ðK?Þ in Eq. (55) and from
Eq. (67), it is easily checked that, V�¼0ðKÞ and V?ðK?Þ
become equal under the improvement. Then, the two
integrals in the previous equation cancel identically and

V̂RG
�¼0 ¼ �V�¼0.

As we shall observe in Sec. IV, the critical exponents,
which are of the mean-field type in the two-loop approxi-
mation, aremodified after the improvement is considered. In
particular, the exponent� gets closer (although it remains of
the integer type) to its expected value in three dimensions.
An unfortunate feature of the improvement is, however, that
it is only defined in the symmetric phase: below a certain
temperature �Tc < T?, which will be identified later with the
critical temperature in the RG-improved case, the solution
of the gap equation at vanishing field �M�¼0 is not defined.

Therefore, it will be only possible to determine the improved
critical exponents from above the critical temperature. In
particular, we will not be able to access the improved value
for the exponent �.

E. Multiply defined four-point functions

In the next section, we solve the gap and field equations,
using the expressions Eqs. (45)–(47), (50), (52), and (58)
for the bare parameters, both in the two-loop and
in the RG-improved two-loop approximations, and use
the corresponding effective potentials to discuss the char-
acteristic features of the phase transition in the model.
Before we do so, however, it is interesting to study the
temperature dependence of the three four-point functions
�V�¼0, V�¼0, and V̂�¼0 defined at vanishing field and zero

momentum. Since �G�¼0 is a free-type propagator, the

four-point functions at zero field are all given in terms of
perturbative sum integrals. In this perturbative setting, it is
then easy to check that the four-point functions are renor-
malized by the bare couplings �0, �2, and �4 obtained in
the previous section, without relying on the general proof
given in Sec. VI. Moreover, since we are only interested
here in the continuum limit, we can determine the renor-
malized four-point functions using any regularization.
We shall use dimensional regularization or cutoff regulari-
zation, depending on our convenience. More precisely,
�V�¼0 and V�¼0, because they can be expressed solely in

terms of tadpole, bubble and setting-sun sum integrals (and
their mass derivatives), see below, will be evaluated using

dimensional regularization. In contrast, V̂�¼0 cannot be

completely reduced to these simple sum integrals and we
shall compute it using cutoff regularization.
The renormalized expression for �V�¼0 is trivially

obtained by combining Eqs. (20) and (47)

1
�V�¼0

¼ 1

�?

þ 1

2
½B½ �G�¼0�ð0Þ �B?½G?�ð0Þ�: (70)

SinceB½ �G�¼0� is a one-loop integral involving a free-type
propagator, it is clear that there is no divergence in this
formula, as it can also be explicitly checked by a direct
calculation, for instance using dimensional regularization.
To obtain an useful expression for V�¼0 we consider its

difference with �V�¼0. Using Eqs. (19), (20), and (39) and

introducing the splitting �2 ¼ �2l þ ��2nl, we arrive at
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V�¼0 � �V�¼0 ¼ �2l þ ��2nl � �0 � �2
?B½ �G�¼0�ð0Þ �

�V�¼0

2

Z T

Q

�G2
�¼0ðQÞ½�2l þ ��2nl � �0 � �2

?B½ �G�¼0�ðQÞ�

¼
�
�2l

�0

� 1

�
�V�¼0 þ ��2nl � �2

?B½ �G�¼0�ð0Þ �
�V�¼0

2

Z T

Q

�G2
�¼0ðQÞ½��2nl � �2

?B½ �G�¼0�ðQÞ�: (71)

Using the expression for ��2nl in Eq. (50) as well as the expression for �2l in the form of Eq. (59), we obtain

V�¼0

�V�¼0

¼ 1� �2
?

2
½B½ �G�¼0�ð0Þ �B?½G?�ð0Þ�B?½G?�ð0Þ � �2

?

6

�
dS½ �G�¼0�
d �M2

�¼0

� dS?½G?�
dm2

?

�
þ 2�?

�V�¼0

�
1� �?

�V�¼0

�
: (72)

A direct calculation using dimensional regularization shows that the sum of the two square brackets in this formula is finite
[see Eqs. (B12) and (B13)]. As already mentioned, the four-point function V̂�¼0 contains a three-loop integral which
cannot be reduced to simpler sum integrals. We shall use the following expression:

V̂�¼0¼�4þ3
�2
2

�2
0

ð �V�¼0��0Þþ�2
?
�V�¼0

�
�2
?

12

�
dS½ �G�¼0�
d �M2

�¼0

�
2��2

�0

dS½ �G�¼0�
d �M2

�¼0

�
�3

2
�4
?

Z T

Q

�G2
�¼0ðQÞB2½ �G�¼0�ðQÞ; (73)

obtained from Eq. (16) by using Eqs. (19) and (39).
The variation with the temperature of the three four-

point functions is presented in Fig. 3. Due to our choice
of consistency conditions, the values of the four-point
functions coincide at T?, but in general they differ at
other temperatures (with the exception of those values of
T where two of the curves cross each other). As we shall
see later, for those values of the parameters chosen here,
the system undergoes a second order phase transition at
some temperature Tc. Above Tc, where the system is in
the symmetric phase and the n-point functions are indeed

defined at � ¼ 0, we observe that �V�¼0 and V̂�¼0 stay

pretty close to each other which shows that the violation

of the exact identity �V�¼0 ¼ V̂�¼0 is a mild one. The

discrepancy is more important in the case of V�¼0 although

the latter remains positive as long as T > Tc. Note also
that none of the four-point functions vanishes at Tc.
In the nonimproved two-loop approximation, the curves

below Tc should not be taken too seriously because in the
broken phase the n-point functions should be evaluated at
the nontrivial minimum of the potential and not at � ¼ 0
(which is actually a maximum of the potential below Tc).
The reason why we are able to follow the four-point
functions at � ¼ 0 below Tc is that the curvature of the

potential M̂2
�¼0 is different from the gap mass �M2

�¼0.

There is then a range of temperatures �Tc < T < Tc where,
although the curvature turns negative, the gap mass
remains positive making then possible the evaluation of
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FIG. 3 (color online). Temperature dependence of the three four-point functions �V�¼0, V�¼0 , and V̂�¼0 at parameters m2
?=T

2
? ¼

0:04 and �? ¼ 3. In the case of �V�¼0 and V�¼0, the lines are obtained using adaptive integration routines to evaluate their expressions

derived using dimensional regularization. In the case of V̂�¼0 the line is obtained by evaluating the three-loop integral in the last term

of Eqs. (73) and (60) as a double sum (N� ¼ 210 and Ns ¼ 25� 210), while in all the other integrals, including those in the bare
couplings, the Matsubara sum are done exactly and the momentum integral are evaluated with adaptive routines at cutoff�=T? ¼ 100.
The points are obtained by evaluating the integrals as a double sums using N� ¼ 2� 210 non-negative Matsubara frequencies,
Ns ¼ 13� 210 values of the modulus of the the 3-momentum, while decreasing the cutoff � linearly from �=T? ¼ 190 at T ¼ T? to
�=T? ¼ 30 at T ¼ �Tc.
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n-point functions at � ¼ 0 in the broken phase. This
range of temperatures becomes more interesting in the
RG-improved two-loop approximation because in this
case the critical temperature is �Tc and not Tc and it makes
sense then to follow the four-point functions at � ¼ 0
down to �Tc. In fact, since the three four-point functions
become equal in this approximation, see Eq. (66), only
the curve of �V�¼0 is relevant. We note then that, in the

RG-improved two-loop approximation, the four-point
function vanishes at the critical temperature �Tc. As we
shall see, this is directly connected to the modification of
the exponent �.

As a final remark, let us point out that studying the three
four-point functions in the range �Tc < T < Tc is interesting
on numerical grounds for it gives valuable information
concerning the discretization effects of the numerical
method used to solve the model (see Sec. V for details
concerning numerics). Namely, some integrals are infrared
divergent at �Tc, and because of this �V�¼0 goes to 0 while

V�¼0 and V̂�¼0 diverges negatively. There is a competition

between the square of the derivative of the setting-sun
integral times �V�¼0 and the last term of Eq. (73), which

both go like �M�3
�¼0 as the mass �M�¼0 goes to zero, and this

competition determines whether V̂�¼0 diverges negatively

or positively at �Tc. In order to obtain the correct divergence

of V̂�¼0 numerically, a not too coarse discretization needs

to be considered.

IV. STUDY OF THE PHASE TRANSITION

We now compute the effective potential and study how
its shape changes as we lower the temperature T from the
renormalization temperature T? down to T ¼ 0. We shall
first define the critical temperatures and evaluate them,
then study the nature of the transition, followed by the
thermodynamical observables and the critical exponents.
All details regarding numerics are gathered in Sec. V,
where we explain in particular how to accelerate the

convergence of Matsubara sums and how to achieve accu-
rate convolution routines.

A. Critical temperatures

We shall see below that the effective potential is convex
at the initial temperature T?, with a single minimum at
� ¼ 0. In other words, the unique solution of the field
equation is �� ¼ 0 and the system is in the symmetric
phase. Note that this result is not obvious a priori: at the
temperature T?, the renormalization and consistency con-
ditions impose that the curvature of the potential is positive
at � ¼ 0 and thus that the potential is convex in the
vicinity of � ¼ 0, but there is no obvious reason why the
potential should be globally convex.
As we decrease the temperature away from T?, new

extrema can appear, that is nontrivial solutions of the field
equation. In particular, if a second order phase transition
occurs at some critical temperature Tc, nontrivial extrema
are generated from � ¼ 0, because the curvature of the
potential at� ¼ 0 vanishes and turns negative. The critical
temperature Tc is then given by the equation

M̂ 2
�¼0;Tc

¼ 0: (74)

This is an implicit equation for Tc. However, since �G�¼0 is

a free-type propagator, the determination of Tc only re-
quires the calculation of perturbative sum integrals. In this
perturbative context, it is also relatively easy to prove that
the curvature at � ¼ 0 and thus Tc possess a continuum
limit, without relying on the general proof of renormaliz-
ability that we give in Sec. VI. We start from the expression
of the curvature at � ¼ 0 obtained from Eq. (38) by using
the expression (46) for m2

2:

M̂2
�¼0 ¼ m2

? þ �2

2
½T ½ �G�¼0� �T ?½G?��

� �2
?

6
½S½ �G�¼0� � S?½G?��: (75)

Introducing the splitting �2 ¼ �2l þ ��2nl and adding and
subtracting an appropriate term,15 we obtain

M̂2
�¼0 ¼ m2

? þ �2l

2
½T ½ �G�¼0� �T ?½G?�� � �2

?

2
ð �M2

�¼0 �m2
?Þ
�
B2

?½G?�ð0Þ þ 1

3

dS?½G?�
dm2

?

�
þ �2

?

2
½T ½ �G�¼0� �T ?½G?�

þ ð �M2
�¼0 �m2

?ÞB?½G?�ð0Þ�B?½G?�ð0Þ � �2
?

6

�
S½ �G�¼0� � S?½G?� � ð �M2

�¼0 �m2
?Þ dS?½G?�

dm2
?

�
: (76)

Now, using Eq. (59), we arrive at

M̂2
�¼0¼m2

?þ�0

2
½T ½ �G�¼0��T ?½G?���

�
�M2
�¼0�m2

?��0

2
½T ½ �G�¼0��T ?½G?��

��
�2l

�0

�1

�
þ�2

?

2
½T ½ �G�¼0�

�T ?½G?�þð �M2
�¼0�m2

?ÞB?½G?�ð0Þ�B?½G?�ð0Þ��2
?

6

�
S½ �G�¼0��S?½G?��ð �M2

�¼0�m2
?ÞdS?½G?�

dm2
?

�
: (77)

15The reason for adding and subtracting this term is that the sum of the last two terms of Eq. (76) is finite, as it can be checked by a
direct calculation or by using the results of Appendix A.
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Using the gap Eq. (35) at� ¼ 0 and the expression (45) for
m2

0, one sees that the sum of the first three terms is simply
equal to �M2

�¼0 which is convergent. Moreover, a direct
calculation using the perturbative expressions for the tadpole,
bubble and setting-sun sum integrals shows that the sum of
the last two terms is also convergent; see Appendix B. The
convergent equation determining Tc reads then

0 ¼ �M2
�¼0;Tc

þ �2
?

2
½T c½ �G�¼0;Tc

� �T ?½G?�
þ ð �M2

�¼0;Tc
�m2

?ÞB?½G?�ð0Þ�B?½G?�ð0Þ

� �2
?

6

�
Sc½ �G�¼0;Tc

� � S?½G?�

� ð �M2
�¼0;Tc

�m2
?Þ dS?½G?�

dm2
?

�
; (78)

with

�M 2
�¼0;Tc

¼ m2
? þ �?

2
½T c½ �G�¼0;Tc

� �T ?½G?�
þ ð �M2

�¼0;Tc
�m2

?ÞB?½G?�ð0Þ�: (79)

We solve this equation forTc for different values of the cutoff
�. The continuum limit Tcð1Þ can be computed using any
regularization. We find it convenient to determine it using
dimensional regularization.16 Both for Tcð�Þ and Tcð1Þ, the
Matsubara sums are computed exactly and the remaining
integrals over the modulus of the momentum are determined
using adaptive numerical integration. These features allow
for an accurate determination of Tcð�Þ and also for the study
of the convergence of Tcð�Þ towards its continuum value
Tcð1Þ, as illustrated in Fig. 4. This represents a valuable
information regarding the numerical resolution of the model
since, due tomemory limitations we cannot afford taking too
large values of the cutoff while maintaining at the same time
a good description of the infrared. We shall later use this
accurate determination of Tc in order to test our numerical
code.

Similarly, one can define a ‘‘critical’’ temperature �Tc for
the gap mass, below which the gap equation at zero field
has no solution [9]. It is defined by

�M 2
�¼0; �Tc

¼ 0: (80)

The way �Tcð�Þ approaches its continuum limit �Tcð1Þ is
represented in Fig. 4. Note that when both Tc and �Tc exist,
one has necessarily Tc 	 �Tc since the very existence of Tc

requires �M2
�¼0;Tc

to be well defined, according to Eq. (78).

However, these two temperatures do not coincide in general.17

As already discussed in Sec. IIB, one of the peculiarities of the
2PI formalism is that the different possible definitions of
the two-point function do not necessarily coincide within a
generic truncation.Because of this, in certain truncations, such

as the two-loop approximation considered here, M̂2
�¼0 is not

equal to �M2
�¼0 and thus Tc � �Tc.

18 In general, the tempera-

tureTc, where the curvature of the effective potential at� ¼ 0
vanishes, either signals the vanishing of the field expectation
value in a second order phase transition or it represents the
lower spinodal temperature in a first order phase transition.
The temperature �Tc resemblesmore the critical temperature in
statistic physics, since the vanishing of the gap mass means
enhanced fluctuations. Note also that below this temperature
the potential at � ¼ 0 cannot be accessed because the gap
equation does not admit a positive solution at� ¼ 0.

B. Nature of the transition

The existence of a solution to Eq. (78) depends on the
values of the parameters m2

?=T
2
? and �?. By determining

those values of the parameters for which Tc ¼ 0, we can
then separate the parameter space ðm2

?=T
2
?; �?Þ in two

regions, corresponding to the white and grey areas depicted
in Fig. 5. A point in parameter space for which the system
undergoes a second order phase transition belongs neces-
sarily to the white region, for which a value of Tc can be
defined. However, contrary to our discussion of the Hartree
approximation [9], we cannot draw analytical conclusions
on the nature of the transition in one or the other region.
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FIG. 4. Cutoff dependence of the critical temperatures Tc and
�Tc (points) determined using numerical integration for parame-
ters m2

?=T
2
? ¼ 0:04 and �? ¼ 3, and their convergence towards

the continuum values Tcð1Þ and �Tcð1Þ. The different conver-
gence rates shown by the fitted functions (solid lines), 1=� for Tc

and 1=�2 for �Tc, could be related to our choice of a sharp
regulating function and the presence of a nonlocal sum integral
in the determination of Tc.

16In Appendix B, using dimensional regularization, we provide
an explicit continuum version of the curvature M̂2

�¼0, see
Eqs. (B10) and (B11).
17The cases for which Tc ¼ �Tc correspond to m? ¼ 0 and
�? > 0 in which case Tc ¼ �Tc ¼ T?. If m? ¼ 0 and �? ¼ 0,
the temperatures Tc and �Tc are not determined since the gap
mass is identically zero for any temperature and the potential is
identically flat.

18Note that there are other truncations such as the Hartree
approximation, or the truncation that includes the ‘‘basketball’’
diagram in�½�;G� which are such that M̂2

�¼0 ¼ �M2
�¼0 and thus

such that Tc ¼ �Tc.
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We thus select a certain number of points in each region
and investigate the nature of the transition numerically.
The points that we have considered are indicated with a
cross in Fig. 5.

We investigate first the nature of the phase transition
for the parameters m2

?=T
2
? ¼ 0:04 and �? ¼ 3. For these

parameters the phase transition was of the first order in the
Hartree approximation, as one can see in Fig. 4 of Ref. [9].

These values of the parameters were also used in Ref. [32],
where the model was solved in the same approximation,
but in Minkowski space. Lowering the temperature from
T?, we follow the value of the order parameter �� obtained
from the solution of the coupled set of gap and field
equations. We see in Fig. 6 that �� remains equal to zero
down to some value of the temperature, which turns out to
be Tc, since at this temperature the curvature of the poten-
tial at � ¼ 0 vanishes, as it is clear from Fig. 7. Below Tc,
�� starts to develop a nonvanishing value. No other extrema
appear between T? and Tc, as it can be cross-checked by
looking at the shape of the effective potential. This is a
radically different behavior than the one obtained in the
Hartree approximation, where some nontrivial extrema
appeared and became the absolute ones before the curva-
ture at � ¼ 0 could vanish.
In conclusion, the temperature variation of the field

expectation value �� shown in Fig. 6 corroborated by the
change of shape of the effective potential with the tem-
perature shown in Fig. 7 indicates a second order phase
transition for the value of the parameters studied, in accor-
dance with the result of Arrizabalaga and Reinosa [32]. We
observe a similar behavior for two other points chosen in
the white region and we believe that this result generalizes
to a large part of the white region. It would be interesting to
study our approximation for very small couplings and see
if this region is dominated by the Hartree approximation,
which would imply a first order phase transition, in line
with the Monte Carlo results of Bordag et al. [16]. This
would be numerically challenging since, for such small
couplings, it would be difficult to differentiate a second
order phase transition from a weakly first order one. For the
point that we have tested in the grey region, the potential
remains convex all the way down to T ¼ 0.
We can now go back to Fig. 5 and compare it to a similar

figure obtained in the analytic investigation of the Hartree

FIG. 5. The nature of the transition in a wide range of the
parameter space inferred from the numerical study performed
in the selected points indicated with a cross. In the two-loop
approximation the boundary between the regions with no phase
transition and second order phase transition is represented by
the solid line. Along this line Tc ¼ 0. The dashed line is the
boundary between the regions with no phase transition and first-
order phase transition in the Hartree approximation. Along this
line �Tc ¼ 0. The meaning of the other curves is the same as in
Fig. 4 of Ref. [9]: the labels indicate the value of lnð�p=m?Þ,
where �p is the Landau pole. In the region lnð�p=m?Þ> 5 our

results can be considered cutoff insensitive for a cutoff � much
larger than any physical scale but below the scale of the Landau
pole.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.2 0.4 0.6 0.8 1

0

0.02

0.04

0.06

0.08

0.1

0.854 0.856 0.858 0.86 0.862 0.864 0.866

=0.5k, =3k, =100

=0.5k, =3k, =500

=2k, =3k, =500

=2k, =5k, =500

FIG. 6 (color online). Left panel: The variation of the order parameter �� with the temperature. Right panel: The temperature
dependence of the first bin of the self-energy. The minimum of this curve coincides with the temperature value Tc, where �� starts to
develop a nonvanishing value. The insets show the discretization effects near Tc. The parameters are m2

?=T
2
? ¼ 0:04 and �? ¼ 3.
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approximation in Ref. [9]. In this study the parameter space
was also divided essentially in two regions. The separating
boundary of the Hartree approximation is now represented
in Fig. 5 by a dashed line and corresponds to those points
for which �Tc vanishes. In other words, for points below the
dashed line there is no �Tc and the potential can be eval-
uated at � ¼ 0 down to T ¼ 0. For points above the
dashed line, there is a �Tc and the potential cannot be
evaluated in the vicinity of � ¼ 0 below �Tc. As the ana-
lytic investigation of Reinosa and Szép [9] revealed, in
the Hartree approximation, points of the parameter space
above the dashed boundary correspond to systems which
undergo a first order phase transition and points below the
dashed boundary correspond to systems that remain in the
symmetric phase.19 The inclusion of the setting-sun dia-
gram in the functional�½�;G� seems to change the nature
of the transition to second order while enlarging the
parameter space for which a transition occurs since the
solid boundary line is pushed deeper in the no phase
transition region of the Hartree case.

Similarly, we can study the effective potential using the

RG-improved two-loop approximation. Since M̂RG
�¼0 ¼

�M�¼0 [see Eq. (65)], the critical temperature which char-

acterizes the sign change of the curvature at � ¼ 0 is also
the critical temperature �Tc related to the vanishing of the
gap mass. Since the gap mass at � ¼ 0 is not defined
below �Tc, neither is the running of the mass in our im-
proved scheme which is thus only defined in the symmetric

phase. For those points in parameter space that we tested,
we observed either no transition or a second order phase
transition at �Tc in the sense that the potential remained
convex down to �Tc where its curvature at � ¼ 0 vanishes.
In fact, the effective potential becomes very flat at �Tc.
This is because, the fourth derivative of the RG-improved
effective potential at � ¼ 0 equals �V�¼0;T and thus van-

ishes at �Tc. Of course we cannot test what happens in the
broken phase since our RG-improvement is defined only
for T 	 �Tc. Note also that the boundary between a second
order phase transition and no phase transition coincides in
this case with the boundary between a first order phase
transition and no phase transition in the Hartree approxi-
mation. Note finally that the RG-improvement can also
be applied to the Hartree approximation. In this case, one
can show that the curvature of the potential for any value

of the field changes from M̂2
� ¼ �M2

� þ ð �V� � �?Þ�2,

where �V� is the generalization of �V�¼0 to nonzero field,

to ðM̂RG
� Þ2¼ �M2þð �V�� �V�¼0Þ�2. It can also be shown

that �V� increases with �2 from which it follows that

ðM̂RG
� Þ2 	 0 for any value of � and down to the tempera-

ture �Tc at which ðM̂RG
�¼0Þ2 ¼ �M2

�¼0 ¼ 0. Thus, in the RG-

improved Hartree approximation, the potential remains
convex down to the transition temperature.

C. Thermodynamical properties

In this subsection we study the bulk thermodynamic
properties of the model based on the pressure and quanti-
ties derived from it, such as the interaction measure (trace
anomaly), the heat capacity, and the speed of sound.
The pressure is obtained from the subtracted effective

potential given in Eq. (61) as

pðTÞ ¼ lim
T0!0

½��ð ��ÞjT0
� ��ð ��Þ�: (81)

Actually, we cannot evaluate ��ð ��Þ exactly at T0 ¼ 0
because we can take into account only a limited number
of Matsubara modes. Therefore, we are constrained to
approximate the value of ��ð ��Þ at T ¼ 0. In order to do
so, we first determine ��ð ��Þ for smaller and smaller
values of T by progressively increasing N�, then we fit a
high order polynomial to the available data points and
obtain an estimation of ��ð ��ÞjT¼0 by evaluating it at
T ¼ 0. The value is accepted if the scaled pressure
p=pSB is a decreasing function of T for T ! 0, where
pSBðTÞ ¼ �2T4=90 is the pressure of the massless boson
gas. In the opposite case, we increase N�, determine the
subtracted potential for smaller T and redo the fit.20

FIG. 7 (color online). The temperature evolution of the sub-
tracted effective potential indicates a second order phase tran-
sition. The parameters are m2

?=T
2
? ¼ 0:04 and �? ¼ 3 and the

discretization is characterized by �=T? ¼ 100, N� ¼ 512, and
Ns ¼ 3� 210.

19The dashed boundary is in fact a very narrow band along the
boundary line of the Hartree approximation and completely
indistinguishable from this line at the scale of the figure. For
points inside this band, although nontrivial extrema develop
between T? and T ¼ 0, the trivial minimum persists down to
T ¼ 0.

20For example, at parameters m2
?=T

2
? ¼ 0:04 and �? ¼ 3 we

used�=T? ¼ 100 and Ns ¼ 3� 210 and increased N� from 512,
used for T=T? 	 0:2, to N� ¼ 4� 210 for 0:1 � T=T? < 0:2,
and to N� ¼ 8� 210 for 0:06 � T=T? < 0:1.
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Having determined the pressure as a function of
the temperature, the energy density is given by
" ¼ �pþ Ts, where the entropy density is obtained using
a numerical derivative as s ¼ dp=dT. The heat capacity
C ¼ d"=dT is obtained numerically as the second deriva-
tive of the pressure: C ¼ Td2p=dT2. The square of the
speed of sound c2s ¼ dp=d" is determined from c2s ¼ s=C
and the trace anomaly of the energy momentum tensor T�	

is obtained as � ¼ T�
�=T

4 ¼ ð"� 3pÞ=T4 or equiva-

lently as � ¼ Tdðp=T4Þ=dT. All these quantities dis-
played in Fig. 8 show nicely the second order nature of
the transition: the scaled energy and entropy densities
"="SB and s=sSB, and the trace anomaly display a cusp at
Tc, while the second derivative of the pressure with respect
to the temperature is discontinuous, as displayed by the
speed of sound and the heat capacity. The discontinuity is
more pronounced at a larger value of the coupling.

In the upper row of Fig. 8 we display the temperature
dependence of the scaled pressure, entropy, and energy
densities calculated for two different couplings. These

curves cross each other at the value of the temperature at
which the scaled pressure has a maximum. This is because
at this temperature, the interaction measure vanishes (since
p=pSB / p=T4) and thus " ¼ 3p and Ts ¼ 4p. Moreover,
since "SB ¼ 3pSB and TsSB ¼ 4pSB, it follows that
p=pSB ¼ s=sSB ¼ "="SB. In the insets of these plots we
compare the temperature dependence of the pressure with
the first terms in the perturbative expansion obtained at
high temperature [33]

ppertðTÞ¼pSBðTÞ
�
1� 5�?

64�2
þ5

ffiffiffi
6

p
�3=2
?

192�3
þOð�2

?Þ
�
; (82)

where the neglected higher order terms depend on the
chosen renormalization scale. Note also that, although

the formula was obtained in Ref. [33] in the MS scheme,
one can use it with coupling �? because the differences
between the two renormalization schemes appear only at
higher order in the coupling. The pressure obtained in the
current approximation at coupling �? ¼ 3 is closer to the

FIG. 8 (color online). Bulk thermodynamic quantities as a function of temperature for two different coupling values: the scaled
pressure p=pSB, entropy density s=sSB and energy density "="SB (upper row), the square of the speed of sound and the heat capacity
(lower left panel), the trace anomaly ð"� 3pÞ=T4 (lower right panel). The insets in the upper panels show in a log-linear plot the

perturbative results for the relative quantities obtained using a high temperature expansion up to and includingOð�?Þ andOð�3=2
? Þ [see

Eq. (82)]. The upper and left axis of the plot in the lower left panel correspond to c2s , while the lower and right axis correspond to the
heat capacity C. The discretization parameters are those of Fig. 7 and m2

?=T
2
? ¼ 0:04.
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Oð�?Þ perturbative result for T > 3:5Tc. For the larger
coupling constant, �? ¼ 7, the pressure goes below the
Oð�?Þ perturbative result but for such high value of the
coupling it makes less sense to compare to the perturbative
expansion.

At high temperatures the trace anomaly vanishes and
"=ð3pÞ goes to 1, in such a way that, interestingly, "� 3p
is negative and its magnitude increases with the tempera-
ture. The fact that "=ð3pÞ ! 1 is reflected in the square of
the speed of sound, which approaches at high temperature
the value 1=3, called the conformal limit because in a
conformal invariant theory in three dimensions c2s ¼ 1=3.
For low temperature the trace anomaly shows a bump,
for both values of the coupling investigated. At the larger
value of the coupling �? ¼ 7 the cuspy structure becomes
more prominent. These interesting features were already
observed in Ref. [34].

D. Critical exponents

There are six static critical exponents 
, �, �, �, �, and
	, but, as a consequence of the static scaling hypothesis
for the thermodynamic and correlation functions, which is
verified in particular in the presence of a fixed point in the
RG flow [35], there exist four scaling relations between
them, so that only two of them are independent. Usually �
and 	 are chosen and the other exponents can be deter-
mined from21


 ¼ 2� d	; � ¼ ðd� 2þ �Þ	
2
;

� ¼ ð2� �Þ	; � ¼ dþ 2� �

d� 2þ �
:

(83)

However, that there is a priori no reason why these rela-
tions should hold in a given approximation of the theory,
such as for instance the two-loop �-derivable approxima-
tion that we consider here. In what follows we determine
the critical exponents in the two-loop and in the RG-
improved two-loop �-derivable approximations and dis-
cuss which of the scaling relations are fulfilled.

1. Critical exponents in the two-loop approximation

First of all, note that there is a priori an ambiguity in the
determination of certain critical exponents. For instance,
in order to obtain the exponent �, we should study the
behavior of the propagator at criticality. One possibility is
to study �G. The corresponding critical temperature is �Tc

and not Tc and the propagator should be evaluated at
� ¼ 0 down to �Tc.

22 But since �G�¼0 is local, we conclude

that ��þ ¼ 0. We could instead consider the propagator
obtained from the second derivative of the effective action,
which generalizes the effective potential to nonhomo-
geneous configurations of the field. We would obtain a
momentum dependent ‘‘curvature’’

M̂2
�¼0ðKÞ¼K2�Zþm2

2þ
�2

2
T ½ �G�¼0���2

?

6
S½ �G�¼0�ðKÞ;

(84)

where S½ �G�¼0�ðKÞ is the momentum dependent setting-

sun sum integral with propagator �G�¼0. At Tc this self-

energy is critical, in the sense that its value for K ¼ 0
vanishes. However, since �G�¼0 is massive, the correspond-

ing propagator shows no anomalous dimension. We con-
clude then that �̂þ ¼ 0. Then, even though the definition
of � is ambiguous, in the present case, both approaches
lead to the same result ��þ ¼ �̂þ ¼ 0, which coincides
with that of the mean-field approximation.
Similar remarks apply to the critical exponent 	. If we

define the correlation length by �� / �M�1
�¼0, its scaling can

be obtained by subtracting the renormalized gap equation
at �Tc from the renormalized gap equation at temperature T,
that is,

�M 2
�¼0 ¼

�?

2
½T ½ �G�¼0� �T �Tc

½G0� þ �M2
�¼0B?½G?�ð0Þ�;

(85)

with G0ðQÞ � 1=Q2. Using the high temperature expan-
sion of the tadpole sum integral given below in Eq. (88),
which is justified since �M�¼0 ! 0 as T ! �Tc, and neglect-

ing the contributions of order �M2
�¼0, we obtain

�M�¼0 � �

3T
ðT2 � �T2

cÞ � 2�

3
ðT � �TcÞ; (86)

from which it follows that �	þ ¼ 1. We can alternatively

define the correlation length from �̂ / M̂�1
�¼0. The way the

curvature vanishes at Tc is studied below when determining
the exponent �. We obtain that �M2

�¼0 vanishes linearly as

T � Tc from which it follows that 	̂þ ¼ 1=2. In order to
solve this ambiguity, note that the nature of the transition is
determined from the change of shape of the potential
at Tc. The relevant value for the critical exponent is thus
	̂þ ¼ 1=2, which is again equal to the value obtained in the
mean field approximation.
The critical exponent � is obtained by fitting jTc � Tj�

to ��. This requires first an accurate determination of Tc

from our numerical results.23We could proceed by locating
precisely the temperature at which �� starts developing a
nonzero value. However, since the temperature derivative

21The first and third scaling relations are the Josephson and
Fisher identities and instead of the second and fourth one, one
could use equivalently the Widom and Rushbrooke relations:
� ¼ �ð�� 1Þ and 
þ 2�þ � ¼ 2 [36].
22If one evaluates �G at � ¼ 0 only down to Tc > �Tc and at
� � 0 for T < Tc, �G never reaches criticality; see Fig. 6.

23This value of Tc is not the same numerically than the one
obtained from Eq. (78) using accurate numerical integration of
perturbative integrals. We will later use these two different ways
to obtain Tc in order to test our numerical procedure.
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of �� is infinite at T�
c , it is easier to determine the value of

Tc by locating the minimum of the self-energy at the lowest
available momentum and frequency: indeed the self-
energy reaches a minimum value when �� starts to develop
a nonvanishing value. This is shown in the inset of the right
panel of Fig. 6. Once Tc has been determined the exponent
� can be fitted. As shown in the Fig. 9, the fit is compatible
with the mean-field value � ¼ 1=2. A similar method is
used to determine the exponent �. We introduce an external
field h (this amounts to shifting the effective potential by
�h�), we set the temperature T to the numerically deter-

mined value of Tc and fit �� with h1=�. The results are
compatible with the mean-field value � ¼ 3; see Fig. 9.

In order to obtain �, we should fit the susceptibility  �
@ ��=@h at h ¼ 0 to a power law jTc � Tj� ��. Because, in
the exact theory

@ ��

@h

��������h¼0
¼

�
�2�

��2

��1
�������� ��

¼ ðM̂2
��
Þ�1; (87)

we can also fit the inverse curvature of the potential with
jTc � Tj��̂. Note that in a given truncation, such as the
approximation considered here, there is an ambiguity in the
determination of � because there is no reason a priori why
�� should equal �̂. Our numerical results for �̂ are again
compatible with the mean-field value �̂� ¼ �̂þ ¼ 1; see
Fig. 10. Note that �̂þ was obtained using dimensional
regularization. Indeed, as we already discussed, in the
symmetric phase, the formula for the curvature at � ¼ 0
involves only perturbative integrals which can be evalu-
ated using dimensional regularization. Of course, since the
curvature is finite, its continuum result does not depend on
the regularization chosen to obtain it. The determination of
��þ and ��� would be numerically more involved.

Finally, the heat capacity has already been determined in
the previous section together with other thermodynamical
quantities; see Fig. 8. It presents a discontinuity at Tc,
as it is the case in the mean-field approximation. To this
behavior, one attributes conventionally the value 
 ¼ 0 for
the critical exponent 
. Right below Tc, the heat capacity
shows a narrow pick which is more visible at large cou-
plings. At this point the slope of the curve is finite. To
summarize, in the two-loop �-derivable approximation,
the critical exponents coincide with those in the mean field
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FIG. 9 (color online). Numerical determination of the critical exponents � (left panel) and � (right panel) through fits to the field
expectation value ��. The parameters and discretization used are the same as in Fig. 7. The inserts show the dependence of the the fitted
values of � and � on the upper boundary of the fitting window. As the fitting window shrinks, the fitted exponents converge to the mean
field values 1=2 and 3, respectively.
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FIG. 10 (color online). Numerical determination of the critical
exponent �̂� (lower curve) in the broken symmetry phase and
�̂þ (upper curve) in the symmetric phase by fitting aðT � TcÞ�̂


to the curvature. In the symmetric phase the momentum inde-
pendent curvature is determined using dimensional regulari-
zation. The critical exponent converges to the value 1 when
shrinking the size of the fitting window around Tc. The parame-
ters are m2

?=T
2
? ¼ 0:04 and �? ¼ 3.
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approximation. In a sense, although it predicts the correct
order of the transition, the two-loop approximation is not
enough to produce nonanalyticities in the effective poten-
tial which would modify the Ginzburg-Landau picture.

2. RG-improved critical exponents

As already explained, the RG improvement that we have
introduced is only applicable for temperatures above the
transition temperature which in this case is equal to �Tc. We
can only determine the critical exponents by approaching
the transition from the symmetric phase. In particular, we
cannot access the exponent �.

An interesting feature of the RG-improved approxima-
tion is that, in the symmetric phase, there is no difference

between M̂RG
�¼0 and �M�¼0. The determination of 	þ

RG is

then not ambiguous and coincides with that of �	þ in the
previous section. Then 	þ

RG ¼ 1 which differs from the

mean field value 1=2. The value of � remains equal to 0.
In order to determine the exponents �RG and �þ

RG, we

can take advantage of some simplifications which occur
in the RG-improved field equation at �Tc. Remember first
that the RG-improved equation is obtained by applying
the replacements m? ! �M�¼0 and �? ! �V�¼0. Because
�V�¼0 goes to zero as T approaches the transition tempe-

rature �Tc, we will be able to neglect a certain number of
contributions. Moreover, since �M�¼0 goes also to zero, we

will be able to use high temperature expansions for some
integrals calculated in dimensional regularization. We use,
in particular, the expansion of the tadpole

T ½ �G�¼0� ¼ T2

12
�

�M ��¼0T

4�
�

�M2
��¼0

16�2

�
1

�
þ ln

�2

4�T2
þ �E

�

þO
� �M4

��¼0

T2

�
; (88)

from which we obtain

B½ �G�¼0�ð0Þ � T

8� �M�¼0

and �V�¼0 � 16�
�M�¼0

T
;

(89)

as well as [37]

S½ �G�¼0� � � T2

32�2
log

�M2
�¼0

T2
;

dS½ �G�¼0�
d �M2

�¼0

�� T2

32�2 �M2
�¼0

:

(90)

In order to obtain the RG-improved gap and field equa-
tions, we can apply the above-mentioned replacements in
Eqs. (35) and (37). The expressions for the bare parameters
m2

2, �2l, and ��2nl become

ðmRG
2 Þ2¼m2

0�
�2��0

2
T ½ �G�¼0�þ

�V2
�¼0

6
S½ �G�¼0�; (91)

�RG
2l ¼ �0

�
1þ

�V2
�¼0

2

�
B2½ �G�¼0�ð0Þ þ 1

3

dS½ �G�¼0�
d �M2

�¼0

��

(92)

and

��RG
2nl ¼ �V2

�¼0B½ �G�¼0�; (93)

where we have used the expressions (45), (46), (50),
and (59) for m2

0, m2
2, ��2nl, and �2l. Using Eqs. (89)

and (90), we find the following behaviors for these
parameters as we approach �Tc:

ðmRG
2 Þ2 ! m2

0 �
1

3
�0T �Tc

½G0�; �RG
2l ! 5

3
�0;

��RG
2nl � 32�

�M�¼0

�Tc

! 0:

(94)

A similar analysis can be done for �4 which is expressed
in terms of �0 and �2l in Eq. (58). The last integral of (58)
involves a three-loop sum integral which we do not com-
pute and whose high temperature expansion is not known
to us. Therefore, we evaluated this integral numerically
at constant temperature and found that its value goes as
�M�3
�¼0 as the mass �M�¼0 goes to zero. Since this integral is

multiplied by �V4
�¼0ðTÞ, it gives no contribution as T ! Tc.

For the other integrals, the HTE is known. Using Eqs. (89)
and (90), we arrive finally at

�RG
4 ! 25

3
�0: (95)

Using these replacements, one obtains the following field
equation (coupled to the gap equation) in the presence of
the external field h

h ¼ ��

�
2

3

�
m2

0 þ
�

2
T �Tc

½G0�
�
þ 5

3
�M2

��; �Tc

�
(96)

and

�M 2
��; �Tc

¼ m2
0 þ

�0

2

�
5

3
��2 þT �Tc

½ �G ��; �Tc
�
�
; (97)

where G0ðQÞ � 1=Q2. In obtaining these equations we
have also used the fact that since the setting-sun sum
integral in the field equation and the bubble sum integral
in the gap equation are multiplied by �V�¼0 their contribu-

tion vanishes at �Tc. This can also be checked numerically.
For instance, in Fig. 11, we show the flattening of the
momentum dependent gap mass �M2

�¼0ðKÞ as we approach
�Tc due to the fact that the nonlocal contribution to the gap
equation vanishes in this limit.
The round bracket in the field equation (96) is just

�M2
�¼0; �Tc

¼ 0. Using Eq. (45) with T? replaced by �Tc and

m? replaced by 0 to express m2
0, and Eq. (47) at the

reference temperature T? to express �0, one obtains the
following renormalized equations:
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h ¼ 5

3
�� �M2

��; �Tc
(98)

with

�M2
��; �Tc

¼ �?

2

�
5

3
��2 þT �Tc

½ �G ��; �Tc
� �T �Tc

½G0�

þ �M2
��; �Tc

B?½G?�ð0Þ
�
: (99)

As h ! 0, we have �� ! 0 and thus �M2
��; �Tc

! 0, which

justifies a high temperature expansion. Using the first terms
in the expansion of the tadpole sum integral given in
Eq. (88), the gap equation becomes quadratic:

�M2
��; �Tc

�
1� �?

2

�
Bð1Þ

? ½G?�ð0Þ � 1

8�2

�
�E þ ln

m?

4� �Tc

���

þ �?
�Tc

8�
�M ��; �Tc

� 5

6
�?

��2 ¼ 0; (100)

where terms of order �M4
��; �Tc

= �T2
c and higher were neglected.

At lowest order, one can neglect the terms of order �M2
��; �Tc

and obtain �M ��; �Tc
� 20� ��2=ð3TcÞ. Plugging this result into

the field equation (98), one obtains the analytic value
�RG ¼ 5. We shall not present the numerical determination
of �RG, for the simple reason that the HTE is very accurate
in the region of h used for the numerical determination of �
in the case without RG improvement (see Fig. 9), and thus
the solution of the gap equation (99) is very accurately
approximated by the solution of the quadratic Eq. (100).
The value �RG ¼ 5 can be understood as follows: assuming
that the potential admits a Taylor expansion around� ¼ 0,
the field equation at T ¼ �Tc and for small h, reads

h ¼ �M2
�¼0; �Tc

��þ 1

3!
�V�¼0; �Tc

��3

þ 1

5!

�6�

��6

���������¼0; �Tc

��5 þOð ��7Þ; (101)

where we have used that the second and fourth derivatives
of the potential at � ¼ 0 coincide with �M2

�¼0 and �V�¼0.

Using that �M2
�¼0; �Tc

¼ 0 and �V�¼0; �Tc
¼ 0, and assuming

that the sixth derivative does not vanish, we obtain h / ��5

and then �RG ¼ 5. Thus, although the RG improvement
ensures that �V�¼0; �Tc

¼ 0, which is a necessary condition

for � to be larger than 3, the two-loop approximation is not
sufficient to generate nonanalyticities in the field depen-
dence of the potential which would yield a noninteger
value for �.
The value of �̂þ

RG can be determined analytically with a

similar calculation, since it is given by the way the curva-
ture at zero �M2

�¼0;T behaves as we approach �Tc. We have

already seen that �M�¼0 / T � �Tc. It follows that �̂
þ
RG ¼ 2.

The numerical determination of �̂þ
RG is again simple and

does not warrant a presentation. Similarly, one can deter-
mine analytically ��þ

RG and one finds ��þ
RG ¼ �̂þ

RG.

Concerning the heat capacity, this can be deter-
mined numerically down to �Tc through the formula
C ¼ �T@2�ð ��Þ=@T2, by applying to the effective poten-
tial the method described in Sec. III D. Around �Tc an
analysis based on the high temperature expansion reveals
that the heat capacity behaves as Cþ ’ aþ þ bþðT � �TcÞ
with the constant aþ ¼ 2�2 �Tc=15 and bþ ¼ 34�2 �T3

c=135,
independently of the value of the coupling. Unfortunately,
we cannot conclude on the value of 
RG because we do not
know whether there is a jump in the value of heat capacity
at �Tc. The only thing we can state is that the heat capacity
does not diverge as we approach �Tþ

c .
Note, finally, that in the RG-improved case the last two

of the four scaling relations (83) are fulfilled with d ¼ 3.
The two other scaling relations cannot be checked for we
cannot access 
 or �.

V. GENERALITIES CONCERNING THE
NUMERICAL IMPLEMENTATION

The resolution of the gap and field equations or the
evaluation of the effective potential, together with the
determination of the bare parameters, involve various
sum integrals. Local sum integrals of the form

V ½f� �
Z T

Q
fðQÞ; (102)

and nonlocal sum integrals

C ½f; g�ðKÞ �
Z T

Q
fðQÞgðK �QÞ; (103)

in the form of convolutions. We now explain how these
various sum integrals are discretized in view of their

FIG. 11 (color online). Flattening of the momentum dependent
self-energy at constant �, as one approaches �Tc in the
RG-improved case. The model parameters are m2

?=T
2
? ¼ 0:04,

�? ¼ 3 and the discretization is characterized by � ¼ 50,
N� ¼ 2� 210, Ns ¼ 26� 210.
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practical evaluation. We also present a method which
allows to increase the rate of convergence of the discretized
sum integrals towards their exact result, leading to a sizable
improvement in accuracy or computational speed.

A. Discretization of the sum integrals

Let us start with the nonlocal sum integrals because, as
we will see, this puts some restrictions on the choice of the
discretization. Sum integrals of this type will be evaluated
using fast Fourier transform algorithms. A convolution
such as (103) can be written as

C ½f; g� ¼ F ½F�1½f�F�1½g��; (104)

where we have introduced the Fourier transform operator
F and its inverse F�1 defined by

F ½f�ði!n;qÞ �
Z �

0
d�

Z
d3xei!n��iq�xfð�; xÞ; (105)

F�1½f�ð�; xÞ � T
X1

n¼�1

Z d3q

ð2�Þ3 e
�i!n�þiq�xfði!n;qÞ;

(106)

with� ¼ 1=T. The functions fði!n;qÞ that wewill have to
deal with are invariant both under i!n ! �i!n and under
rotations (they only depend on the modulus q ¼ jqj of
the momentum). It follows that their Fourier transforms
F ½f�ð�; xÞ are invariant both under � ! �� � and under
rotations (they only depend on the modulus x ¼ jxj).
Similar remarks apply to the inverse Fourier transforms.
Using these properties, we arrive at

qF ½f�ði!n; qÞ ¼ 2�

�
2
Z �=2

0
d� cosð!n�Þ

�
�
2
Z 1

0
dx sinðqxÞxfð�; xÞ

��
; (107)

xF�1½f�ð�; xÞ ¼ 1

4�2

�
2
Z 1

0
dq sinðqxÞ

�
Tqfð0; qÞ

þ 2T
X1
n¼1

cosð!n�Þqfði!n; qÞ
��

; (108)

where we need only the Matsubara frequencies
!n ¼ 2�nT with n 	 0. We can rewrite this as

F ½f�� ¼ 2�ðF c �F sÞ½f��;
F�1½f�� ¼ 1

2�
ðF�1

c �F�1
s Þ½f��;

(109)

where the notation f� means that the function f is multi-
plied by the modulus of its 3D argument, for instance
f�ði!n; qÞ ¼ qfði!n; qÞ, and we have introduced

F c½f�ði!nÞ ¼ 2
Z �=2

0
d� cosð!n�Þfð�Þ;

F�1
c ½f�ð�Þ ¼ Tfð0Þ þ 2T

X1
n¼1

cosð!n�Þfði!nÞ;
(110)

as well as

F s½f�ðqÞ ¼ 2
Z 1

0
dx sinðqxÞfðxÞ;

F�1
s ½f�ðxÞ ¼ 2

2�

Z 1

0
dq sinðqxÞfðqÞ:

(111)

Note that if ~fðqÞ is the 3D Fourier transform of a rotational

invariant function fðxÞ, that is ~fðqÞ ¼ R
d3xfðjxjÞe�iq�x,

then ~f� ¼ 2�F s½f��, and in turn f� ¼ 1
2�F

�1
s ½~f��.

We have thus reduced the evaluation of the convolution
to the evaluation of sine and cosine transforms whose
discretized versions (DST and DCT) can be performed
efficiently using one of the variants implemented in
numerical libraries.24 These variants differ in the type of
boundary condition used when the original data is extended
in view of performing on it the discrete fast Fourier trans-
formation. As explained in Appendix E of Ref. [39], for the
rotation invariant part, we use a discretization which avoids
potential singularities as x ! 0 and q ! 0, in that it does
not store on the grid zero momentum and direct space
values, and which matches the boundary conditions of
the DST-II and DST-III formulas for the sine and inverse
sine transforms, respectively (note, however, that the
method that we put forward in the next section allows to
reduce considerably the appearance of singularities in the
UV). In momentum space, the highest stored momentum is

the cutoff � and the grid is defined as k~k ¼ ð~kþ 1Þ�k,
with ~k ¼ 0 . . .Ns � 1 and �k ¼ �=Ns the lattice spacing
in momentum space, while in direct space, the grid is
defined as xs ¼ ðsþ 1

2Þ�x, with s ¼ 0 . . .Ns � 1 and �x

the direct space lattice spacing satisfying �x�k ¼ �=Ns.
We retain N� � 1 positive Matsubara frequencies and
the static mode !n ¼ 0, so that the available Matsubara
frequencies are !n ¼ ð2�=�Þn ¼ n�!, with n ¼
0 . . .N� � 1. The corresponding temporal grid is defined
as �t ¼ ðtþ 1

2Þ�� with t ¼ 0 . . .N� � 1 and �� the tem-

poral lattice spacing such that ���! ¼ �=N�. One can
see that with this discretization, the discrete version of
the cosine and inverse cosine transforms appearing in
Eq. (110) are the DCT-II the DCT-III, respectively.
In order to write the discretized version of the nonlocal

sum integral (104) in a compact way, we first introduce a
shorthand notation for the sequence of discrete sine and
cosine transforms which acts on anN� � Ns array in which
we store the values of the Matsubara frequencies and the

24We use the routines of the fastest Fourier transform in the
west library [38], which contain a factor of 2 in the formulas of
the DST and DCT transformations. This is the reason for
separating factors of 2 in Eqs. (107) and (108).
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modulus of the momenta. We define the following forward
and backward discrete transforms:

F N�;Ns
½fðt; sÞ�ðn; ~kÞ

�DCT-IIt½DST-IIs½fðt; sÞ�ðt; ~kÞ�ðn; ~kÞ; (112)

and

F�1
N�;Ns

½fðn; ~kÞ�ðt; sÞ
� DCT-IIIn½DST-III~k½fðn; ~kÞ�ðn; sÞ�ðt; sÞ; (113)

where n, t ¼ 0 . . .N� � 1 and ~k, s ¼ 0 . . .Ns � 1, and the
array f½t�½s� is denoted for simplicity as fðt; sÞ. The index
indicates the part of the array on which the transformation
acts. Note also that F N�;Ns

and F�1
N�;Ns

are inverse to each

other up to a numerical constant: F�1
N�;Ns

½F N�;Ns
½f�� ¼

4N�Nsf. This comes from the fact that DST-III and
DCT-III are the inverses of DST-II and DST-II up to factors
2N� and 2Ns, respectively. With the notation above it is
easy to see, by using Eqs. (107) and (108), that the dis-
cretized version of the convolution reads

CN�;Ns
½f; g�ðn; ~kÞ ¼ c

~kþ 1
F N�;Ns

�
1

sþ 1
2

F�1
N�;Ns

½ð~pþ 1Þfðm; ~pÞ�ðt; sÞ �F�1
N�;Ns

½ð~pþ 1Þgðm; ~pÞ�ðt; sÞ
�
ðn; ~kÞ; (114)

where n, m, t ¼ 0 . . .N� � 1, ~k, ~p, s ¼ 0 . . .Ns � 1, and
the prefactor c ¼ T2��ð�kÞ3=ð8�3Þ contains the dimen-
sionful quantities arising from the discretization of the
integrals.

Next, we turn to the sum integrals of the local type.
Having stored on the grid N� � 1 positive frequencies and
the static mode !n ¼ 0, this sum integral will be approxi-
mated numerically as

V N�;Ns
½f� � T

XN��1

n¼�N�þ1

�Z d3q

ð2�Þ3
�
Ns

fði!n; qÞ

¼ T

�Z d3q

ð2�Þ3
�
Ns

fð0; qÞ

þ 2T
XN��1

n¼1

�Z d3q

ð2�Þ3
�
Ns

fði!n; qÞ; (115)

where the notation ½. . .�Ns
refers to some quadrature rule, in

practice we use the trapezoidal rule. After the exact evalu-
ation of the angular integrals, one applies the extended
trapezoidal rule [40] for the integral over q in the interval
½0;��. To obtain the formula, we include first the zero
momentum (not contained by our momentum grid) in the
sequence of points on the abscissa. Then, having Ns þ 1
equally spaced points, we apply the trapezoid rule on the
Ns intervals ð0;�kÞ; . . . ; ððNs � 1Þ�k; Ns�kÞ and obtain
explicitly

�Z d3q

ð2�Þ3
�
Ns

fðqÞ ¼ ð�kÞ3
2�2

�
N2

s

2
fN�1 þ

XNs�2

q¼0

ðqþ 1Þ2fq
�
:

(116)

B. Increasing the rate of convergence
of sum integrals

In this section we take advantage of the fact that the
asymptotic behavior of the propagator �GðQÞ is exactly
given by 1=Q2 in order to accelerate the convergence of
the discretized sum integrals towards their exact result.

In order to illustrate the method we consider the tadpole
sum integral T ½ �G� first. The most straightforward way to
compute the latter would be as

T ½ �G� ’ V N�;Ns
½ �G�: (117)

The error that one should expect from this type of approxi-
mation is studied in detail in Appendix C. It is shown in
particular that the error related to the finite number of
Matsubara frequencies is directly connected with the rate
at which the summand �GðQÞ ¼ �Gði!n; qÞ approaches zero
at large n. Then, if in one way or another we are able to
reorganize the evaluation of T ½ �G� in terms of sum inte-
grals involving summands which decrease faster than �GðQÞ
at large n, we will certainly reduce the error. Consider then
the identity

T ½ �G� ¼ ½T ½ �G� �T ½G?�� þT ½G?�
¼

Z T

Q
� �GðQÞ þT ½G?�: (118)

The second term T ½G?� involves the free-type propagator
G? and the corresponding sum can be computed almost
exactly25; see Appendix B. The first term involves
a Matsubara sum whose summand � �GðQÞ ¼ �GðQÞ �
G?ðQÞ decreases faster than �GðQÞ at large n. Then, if we
approximate the tadpole sum integral T ½ �G� by

T ½ �G� ’ V N�;Ns
½� �G� þT ½G?�; (119)

we obtain an evaluation of T ½ �G� which is more accurate
than (117) for the same number of Matsubara frequencies.
The same strategy can be applied to the bubble sum

integral. We can of course use the straightforward
approximation

B ½ �G�ðKÞ ’ CN�;Ns
½ �G; �G�ðKÞ: (120)

25The Matsubara sum can be performed analytically and the
momentum integral can be computed numerically using accurate
adaptive integration routines.
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But we can instead reorganize the calculation of B½ �G�ðKÞ first, according to

B ½ �G�ðKÞ ¼ ½B½ �G�ðKÞ �B½G?�ðKÞ� þB½G?�ðKÞ ¼
Z T

Q
½ �GðQÞ �GðK �QÞ �G?ðQÞG?ðK �QÞ� þB½G?�ðKÞ

¼
Z T

Q
G?ðQÞ� �GðK �QÞ þ

Z T

Q
� �GðQÞ �GðK �QÞ þB½G?�ðKÞ

¼
Z T

Q
½G?ðQÞ þ �GðQÞ�� �GðK �QÞ þB½G?�ðKÞ; (121)

where we have used �GðQÞ ¼ G?ðQÞ þ � �GðQÞ as well as
the change of variablesQ ! K �Q. The benefit of the last
expression is that it involves a contribution B½G?�ðKÞ
which can be determine almost exactly, see Appendix B,
and a contribution in the form of a convolution with an
integrand which decreases faster in the UV than the origi-
nal integrand. Our final approximation for the bubble sum
integral is then

B ½ �G�ðKÞ ’ CN�;Ns
½G? þ �G;� �G� þB½G?�ðKÞ: (122)

This is a better approximation than (120) for the same
number of Matsubara frequencies.

Finally, consider the setting-sun sum integral S½ �G� ¼R
T
Q

�GðQÞB½ �G�ðQÞ. The straightforward approximation

would be

S ½ �G� ’ V N�;Ns
½ �GCN�;Ns

½ �G; �G��: (123)

Instead, we write

S ½ �G� ¼
Z T

Q

�GðQÞ½B½ �G�ðQÞ �B½G?�ðQÞ�

þ
Z T

Q

�GðQÞB½G?�ðQÞ

¼
Z T

Q

�GðQÞ½B½ �G�ðQÞ �B½G?�ðQÞ�

þ
Z T

Q
� �GðQÞB½G?�ðQÞ þ S½G?�: (124)

The first term involves a summand which decreases faster
than the original one �GðQÞB½ �G�ðQÞ. Moreover, the inner
sum (and the corresponding momentum integral) appears
as a convolution [see Eq. (121)] and can thus be treated
efficiently using fast Fourier transform algorithms. In the
second term, the summand decreases again faster than the
original summand and it contains a factorB½G?�ðQÞwhich
can be determined almost exactly. Finally, the last term
S½G?� can be determined almost exactly; see Appendix B.
Our approximation for the setting-sun sum integral will
then be

S ½ �G� ’ V N�;Ns
½ �GCN�;Ns

½G? þ �G;� �G��
þV N�;Ns

½� �GB½G?�� þ S½G?�: (125)

C. Optimized equations and bare parameters

We now use the optimizations of the previous section to
rewrite the gap and field equations as well as the effective
potential and its curvature at � ¼ 0 in a form which is
ready for numerical implementation. The first equation to
be solved is the gap equation which reads

�M2ðKÞ ¼ m2
? þ �2l

2
�2 þ �0

2
V N�;Ns

½� �G�

þ �0

2
½T ½G?� �T ?½G?��

� �2
?

2
�2CN�;Ns

½G? þ �G;� �G�ðKÞ

� �2
?

2
�2½B½G?�ðKÞ �B?½G?�ð0Þ�; (126)

where we have used the expressions for ��2nl and m2
0.

The other bare parameters relevant for the gap equation
are computed as

1

�0

¼ 1

�?

� 1

2
V N�;Ns

½G2
?� (127)

and

�2l ¼ �0

�
1� �2

?

2
V N�;Ns

½G2
?ðQ?Þ½B?½G?�ðQ?Þ

�B?½G?�ð0Þ��
�
: (128)

Note that we could compute these bare parameters almost
exactly as well. However, the proof of renormalization of
Sec. VI reveals that these parameters absorb divergences in
V N�;Ns

½� �G�. It is thus natural to compute �0 and the outer

sum integral of �2l with the same N� and Ns. In contrast,
the inner sum integral of �2l is computed almost exactly
for it has to do with the last term of Eq. (126) which is
determined almost exactly. The gap equation can be
coupled to the field equation in order to determine the
extrema of the effective potential. In the presence of an
external source h, the discretized and optimized form of
the field equation reads
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h ¼ ��

�
m2

? þ �4

6
��2 þ �2

2
V N�;Ns

½� �G� þ �2

2
½T ½G?�

�T ?½G?�� � �2
?

6
½V N�;Ns

½ �GCN�;Ns
½G? þ �G;� �G��

þV N�;Ns
½� �GB½G?��� � �2

?

6
½S½G?� � S?½G?��

�
;

(129)

where �2 is evaluated as �2 ¼ �2l þ 2�?ð1� �?=�0Þ and
the bare coupling �4 is computed as

�4 ¼ �2�? þ 3
�2
2l

�0

þ 3

2
�4
?V N�;Ns

½G2
?ðQ?Þ½B?½G?�ðQ?Þ

�B?½G?�ð0Þ�2�: (130)

Here, again, the appearance of the difference of bubbles is
due to the almost exactly determined last term of Eq. (126)
[see the steps leading from Eqs. (154) to (157)]; therefore,
it is natural to perform these integrals almost exactly in the
expression of �4, too.

The discretized effective potential reads

��ð�Þ¼�h���4

4!
�4þ1

2
�
��

��

þ 1

2�2

Z �

0
dqq2½T lnð1�e��?q=TÞ

�T? lnð1�e��?q=T?Þ�þ1

2
V N�;Ns

½ln �G�1� lnG�1
?

�ð �M2�m2
?Þ �G�þ�0

8
½V N�;Ns

½� �G�
þ½T ½G?��T ?½G?���2; (131)

with �?q ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

?

p
. The derivative ��=�� of the effec-

tive potential in the formula above stands for an expression
similar to the right-hand side of Eq. (129), but with ��
replaced by �, while the coupling �0 and �4 are computed
as in Eqs. (127) and (130), respectively.

Finally, the discretized form of the curvature at vanish-
ing field is given by

M̂2
�¼0¼m2

?þ�2

2
V N�;Ns

½� �G�¼0�þ�2

2
½T ½G?��T ?½G?��

��2
?

6
½V N�;Ns

½ �G�¼0CN�;Ns
½G?þ �G�¼0;� �G�¼0��

þV N�;Ns
½� �G�¼0B½G?�����2

?

6
½S½G?��S?½G?��;

(132)

where �G�¼0ðQÞ ¼ 1=ðQ2 þ �M2
�¼0Þ, with �M2

�¼0 obtained

from

�M2
�¼0¼m2

?þ�0

2
V N�;Ns

½� �G�¼0�þ�0

2
½T ½G?��T ?½G?��:

(133)

D. On the iterative solution of the equations

The solution of the gap equation (126) at fixed value of
the field, as well as the solution of the coupled set of gap
and field equations (126) and (129) are obtained using
iterations. We illustrate now this iterative procedure in
the case of the solution of the field equation at vanishing
external field h and comment on the convergence of the
algorithm at different values of the coupling constant.
First, we determine the bare couplings �0, �2l, and �4

given in Eqs. (127), (128), and (130), and evaluate those
perturbative integrals in the gap and field equations which
are defined at temperature T?. In case of �0, the conver-
gence of the Matsubara sum is improved as described in
Appendix C [see Eq. (C12)]. The explicit expressions of
the integrals evaluated using the adaptive numerical inte-
gration routines of the GNU Scientific Library (GSL) [41]
are given in Appendix B. The quantities determined in this
way will not change during the iterative process which,
after the initialization of the propagator �G with G?, con-
sists of the following two steps:
(1) In Eq. (129) the double sums and the perturbative

integrals defined at temperature T are computed
with the actual propagator �Gði!n; kÞ. If the sum of
��-independent terms in the curly brackets is nega-
tive, then �� � 0 is expressed by equating the
expression between curly brackets with zero; if the
sum is positive, then the trivial solution �� ¼ 0 is
considered.

(2) Using the value of �� obtained in Step (1), �M2ði!n; kÞ
is determined from Eq. (126), by evaluating the
double sums and the integrals with the actual propa-
gator �G, then the propagator is updated with

�G updateði!n; kÞ ¼ ð!2
n þ k2 þ �M2ði!n; kÞÞ�1:

(134)

These two steps are iterated until the procedure converges
to the desired accuracy. We monitored the value of the
propagator at the lowest available frequency and momen-

tum and stopped the iteration when both j �GðiÞð0;�kÞ �
�Gðiþ1Þð0;�kÞj= �Gðiþ1Þð0;�kÞ< 10�8 and j ��ðiÞ � ��ðiþ1Þj=
��ðiþ1Þ < 10�8 were satisfied. When this algorithm is
used to determine ��ðTÞ by changing the temperature,
then the iteration starts with the converged propagator
obtained at the previous value of the temperature. In
some cases, like the determination of the critical exponent
�, one has to work with nonvanishing external source h.
In this case �� is obtained in step 1. by solving a cubic
equation in the field.
This simple iterative procedure fails to converge for

large enough �?ð�9Þ, because the corrections are too large
at each iteration. In this case somehow, the first iterative
step bring us out of the attraction domain of the solution, if
such a domain exists at all. This mostly happens when
solving the gap equation at fixed value of the field. When
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both the gap and field equations are solved iteratively, the
procedure eventually converges for even larger couplings,
but the number of iterations increases with the value of the
coupling. In order to increase the speed of convergence or
to achieve convergence at all, one follows the procedure
used in Ref. [27] and modifies the value of the updated
propagator with a weighted average between the old value
of the propagator and the iterated value. In this case, in the
(iþ 1)th iteration the following updating method is used:

�Gðiþ1Þ
updateði!n; kÞ ¼ 
½!2

n þ k2 þ �M2ði!n; kÞðiþ1Þ��1

þ ð1� 
ÞGðiÞði!n; kÞ; (135)

where 
 2 ð0; 1� and �M2ði!; kÞðiþ1Þ is calculated withGðiÞ.
For large values of the coupling, �? 	 9, one needs 
< 1
to achieve convergence at m2

?=T
2
? ¼ 0:04 and T? ¼ 1. For

small couplings, 
 ¼ 1 ensures the fastest convergence,
and in an intermediate range, 7:5< �? < 9, the use of

 � 1 increases the speed of convergence.

E. Cutoff convergence, discretization effects,
and the role of improvements

From the proof of renormalizability given in Sec. VI, we
know that our results should become insensitive to the
cutoff when the latter is taken large. However, since the
proof is based on certain arguments that we can only verify
using some perturbative estimates, it is interesting to check
the cutoff insensitivity numerically, within a given accu-
racy. To do so, we have to pay particular attention to the
discretization because we have to ensure that the latter
does not distort the physics neither in the ultraviolet nor
in the infrared regime. This means that as we increase the
cutoff we need a good resolution in momentum space, that
is small lattice spacing �k, and also enough Matsubara
modes taken into account. This represents a challenge for
the judicious use of the available memory. Note that the
implementation of the numerical improvements described
above helps in this respect for the same accuracy can be
achieved with less discretization points. For the same
number of discretization points, the improved code is
more computer time demanding because it involves the
accurate numerical evaluation of perturbative integrals.
However, in order to reach the same level of accuracy,
the nonimproved code needs to be run with a finer
discretization, which requires an increased computer time
as well.

In what follows we shall illustrate on some physical
quantities the effect of the discretization related to the
use of the fast Fourier transforms to compute the convolu-
tion sum integrals, the extended trapezoidal rule for the
momentum integrals and the finite number of Matsubara
frequencies. After showing that these discretization effects
are under control, we will show also that the quantities of
interest calculated with our best algorithm converge with
increasing cutoff.

1. Discretization errors due to the use of FFT

The discretization errors related to the use of the fast
Fourier transformation can be easily illustrated with the
help of the exact 3D convolution

Z d3q

ð2�Þ3 GðqÞGðp� qÞ ¼ 1

4�p
arctan

�
p

2M

�
; (136)

where GðpÞ ¼ 1=ðp2 þM2Þ. This simple example is also
relevant for our four-dimensional study because it corre-
sponds to the contribution of the static mode at finite
temperature. Even though the integral in Eq. (136) is
convergent, it will be interesting to calculate it using
the same regulator as the one used in the four dimen-
sional case. Using similar techniques as in Appendix B,
we arrive at

C�½G�ðpÞ ¼
Z

jqj<�
jp�qj<�

GðqÞGðp�qÞ

¼ 1

8�2p

Z �

0
dkkGðkÞ ln

�
min2ðkþp;�ÞþM2

ðp� kÞ2 þM2

�
;

(137)

which can be evaluated accurately using adaptive integra-
tion routines.
We can use the two results (136) and (137) to benchmark

our method for evaluating convolution integrals and also to
test how the continuum limit is approached. The different
ways of computing the 3D bubble integral are plotted in
Fig. 12. Note first that the bubble integral C�½G� in the
presence of a cutoff deviates from the continuum result
already for values of the momentum much below the cut-
off: at p ¼ �=10 the deviation is already of 5%. The result
of a naive convolution on the momentum interval ½0;��
using discrete sine transforms stays close to C�½G� up to
p ’ �=2 (interestingly, it is closer to the continuum result
for larger values of the momenta but this is a numerical
artifact whose sign cannot be controlled in general).
Instead, if we use the improved formula Eq. (122) (in three
dimensions), we can reproduce C�½G�ðpÞ on the whole
range of available momenta, up to p ¼ �. This is related
to the fact that, in the improved formula (122), one of
the functions to be convolved decreases faster in the UV
than in the original convolution: �GðqÞ � 1=q4 instead of
GðqÞ � 1=q2. The overall picture remains the same when
the cutoff is increased.

2. Discretization errors due to the use of a
finite number of Matsubara modes

In Fig. 4, the temperature Tc for which the curvature at
� ¼ 0 vanishes, was determined for different values of the
cutoff, by evaluating some perturbative integrals accu-
rately (after the Matsubara sums were performed exactly,
the remaining integrals were performed using adaptive
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integration routines). We can use these values as a bench-
mark to test the accuracy of Tc obtained using the discre-
tized version of its defining equation and to illustrate the
effect of the improvements on the numerical procedure.
Here we focus on the discretization effects related to the
use of a finite number of Matsubara sums using different
levels of improvements.

The unimproved code avoids the use of any adaptive
numerical integration and uses instead the most straight-
forward discretization for the quantities appearing in the

expression (64) of the curvature. The convolution is eval-
uated using fast Fourier transforms with the formula (114)
and all the local sum integrals are approximated with a
double sum: a sum over a finite number of Matsubara
frequencies and a summation over a finite number of the
modulus of the momentum, using the extended trapezoidal
formula according to Eqs. (115) and (116). The momentum
dependent bubble integral appearing in the setting-sun
integral (123) and the expressions (128) and (130) for the
bare couplings �2l and �4 are evaluated as a convolution,
cf. Eq. (120). The difference in the partially improved code
is that it uses an accelerated Matsubara sum in the tadpole
integral and in the bubble integral with zero external
momentum appearing both in the expression of the bare
parameters and in that of the curvature itself [see
Eqs. (C11) and (C12)]. The fully improved code uses the
type of improvement done in the partially improved case
cf. (C12) only in the sum integral appearing in the expres-
sion (127) of the bare coupling �0, but, as a major improve-
ment, it uses the subtraction procedure described in Sec. V.
The results for Tc obtained within these three levels of

discretization are shown in Fig. 13. In the plot on the left
the result of the fully improved code (points) shows very
good agreement with the accurate result of Fig. 4 (line).
As shown in the inset, the test of the convergence of Tc

to the continuum result requires the increase of Ns as the
cutoff is increased. The discrepancy between the points and
the cutoff result Tcð�Þ is mainly due to the evaluation of
the convolution integral with Fourier techniques. Although
barely visible in the inset, this discrepancy decreases with
increasing values of the cutoff and Ns. The scaling used

FIG. 12 (color online). Evaluation of the perturbative bubble
integral in 3D using different methods (see the text for more
explanations). The mass parameters are M2 ¼ 0:01 and m2

? ¼ 1
and the cutoff used was � ¼ 500 in some arbitrary units. For the
FFT, we used Ns ¼ 15� 210 modulus of the momenta.
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FIG. 13 (color online). Illustration of the effects of the improvements. We compare Tc determined numerically from the defining
Eq. (74) at parameters m2

?=T
2
? ¼ 0:04 and �? ¼ 3 using fully improved, partially improved, and unimproved codes (see the text for

explanations). Left panel: The solution obtained with the fully improved code and with curvature M̂2
�¼0 determined from the

discretized expression (132) (points) is compared to the solution obtained by evaluating the perturbative integrals in the expression of
the curvature given in the right hand side of Eq. (78) using adaptive routines (solid line). Right panel: Dependence of Tc on the number
N� of Matsubara frequencies used to evaluate the sum-integrals in the expression (64) for M̂2

�¼0 in case of the completely unimproved

code and of the partially improved code with �=T? ¼ 100 and Ns ¼ 3� 210 (inset). In case of the unimproved code, an asymptotic
value of Tc can be extracted with a fit, as shown by the line.
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in the left axis makes possible a direct comparison of
this figure to Fig. 2 of Ref. [32], where the same quantity
was obtained by solving the model within the same 2PI
approximation, but in Minkowski space. Note that in that

reference Tc (denoted there as T̂c) slightly increases with
the cutoff. This is not a shortcoming of the renormalization
procedure, because here we have applied exactly the same
method which leads to the same relations between the bare
and renormalized quantities, rather it is probably a discre-
tization artifact of the numerical method used in Ref. [32].

The plot on the right of Fig. 13 shows Tc obtained with
the unimproved and partially improved codes (inset). The
result of the partially improved code are acceptable if N�

is increased by a factor of 5 compared to that obtained with
the fully improved code. The values given by the unim-
proved code are far away from the true ones, even for huge
values of N�. However, due to the decrease of the results
with N�, an acceptable asymptotic value for Tc can be
extracted through a fit.

The comparison presented in Fig. 13 shows that the
acceleration of Matsubara sums discussed in Appendix C
is an important ingredient of the numerical method used to
obtain accurate results.

3. Discretization errors due to the use
of the trapezoidal rule

The effect of the discretization related to the use of the
trapezoidal rule to perform local type integrals can be
easily seen by comparing the values of �0 and �2 evaluated
accurately using adaptive numerical integration, with those
obtained for a given discretization, that is for fixed values
of Ns and N�. The comparison is shown in Fig. 2. Since
the acceleration of the Matsubara sum given in Eq. (C12)
is implemented in the expression of �0, N� does not play
practically any role, and thus the comparison tell us up to
which value of � the discretization in momentum space
is acceptable. Based on this figure we concluded that
Ns ¼ 3� 210 is enough for �=T? ¼ 100, but for �=T? ¼
500 it is not sufficient to obtain accurate results.

A second example where one can see clearly the effect
of the discretization of the momentum integrals is the
variation of V�¼0 and �V�¼0 with the temperature from

T? down to �Tc, as shown in Fig. 3. There we compared the
values obtained using the fully improved code with those
obtained by evaluating the perturbative integrals adap-
tively. We saw that in order to be able to obtain for a given
discretization the temperature dependence of V�¼0 and
�V�¼0 with Fourier techniques, one has to decrease the

value of � as one approaches �Tc, because as a rule of
thumb a good description requires to have the lattice spac-
ing in momentum space smaller than the propagator mass,
that is �k ¼ �=Ns < �M�¼0.

As a third example, if one tries to determine �Tc from the
discretized version of its defining equation in the fully
improved case

m2
? þ �0

2
V N�;Ns

½� �G0� þ �0

2
½T ½G?� �T ?½G?�� ¼ 0;

(138)

where �G0 ¼ �G0 �G?, with the massless propagator
G0ðQÞ ¼ 1=Q2, one runs into difficulties related to the
fact that one cannot resolve the infrared behavior of the
double-sum, which would require a momentum lattice
spacing smaller than the mass scale. The best one can do
here is to fix the value of the cutoff and increase Ns, that is
determine �Tc for smaller and smaller values of the lattice
spacing in momentum space �k ¼ �=Ns. The value of N�

does not play a big role here, as we have tested by using
N� ¼ 210 and N� ¼ 2� 210. As shown in Fig. 14, �Tc

decreases as 1=Ns. This allows to determine quite accu-
rately through a fit the critical temperature, even from the
discretized version of the defining equation.
The variation with the temperature of the order parame-

ter and of the first bin of the self-energy obtained with the
fully improved code shows (see Fig. 6) that the discretiza-
tion effects are under control in the fully improved code for
fixed value of the cutoff. In Fig. 15 we show the cutoff
dependence of the order parameter and the self-energy at
different values of momenta at a given temperature. The
quantities seems to converge as 1=�, and practically one
could regard them as cutoff insensitive, to a good accuracy.
As already mentioned, a good description of the results at
large cutoff values requires huge values of Ns. Moreover,
in order to see the scaling behavior with �, N� had to be
increased for large values of the cutoff (�=T? > 200) as
well. This is because the error made by cutting the
Matsubara sums depends on �. In the case of the unsub-
tracted tadpole for instance, the error is ��3=N�T; see
Appendix C. Increasing � without increasing N� would
produce a cubic divergence which is not the correct UV
behavior of the unsubtracted tadpole.

FIG. 14 (color online). �Tc obtained from solving Eq. (138) as a
function of Ns at two different values of �. The curve with the
smaller �=Ns converges faster.
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All these tests convincingly show that the subtraction
method described in detail in Sec. V accelerates the
Matsubara sums and renders more efficient the evalua-
tion of convolutions using fast Fourier transformations.
Therefore, it represents a reliable numerical method
capable of providing accurate results.

VI. PROOF OF RENORMALIZABILITY

In this section, we show that the gap and field equations,
and the effective potential, are rendered finite by the bare
parameters given in Eqs. (45)–(47), (50), (52), and (58).
This result is nontrivial because the bare parameters do not
depend on T or �, whereas the gap and field equations, or
the effective potential, do. The proof is also the opportunity
to illustrate some useful techniques which allow to discuss
the ultraviolet behavior of Matsubara sum integrals.

A. Renormalization of the gap equation

We discuss the renormalization of the gap equation first.
Using the expression (45) for m2

0, the gap equation (35)

becomes

�M 2ðKÞ ¼ m2
? þ �2

2
�2 þ �0

2
½T ½ �G� �T ?½G?��

� �2
?

2
�2B½ �G�ðKÞ: (139)

To proceed, it is convenient to decompose the momentum
dependent mass �M2ðKÞ into a local and a nonlocal part, that
is �M2ðKÞ ¼ �M2

l þ �M2
nlðKÞ with

�M 2
l � m2

? þ �2l

2
�2 þ �0

2
½T ½ �G� �T ?½G?�� (140)

and

�M 2
nlðKÞ � ��2

?

2
�2½B½ �G�ðKÞ �B?½G?�ð0Þ�; (141)

where we have used the decomposition �2 ¼ �2l þ ��2nl

and the expression (50) for ��2nl. Let us now discuss the
local and nonlocal parts separately and show that they are
both convergent. Using the results of Appendix A, the
difference of tadpole sum integrals appearing in �M2

l can

be written as

T ½ �G� �T ?½G?� ¼
Z T?

Q?

� �GðQ?Þ þ
Z

~Q
��ð ~QÞ; (142)

where � �GðQ?Þ � �GðQ?Þ �G?ðQ?Þ. Here �GðQ?Þ is the
analytic continuation of the Matsubara propagator �GðQÞ
to Matsubara frequencies at temperature T?, whereas
�GðQÞ is originally defined for Matsubara frequencies at
temperature T. The second integral is a Minkowski-type

integral over ~Q � ðq0; qÞ with ��ð ~QÞ � �ðq0; qÞ"ðq0Þ�
ðnjq0j � n?jq0jÞ and �ðq0; qÞ the spectral density which enters
the spectral representation (A2) of �GðQÞ. As explained in
Appendix A, this formula is useful to discuss the ultra-
violet behavior of T ½ �G� �T ?½G?�. Indeed, if we write

� �GðQ?Þ ¼ �ð �M2ðQ?Þ �m2
?ÞG2

?ðQ?Þ þ �GrðQ?Þ; (143)

with �GrðQ?Þ � ð �M2ðQ?Þ �m2
?Þ2G2

?ðQ?Þ �GðQ?Þ, we obtain

T ½ �G� �T ?½G?� ¼ �
Z T?

Q?

ð �M2ðQ?Þ �m2
?ÞG2

?ðQ?Þ

þ
Z T?

Q?

�GrðQ?Þ þ
Z

~Q
��ð ~QÞ; (144)

where the first term is the only one that can generate
divergences in the gap equation. The second term is a
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FIG. 15 (color online). Cutoff dependence of the solution to the coupled set of gap and field Eqs. (126) and (129) at T=T? ¼ 0:8
(points), scaled by the corresponding asymptotic value at � ! 1 obtained by fitting ��1 þ c=� and �M21ðk; !Þ þ ck;!=� (lines)

to the corresponding set of points. The convergence of �M2ðk;!Þ is slower for higher momenta (right panel). The parameters are
m2

?=T
2
? ¼ 0:04, �? ¼ 3. The discretization is characterized by �k ¼ �=Ns kept fixed at the value 10=210 and N� ¼ 512, with the

exceptions of the points at �=T? > 200, for which, in order to achieve accurate results, N� was increased by a factor of 2.
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sum integral at temperature T? whose integrand �GrðQ?Þ
decreases fast enough at large Q?; see Appendix A.
Moreover, the third term is convergent due to the presence

of ��ð ~QÞ; see Appendix A. Note that the quantity �M2ðQ?Þ
which appears in the decomposition (144) needs to
be regarded as the analytic continuation of �M2ðQÞ to
Matsubara frequencies at temperature T?. Plugging
this decomposition into the expression (140) for �M2

l , we

arrive at

�M2
l ¼ m2

? � �0

2
ð �M2

l �m2
?Þ
Z T?

Q?

G2
?ðQ?Þ

þ �0

2

�Z T?

Q?

�GrðQ?Þ þ
Z

~Q
��ð ~QÞ

�

þ �2l

2
�2 � �0

2

Z T?

Q?

�M2
nlðQ?ÞG2

?ðQ?Þ; (145)

where we have used the separation of �M2ðQ?Þ into a local
and a nonlocal part. The first line is very similar to what
appears when one considers the Hartree approximation
and can be treated along the same lines: dividing the
equation by �0, gathering the contributions proportional
to �M2

l �m2
?, using Eq. (47) and multiplying back the

equation by �?, we obtain

�M2
l ¼ m2

? þ �?

2

�Z T?

Q?

�GrðQ?Þ þ
Z

~Q
��ð ~QÞ

�

þ �?

2

�
�2l

�0

�2 �
Z T?

Q?

�M2
nlðQ?ÞG2

?ðQ?Þ
�
: (146)

The first line is finite for both integrals are convergent, but
the integral in the second line is still divergent. In order
to treat this last integral, we need to discuss the nonlocal
part �M2

nlðQÞ first and then its analytic continuation �M2
nlðQ?Þ

to Matsubara frequencies at temperature T?. According to
Eq. (141), the nonlocal part �M2

nlðQÞ involves a difference of
bubble sum integrals which is shown to be convergent in
Appendix A. In this Appendix, we also derive the formula:

B½ �G�ðK?Þ �B?½G?�ðL?Þ
¼

Z T?

Q?

G?ðQ?Þ½G?ðQ? þ K?Þ �G?ðQ? þ L?Þ�

þ
Z T?

Q?

� �GðQ?Þ½2G?ðQ? þ K?Þ þ � �GðQ? þ K?Þ�

þ 2
Z

~Q
��ð ~QÞ �Gð ~Qþ K?Þ; (147)

which we use not only to show that �M2
nlðK?Þ converges

but also that it grows logarithmically at large K?, this
logarithmic behavior being completely accounted for by
the first term of Eq. (147) with L? ¼ 0. But it is precisely
this contribution which generates the remaining divergence
in Eq. (146). This divergence is then T independent and

proportional to �2, as it should if it is to be absorbed
by �2l. In fact, after plugging Eq. (147) with L? ¼ 0 into
Eq. (146), we obtain

�M2
l ¼ m2

? þ �?

2

�Z T?

Q?

�GrðQ?Þ þ
Z

~Q
��ð ~QÞ

�

þ �?

2
�2

�
�2l

�0

þ �2
?

2

Z T?

Q?

G2
?ðQ?Þ½B?½G?�ðQ?Þ

�B?½G?�ð0Þ�
�
þ �2

?

4
�3

Z T?

Q?

G2
?ðQ?Þ

�
�Z T?

R?

� �GðR?Þ½2G?ðR? þQ?Þ þ � �GðR? þQ?Þ�

þ 2
Z

~R
��ð ~RÞ �Gð ~RþQ?Þ

�
; (148)

where the only divergent contribution, that is the sum
integral in the second bracket, combines with �2l=�0 to
yield 1, according to Eq. (52). This completes the proof of
renormalization of the gap equation.

B. Renormalization of the field equation

In order to prove that the field equation is renormalized
by the bare parameters m2, �2, and �4, we prove a stronger
result first, namely, that the first derivative of the effective
potential

��

��
¼ �

�
m2

2 þ
�4

6
�2 þ �2

2
T ½ �G� � �2

?

6
S½ �G�

�
; (149)

can be put in an explicitly renormalized form. Using the
expression (46) for m2

2, we obtain

��

��
¼ �

�
m2

? þ �4

6
�2 þ �2

2
½T ½ �G� �T ?½G?��

� �2
?

6
½S½ �G� � S?½G?��

�
: (150)

In Appendix A, we show that Eq. [see (A25)]

S½ �G� � S?½G?�
¼ 3

Z T?

Q?

� �GðQ?ÞB?½G?�ðQ?Þ

þ 3
Z

~Q
��ð ~QÞBR

?½G?�ð ~QÞ þ �fS; (151)

where � �GðQ?Þ and ��ð ~QÞ have been defined in the

previous section, BR
?½G?�ð ~QÞ is the retarded bubble con-

tribution, obtained from B?½G?�ðQ?Þ after analytic con-
tinuation and �fS is a convergent quantity. From this
decomposition, used together with �2 ¼ �2l þ �2nl and
Eq. (142), it follows that
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��

��
¼ �

�
m2

? � �2
?

6
�fS þ �4

6
�2

þ 1

2

Z T?

Q?

� �GðQ?Þ�?ðQ?Þ þ 1

2

Z
~Q
��ð ~QÞ�R

?ð ~QÞ
�
;

(152)

where �?ðQ?Þ was defined in Eq. (54) and �R
?ð ~QÞ is the

corresponding retarded contribution. It is natural to replace
�?ðQ?Þ by V?ðQ?Þ because V?ðQ?Þ is renormalized, as it

is clear from Eq. (55). Similarly, it is convenient to replace

�R
?ð ~QÞ by VR

? ð ~QÞ. From the definition of V�¼0 in Eq. (18),

we can write

V?ðQ?Þ ��?ðQ?Þ ¼ VR
? ð ~QÞ ��R

?ð ~QÞ

¼ ��0

2

Z T?

Q?

G2
?ðQ?ÞV?ðQ?Þ: (153)

Plugging these formulas into Eq. (152), we obtain

��

��
¼ �

�
m2

? � �2
?

6
�fS þ �4

6
�2 þ 1

2

Z T?

Q?

� �GðQ?ÞV?ðQ?Þ

þ 1

2

Z
~Q
��ð ~QÞVR

? ð ~QÞ þ �0

4

�Z T?

R?

� �GðR?Þ þ
Z

~R
��ð ~RÞ

�Z T?

Q?

G2
?ðQ?ÞV?ðQ?Þ

�
: (154)

Using Eq. (142) in the last term of this equation, we recognize T ½ �G� �T ?½G?� which we can rewrite using the gap
equation (139), analytically continued from K to Q?, as

�0

2

�Z T?

R?

� �GðR?Þ þ
Z

~R
��ð ~RÞ

�
¼ �0

2
½T ½ �G� �T ?½G?�� ¼ �M2ðQ?Þ �m2

? ��2

2
½�2 � �2

?B½ �G�ðQ?Þ�: (155)

The right-hand side does not really depend on Q? and can therefore be brought under the integral sign in the last line of
Eq. (154). We obtain then

��

��
¼ �

�
m2

? � �2
?

6
�fS þ 1

2

Z T?

Q?

�GrðQ?ÞV?ðQ?Þ þ 1

2

Z
~Q
��ð ~QÞVR

? ð ~QÞ

þ�2

6

�
�4 � 3

2

Z T?

Q?

½�2 � �2
?B½ �G�ðQ?Þ�G2

?ðQ?ÞV?ðQ?Þ
��

; (156)

where we have used that � �GðQ?Þ þ ð �M2ðQ?Þ �m2
?ÞG2

?ðQ?Þ ¼ �GrðQ?Þ. Using Eq. (147) with K? ¼ L? ¼ Q? and
Eq. (54), we arrive finally at

��

��
¼ �

�
m2

? � �2
?

6
�fS þ 1

2

Z T?

Q?

�GrðQ?ÞV?ðQ?Þ þ 1

2

Z
~Q
��ð ~QÞVR

? ð ~QÞ þ�2

6

�
�4 � 3

2

Z T?

Q?

�?ðQ?ÞG2
?ðQ?ÞV?ðQ?Þ

�

þ �2
?

4
�2

Z T?

Q?

V?ðQ?ÞG2
?ðQ?Þ

�Z T?

R?

� �GðR?Þ½2G?ðR? þQ?Þ þ � �GðR? þQ?Þ� þ 2
Z

~R
��ð ~RÞ �Gð ~RþQ?Þ

��
:

(157)

According to Eq. (53), the only integral which is still not
convergent, that is the last sum integral in the first line of
Eq. (157), combines with �4 to yield the renormalized
result �?. This completes the proof of renormalization of
the first derivative of the effective potential and in turn of
the field equation.

C. Renormalization of the subtracted
effective potential

Let us first give a simple argument valid as long as
T > �Tc, which includes the symmetric phase and part of
the broken phase since �Tc � Tc, as discussed in Sec. IV.
In this range of temperatures the subtracted potential
��ð�Þ is defined down to � ¼ 0 and we can thus write

��ð�Þ ¼ ��ð0Þ þ
Z �

0
d ~�

��

� ~�
: (158)

The second term in the right-hand side of this equation is
convergent from the discussion of the previous subsection.
The first term is the contribution to��ð�Þ at vanishing field
which coincides with that in the Hartree approximation and
which is easily renormalized; see for instance Ref. [9].
A more direct argument, which is valid both in the

symmetric and in the broken phase,26 closely follows the
derivation used for the field equation. From Eq. (155), we
obtain

26Of course the potential is defined only for those values of the
field where the gap equation admits a solution.
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�0

8
½T ½ �G� �T ?½ �G?��2 ¼ 1

4

�Z T?

Q?

� �GðQ?Þ þ
Z

~Q
��ð ~QÞ

�
�0

2
½T ½ �G� �T ?½G?��

¼ 1

4

Z T?

Q?

� �GðQ?Þ
�
�M2ðQ?Þ �m2

? ��2

2
½�2 � �2

?B½ �G�ðQ?Þ�
�

þ 1

4

Z
~Q
��ð ~QÞ

�
�M2
Rð ~QÞ �m2

? ��2

2
½�2 � �2

?BR½ �G�ð ~QÞ�
�
; (159)

where �M2
Rð ~QÞ and BR½ �G�ð ~QÞ are retarded functions obtained after analytical continuation. Using the equation above

together with Eq. (147) with K? ¼ L? ¼ Q? and its analytical continuation in the subtracted effective potential (61), one
obtains

��ð�Þ ¼ �0ðm?;�Þ � �?
0 ðm?;�Þ þ 1

2

Z T

Q
½ln½1þ ��ðQÞG?ðQÞ� � ��ðQÞ �GðQÞ� þ 1

4

Z T?

Q?

� �GðQ?Þ ��ðQ?Þ

��2

4

�
�4

6
�2 þ 1

2

Z T?

Q?

� �GðQ?Þ�?ðQ?Þ þ 1

2

Z
~Q
��ð ~QÞ�R

?ð ~QÞ
�
þ 1

2
�

��

��
þ 1

4

Z
~Q
��ð ~QÞ ��Rð ~QÞ

��2

8

�Z T?

Q?

� �GðQ?Þ½B½ �G�ðQ?Þ �B?½G?�ðQ?Þ� þ
Z

~Q
��ð ~QÞ½BR½ �G�ð ~QÞ �BR

?½G?�ð ~QÞ�
�
; (160)

where we introduced the shorthand notation ��ðQÞ ¼
�M2ðQÞ �m2

?. In the square brackets the first integral is
finite because the difference of bubble sum integrals de-
creases at least as 1=Q?, while the second integral appears
in the finite part of Eq. (A25). The combination in the
round bracket is finite because it appeared in Eq. (152),
which was proven finite. It remains to prove that the sum
of the first two integrals is finite. To this purpose, note that
since the divergences of these two integrals are overall
divergences [this has to do with the fact that ��ðQÞ grows
at most logarithmically at large Q], they do not depend on
the temperature. Moreover, since

1

2
½ln½1þ ��ðQÞG?ðQÞ� � ��ðQÞ �GðQÞ�

¼ 1

4
��2ðQÞG2

?ðQÞ þOð ��3ðQÞG3
?ðQÞÞ (161)

and

1

4
� �GðQ?Þ ��ðQ?Þ ¼ � 1

4
��2ðQ?ÞG2

?ðQ?Þ

þOð ��3ðQ?ÞG3
?ðQ?ÞÞ; (162)

the two divergences are opposite to each other and thus
cancel in the sum.

VII. CONCLUSIONS

We have studied numerically the temperature phase
transition of the real ’4 model from the two-loop
�-derivable approximation. Our analysis reveals that the
inclusion of the setting-sun diagram in the 2PI effective
action turns the phase transition into a second order one,
which is believed to be the true nature of the transition in
the model. The correct description of the order of the phase
transition, which is also reflected in the behavior of some

thermodynamical quantities, like the heat capacity, speed
of sound, and trace anomaly, represents an improvement as
compared to the Hartree approximation, where the transi-
tion is known analytically to be of the first order type. With
this investigation we confirm (with a higher accuracy) and
complete former numerical results obtained in Minkowski
space within the same approximation [32].
Leaving the framework of strict �-derivable approxi-

mations, we have checked that the phase transition remains
of the second-order type even if the contribution of the
setting-sun diagram is included only at the level of the 2PI
effective action, whereas the gap equation is solved at a
lower (Hartree) truncation, considerably simplifying in this
way the numerical solution of the model. We will report on
the renormalization of this ‘‘hybrid’’ �-derivable appro-
ximation and some of its applications in a forthcoming
publication [42].
In the present two-loop �-derivable approximation, us-

ing a combination of analytic and numerical methods, we
have also determined the static critical exponents which
turned out to be of the mean-field type. Implementing some
ideas borrowed from the RG approach, we found that if
we let the mass and coupling run with the temperature
the critical exponents depart from their mean-field values
(although they remain of the integer or rational type).
Some of them can be determined analytically. In particular,
the critical exponent � which characterizes the ‘‘magne-
tization’’ on the critical isotherm is found to be equal
to 5, closer to its expected value in three dimensions.
Diagrams with higher number of loops have to be included
at the level of the effective action in order to have wave
function renormalization and in turn a nonzero anomalous
dimension. It is an interesting question to know what
type of resummation will eventually produce critical
exponents which are not integer or rational numbers.
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The 2PI-1=N provides one example of such a truncation;
see Refs. [29,30].

Finally, the present work provides a concrete illus-
tration, at finite temperature, of the general approach
to renormalization in the 2PI formalism developed in
Ref. [26]. Following this approach, we obtained expres-
sions for the bare parameters which, in the present approxi-
mation, are given in terms of perturbative sum integrals.
Since we were interested in the effective potential and in
thermodynamical quantities, we solved the approximation
in the imaginary time formalism, which avoids the discre-
tization of sharply peaked functions such as the spectral
density. The shortcoming of this approach is that we
needed to determine the (slowly convergent) Matsubara
sums numerically. However, owing to the simple asymp-
totic behavior of the propagator, we could accelerate the
convergence of the Matsusbara sums. The same property
allowed us to increase the accuracy of the momentum
integrals which were computed using fast Fourier trans-
form algorithms. The tests performed on different physical
quantities concerning various discretization effects con-
firmed the gain in accuracy. It remains to be seen to what
extent the numerical methods developed here can be
applied to more complicated truncations in the 2PI formal-
ism, like the next-to-leading order 1=N truncation in the
OðNÞ model, the difficulty being that beyond the present
two-loop approximation, the asymptotic properties of the
propagator are changed in a nontrivial way.
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APPENDIX A: THERMAL EXPANSIONS

When discussing the renormalization of the gap and field
equations, we have to deal with differences of sum inte-
grals such as the following difference of two tadpole sum
integrals:

T ½ �G� �T ?½G?� ¼
Z T

Q

�GðQÞ �
Z T?

Q?

G?ðQ?Þ; (A1)

where �GðQÞ is the Matsubara propagator at temperature T
and G?ðQ?Þ is the free-type propagator 1=ðQ2

? þm2
?Þ that

we introduced in Sec. III C. The notations T ? and Q? are
used to emphasize that the subtracted contributionT ?½G?�
differs fromT ½ �G� not only by its propagator, but also by the
different temperature entering the Matsubara frequencies:

Q? ¼ ði!?
n; qÞ with !?

n ¼ 2�nT?. In what follows, we
bring Eq. (A1) and similar differences for the bubble and
setting-sun sum integrals to a form which is convenient for
discussing their ultraviolet behavior. To this purpose, we
make extensive use of the ‘‘analytic’’ propagator

�GðZÞ �
Z
q0

�ðq0; qÞ
q0 � z

�
Z þ1

�1
dq0
2�

�ðq0; qÞ
q0 � z

; (A2)

where Z � ðz; qÞ and z belongs to the complex plane minus
some possible points and segments of the real axis
where the spectral density � is nonzero. When evaluated
for Z ¼ Q, that is for z ¼ i!n with !n ¼ 2�nT a
Matsubara frequency at the same temperature T than the
spectral density �, we obtain the Matsubara propagator
�GðQÞ which appears for instance in the sum integral
T ½ �G�. But we can also consider a ‘‘hybrid’’ propagator
�GðQ?Þ by evaluating the analytic propagator for Z ¼ Q?,
that is for z ¼ i!?

n with !?
n ¼ 2�nT? a Matsubara fre-

quency at a temperature T? different from that of �, and use
this hybrid propagator to compute a hybrid sum integral

such as T ?½ �G� � RT?

Q?

�GðQ?Þ. This type of hybrid sum

integrals will be useful in what follows.

1. Tadpole sum integrals

Using the spectral representation (A2) for the Matsubara
propagator �GðQÞ in T ½ �G�, and performing the Matsubara
sum, it is a simple exercise to arrive at

T ½ �G� ¼
Z
q0

Z
q
�ðq0; qÞnq0 : (A3)

Writing nq0 ¼ n?q0 þ �nq0 , we obtain

T ½ �G� ¼
Z
q0

Z
q
�ðq0; qÞn?q0 þ

Z
q0

Z
q
�ðq0; qÞ�nq0 : (A4)

By repeating the calculation that leads to Eq. (A3), it is
easily checked that the hybrid sum integral T ?½ �G� is
nothing but the first term of Eq. (A4). Then, if we introduce

the notations ~Q � ðq0; qÞ and ��ð ~QÞ � �ðq0; qÞ�nq0 ,
Eq. (A4) can be written finally as

T ½ �G� �T ?½ �G� ¼
Z

~Q
��ð ~QÞ; (A5)

where the right-hand side is a Minkowski-type integral, in
the sense that it involves an integral over a real frequency
q0. We can use this formula to express the original differ-
ence of tadpole sum integrals (A1) as

T ½ �G��T ?½G?�¼½T ½ �G��T ?½ �G��þ½T ?½ �G��T ?½G?��
¼
Z

~Q
��ð ~QÞþ

Z T?

Q?

� �GðQ?Þ; (A6)
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where we have introduced � �GðQ?Þ � �GðQ?Þ �G?ðQ?Þ
which involves the hybrid propagator �GðQ?Þ. As we
now show, this formula facilitates the discussion of the
ultraviolet behavior. Notice first that �nq0 ¼ "ðq0Þ�njq0j
with �njq0j � njq0j � n?jq0j, and thus ��ð ~QÞ ¼ �ðq0; qÞ�
"ðq0Þ�njq0j, where "ðq0Þ denotes the sign function. It fol-

lows that the Minkowski integral in Eq. (A6) converges.
Indeed, the integral over q0 is cut off by �njq0j both for

positive and negative values of q0. Moreover, although we
cannot really prove this fact, the spectral density is ex-
pected to decrease fast enough at large q and fixed q0: a
perturbative estimate in the present approximation shows
that the spectral density decreases like 1=q8 at large q and
fixed q0. As for the second term in Eq. (A6), it involves a
sum integral at temperature T?. If we write

� �GðQ?Þ ¼ �ð �M2ðQ?Þ �m2
?ÞG2

?ðQ?Þ þ �GrðQ?Þ; (A7)

with �GrðQ?Þ � ð �M2ðQ?Þ �m2
?Þ2G2

?ðQ?Þ �GðQ?Þ and use
the fact that, in the present approximation, �M2ðQ?Þ is
expected to grow at most logarithmically at large Q?, we
see that the second term of Eq. (A6) diverges logarithmi-
cally and that the divergence is generated entirely by the
first term of Eq. (A7). For the purpose of renormalization,
it is then convenient to rewrite Eq. (A6) as

T ½ �G� �T ?½G?� ¼ �
Z T?

Q?

ð �M2ðQ?Þ �m2
?ÞG2

?ðQ?Þ

þ
Z T?

Q?

�GrðQ?Þ þ
Z

~Q
��ð ~QÞ: (A8)

We mention that the quantity �M2ðQ?Þ needs to be regarded
as the analytic continuation of �M2ðQÞ, which is initially
defined for Matsubara frequencies at temperature T, to
Matsubara frequencies at temperature T?, just as �GðQ?Þ
which enters � �GðQ?Þ or �GrðQ?Þ is the analytic continu-
ation of �GðQÞ.

2. Bubble sum integrals

A similar analysis can be done for the difference of
bubble sum integrals:

B½ �G�ðKÞ �B?½G?�ðL?Þ
¼

Z T

Q

�GðQÞ �GðQþ KÞ �
Z T?

Q?

G?ðQ?ÞG?ðQ? þ L?Þ:

(A9)

Introducing an additional momentum integral by means
of a � function in order to symmetrize the role of each
propagator, using the spectral representation (A2) and
performing the Matsubara sum, we obtain27

B½ �G�ðKÞ¼
Z
q0

Z
p0

Z
q

Z
p
ð2�Þ3�ð3ÞðpþqþkÞ

��ðq0;qÞ�ðp0;pÞ
1þnq0 þnp0

q0þp0þ i!

¼
Z
q0

Z
p0

Z
q

Z
p
ð2�Þ3�ð3ÞðpþqþkÞ

��ðq0;qÞ"ðq0Þ�ðp0;pÞ
1þ2njq0j

q0þp0þ i!
; (A10)

where, in going from the first to the second line, we have
used the symmetry between ðp0; pÞ and ðq0; qÞ as well as
the formula 1þ 2nq0 ¼ "ðq0Þð1þ 2njq0jÞ. In contrast to

the case of T ½ �G�, it is not straightforward here to compare
B½ �G�ðKÞ to the hybrid sum integral B?½ �G�ðK?Þ because
the external frequency has changed. We compare it instead

to Bð0Þ½ �G�ðKÞ where the superscript (0) refers to the zero
temperature Euclidean-type integral

B ð0Þ½ �G�ðKÞ �
Z
Q

�GðQÞ �GðQþ KÞ

�
Z d4Q

ð2�Þ4
�GðQÞ �GðQþ KÞ: (A11)

Since the frequencies are not constrained in the zero
temperature integral, we can consider the same external
frequency as in B½ �G�ðKÞ. We can now check that the
contribution involving ‘‘1’’ in the second line of
Eq. (A10) is nothing but the one we would obtain by

computing Bð0Þ½ �G�ðKÞ. As for the contribution involving
njq0j, one can use the spectral representation (A2) to per-

form the integral over p0. After performing the trivial
integral over p, one obtains finally

B½ �G�ðKÞ ¼ Bð0Þ½ �G�ðKÞ þ 2
Z

~Q
�ð ~QÞ �Gð ~Qþ KÞ; (A12)

where we have used the notation ~Q that we introduced in

the previous section as well as �ð ~QÞ � �ðq0; qÞ"ðq0Þnjq0j.
The propagator �Gð ~Qþ KÞ needs to be understood as the
analytic propagator defined in Eq. (A2). Back to our origi-
nal calculation (A9), we write as before

B½ �G�ðKÞ�B?½G?�ðL?Þ¼ ½B½ �G�ðKÞ�B?½ �G�ðH?Þ�
þ½B?½ �G�ðH?Þ�B?½G?�ðL?Þ�;

(A13)

where we have introduced an arbitrary external momentum
H? for later convenience. The first bracket can be treated
using Eq. (A12) and the second bracket can be put in the
form of a single sum integral at temperature T?. We finally
arrive at

27It is convenient to use the parity of the propagator to replace
�GðQþ KÞ by �Gð�Q� KÞ at the beginning of the calculation.
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B½ �G�ðKÞ �B?½G?�ðL?Þ
¼

Z T?

Q?

½ �GðQ?Þ �GðQ? þH?Þ �G?ðQ?ÞG?ðQ? þ L?Þ�

þ
Z
Q

�GðQÞ½ �GðQþ KÞ � �GðQþH?Þ�

þ 2
Z

~Q
�ð ~QÞ �Gð ~Qþ KÞ � 2

Z
~Q
�?ð ~QÞ �Gð ~QþH?Þ;

(A14)

where �?ð ~QÞ � �ðq0; qÞ"ðq0Þn?jq0j. This formula is the

generalization of Eq. (A6) to the case of a difference of
bubble sum integrals with nonzero external frequency and
momentum. We will also need its analytic continuation
from the Matsubara frequencies at temperature T in K to
the Matsubara frequencies at temperature T? of some
vector K?. This continuation can be done readily on
Eq. (A14) by replacing K by K?. The decomposition
(A14) and its analytic continuation from K to K? are
particularly useful to discuss the ultraviolet behav-
ior. Using �GðQ?Þ ¼ G?ðQ?Þ þ � �GðQ?Þ and choosing
H? ¼ L?, Eq. (A14) becomes

B½ �G�ðKÞ �B?½G?�ðL?Þ
¼

Z
Q

�GðQÞ½ �GðQþ KÞ � �GðQþ L?Þ�

þ
Z T?

Q?

� �GðQ?Þ½2G?ðQ? þ L?Þ þ � �GðQ? þ L?Þ�

þ 2
Z

~Q
�ð ~QÞ �Gð ~Qþ KÞ � 2

Z
~Q
�?ð ~QÞ �Gð ~Qþ L?Þ:

(A15)

Similarly, making the choice K ¼ K? ¼ H?, we obtain

B½ �G�ðK?Þ �B?½G?�ðL?Þ
¼

Z T?

Q?

G?ðQ?Þ½G?ðQ? þ K?Þ �G?ðQ? þ L?Þ�

þ
Z T?

Q?

� �GðQ?Þ½2G?ðQ? þ K?Þ þ � �GðQ? þ K?Þ�

þ 2
Z

~Q
��ð ~QÞ �Gð ~Qþ K?Þ: (A16)

Using similar arguments as those presented in the previous
section, it is easily checked that all the contributions in
Eqs. (A15) and (A16) are convergent. In particular the
Minkowski integrals are convergent due to the presence

of the functions �ð ~QÞ, �?ð ~QÞ or ��ð ~QÞ. The sum integrals
at temperature T? which appear in the second lines of
Eqs. (A15) and (A16) are convergent because they involve
either � �GðQ?ÞG?ðQ? þ K?Þ or � �GðQ?Þ� �GðQ? þ KÞ

which decrease fast enough at large Q?. As for the first
lines of Eqs. (A15) and (A16), they differ only by the
temperature at which the sum integral is computed and
by the propagator which is used [T ¼ 0 and �GðQÞ for
Eq. (A15) and T? and G?ðQ?Þ for Eq. (A16)]. Each of
the integrands appears as a difference of two terms which
decrease both exactly as 1=ðQ2Þ2 in Eq. (A15) or as
1=ðQ2

?Þ2 in (A16). It follows that the integrands decrease
strictly faster than 1=ðQ2Þ2 and 1=ðQ2

?Þ2, and the corre-
sponding sum integrals are convergent. We will also need
to know the asymptotic behavior of Eq. (A16) as K?

becomes large. The Minkowski integral is subleading for
it behaves as

Z
~Q
��ð ~QÞ �Gð ~Qþ K?Þ � 1

K2
?

Z
~Q
��ð ~QÞ: (A17)

Some analysis that we shall not reproduce here allows
us to argue that the second line of Eq. (A16) behaves
also like 1=K2

?, up to logarithmic corrections, and the
first one behaves logarithmically. Thus, the dominant
contribution at large K? is encoded in the first line of
Eq. (A16).

3. Setting-sun sum integrals

Let us finally consider the difference of setting-sun sum
integrals at zero momentum

S½ �G��S?½G?�¼
Z T

Q

Z T

R

�GðQÞ �GðRÞ �GðRþQÞ

�
Z T?

Q?

Z T?

R?

G?ðQ?ÞG?ðR?ÞG?ðR?þQ?Þ:

(A18)

Introducing an additional momentum integral by means
of a � function in order to symmetrize the role of each
propagator, using the spectral representation (A2) and
performing the Matsubara sums, we obtain

S½ �G� ¼
Z
r0

Z
q0

Z
p0

Z
r

Z
q

Z
p
ð2�Þ3�ð3Þðpþ qþ rÞ

� �ðr0; rÞ�ðq0; qÞ�ðp0; pÞ
� np0

nq0 � np0
n�r0 þ n�q0n�r0

r0 þ q0 þ p0

: (A19)

Note that there is no singularity as the denominator r0 þ
q0 þ p0 approaches 0 due to the particular combination of
statistical factors in the numerator. For later convenience,
we shall then replace r0 þ q0 þ p0 by r0 þ q0 þ p0 þ i
.
This does not bring any imaginary part because the sign of

 can be chosen arbitrarily. Generalizing the approach of
Blaizot and Reinosa [43], we now write nq0 ¼ n?q0 þ �nq0
and �n�q0 ¼ �n�q0 þ �nq0 , and obtain
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S ½ �G� ¼
Z
r0

Z
q0

Z
p0

Z
r

Z
q

Z
p
ð2�Þ3�ð3Þðpþ qþ rÞ�ðr0; rÞ�ðq0; qÞ�ðp0; pÞ

n?p0
n?q0 � n?p0

n?�r0 þ n?�q0n
?�r0

r0 þ q0 þ p0 þ i


þ 3
Z
r0

Z
q0

Z
p0

Z
r

Z
q

Z
p
ð2�Þ3�ð3Þðpþ qþ rÞ�ðr0; rÞ�ðq0; qÞ�ðp0; pÞ

�nq0ðn?p0
� n?�r0Þ

r0 þ q0 þ p0 þ i


þ 3
Z
r0

Z
q0

Z
p0

Z
r

Z
q

Z
p
ð2�Þ3�ð3Þðpþ qþ rÞ�ðr0; rÞ�ðq0; qÞ�ðp0; pÞ

�nq0�nr0
r0 þ q0 þ p0 þ i


; (A20)

where we have exploited the permutation symmetry between the pairs ðp0; pÞ, ðq0; qÞ, and ðr0; rÞ. Applying the same steps

that lead to Eq. (A19) to the hybrid sum integral S?½ �G�, it is easily checked that the first line of Eq. (A20) is nothing but

S?½ �G�. Comparing the second line to Eq. (A10), we see that it can be written as
R

~Q ��ð ~QÞB?½ �G�ð ~Qþ i
Þ where

~Qþ i
 � ðq0 þ i
; qÞ andB?½ �G�ð ~Qþ i
Þ � BR
?½ �G�ð ~QÞ is the retarded (if we choose 
> 0) contribution obtained after

analytically continuing B?½ �G�ðQ?Þ. Finally, in the third line of Eq. (A20), we can perform the integral over p0 using the

spectral representation which leads to the retarded propagator �Gð ~Rþ ~Qþ i
Þ, as well as the integral over p. We obtain
finally

S ½ �G� ¼ S?½ �G� þ 3
Z

~Q
��ð ~QÞB?½ �G�ð ~Qþ i
Þ þ 3

Z
~Q

Z
~R
��ð ~QÞ��ð ~RÞ �Gð ~Rþ ~Qþ i
Þ: (A21)

Once again, we can use this formula to compute the original difference (A18) of setting-sun sum integrals for vanishing
external frequency and momentum. We write

S½ �G� � S?½G?� ¼ ½S½ �G� � S?½ �G�� þ ½S?½ �G� � S?½G?��
¼ 3

Z
~Q
��ð ~QÞB?½ �G�ð ~Qþ i
Þ þ 3

Z
~Q

Z
~R
��ð ~QÞ��ð ~RÞ �Gð ~Rþ ~Qþ i
Þ

þ
Z T?

Q?

Z T?

R?

½ �GðQ?Þ �GðR?Þ �GðR? þQ?Þ �G?ðQ?ÞG?ðR?ÞG?ðR? þQ?Þ�: (A22)

This formula is the generalization of Eq. (A6) to the case of the difference of two setting-sun sum integrals for zero
external frequency and momentum. To obtain a formula suited for the discussion of ultraviolet divergences, we use
�GðQ?Þ ¼ G?ðQ?Þ þ � �GðQ?Þ. We obtain

S ½ �G� � S?½G?� ¼ 3
Z T?

Q?

� �GðQ?ÞB?½G?�ðQ?Þ þ
Z T?

Q?

Z T?

R?

� �GðQ?Þ� �GðR?Þ½3G?ðR? þQ?Þ þ � �GðR? þQ?Þ�

þ 3
Z

~Q
��ð ~QÞB?½ �G�ð ~Qþ i
Þ þ 3

Z
~Q

Z
~R
��ð ~QÞ��ð ~RÞ �Gð ~Rþ ~Qþ i
Þ: (A23)

It is also convenient to use Eq. (A12) to rewrite

B?½ �G�ð ~Qþ i
Þ¼B?½G?�ð ~Qþ i
Þþ½B?½ �G�ð ~Qþ i
Þ�B?½G?�ð ~Qþ i
Þ�
¼B?½G?�ð ~Qþ i
Þþ

Z
R
½ �GðRÞ �GðRþ ~Qþ i
Þ�G?ðRÞG?ðRþ ~Qþ i
Þ�þ2

Z
~R
�?ð ~RÞ �Gð ~Rþ ~Qþ i
Þ

�2
Z

~R
�?

?ð ~RÞG?ð ~Rþ ~Qþ i
Þ; (A24)

where �?
?ð ~QÞ � �?ðq0; qÞ"ðq0Þn?jq0j and �?ðq0; qÞ ¼ ð2�Þ"ðq0Þ�ðq20 � q2 �m2

?Þ is the spectral density corresponding to

G?ðQ?Þ. We can write finally

S½ �G��S?½G?�¼3
Z T?

Q?

� �GðQ?ÞB?½G?�ðQ?Þþ3
Z

~Q
��ð ~QÞB?½G?�ð ~Qþ i
Þþ

Z T?

Q?

Z T?

R?

� �GðQ?Þ� �GðR?Þ

�½3G?ðR?þQ?Þþ� �GðR?þQ?Þ�þ3
Z

~Q
��ð ~QÞ

Z
R
½ �GðRÞ �GðRþ ~Qþ i
Þ�G?ðRÞG?ðRþ ~Qþ i
Þ�

þ6
Z

~Q
��ð ~QÞ

Z
~R
�?ð ~RÞ �Gð ~Rþ ~Qþ i
Þ�6

Z
~Q
��ð ~QÞ

Z
~R
�?

?ð ~RÞG?ð ~Rþ ~Qþ i
Þ

þ3
Z

~Q

Z
~R
��ð ~QÞ��ð ~RÞ �Gð ~Rþ ~Qþ i
Þ: (A25)
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085031-38



A similar discussion as the one presented in the pre-
vious sections shows that only the first two terms are
divergent. The sum of the remaining terms will be
denoted �fS.

APPENDIX B: PERTURBATIVE
SUM INTEGRALS

In this section, we give the explicit expressions for
the perturbative tadpole, bubble and setting-sun sum
integrals at temperature T involving a free-type propa-
gator GðQÞ ¼ 1=ðQ2 þM2Þ of mass M, both in dimen-
sional regularization in d ¼ 4� 2� dimensions and in
the presence of a sharp 3D cutoff for each propagator.
We also discuss the monotonous behavior of the per-
turbative bubble sum integral in the presence of a sharp
cutoff.

1. Perturbative results using dimensional
regularization

From Eq. (A5), in which we set T? ¼ 0 and ��ð ~QÞ ¼
ð2�Þnjq0j�ðq20 � q2 �M2Þ, we obtain the decomposition

T �½G� ¼ T ð0Þ
� ½G� þT ð1Þ

� ½G�. T ð0Þ
� ½G� is the tadpole at

zero temperature, which is easily computed to be

T ð0Þ
� ½G� ¼ M2

16�2

�
� 1

�
þ ln

M2

��2
� 1

�

� �
M2

32�2

��
ln
M2

��2
� 1

�
2 þ �2

6
þ 1

�
þOð�2Þ;

(B1)

wherewe introduced the standard notation ��2 ¼ 4��2e��E

with �E standing for Euler’s constant, while T ð1Þ
� ½G� is the

finite temperature part of the tadpole, given by

T ð1Þ
� ½G� ¼ �2�

Z dd�1q

ð2�Þd�1

n"q
"q

¼ 2�2�

ð4�Þðd�1Þ=2�ðd�1
2 Þ

Z 1

0
dqqd�2

n"q
"q

; (B2)

with "q ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þM2

p
. Taking a derivative with respect

toM2 in the previous expressions,we obtain a decomposition
of the bubble sum integral at zero external momentum

B�½G�ð0Þ ¼ Bð0Þ
� ½G�ð0Þ þBð1Þ

� ½G�ð0Þ with

Bð0Þ
� ½G�ð0Þ ¼ 1

16�2

�
1

�
� ln

M2

��2

�

þ �
1

32�2

�
ln2

M2

��2
þ �2

6

�
þOð�2Þ (B3)

and

B ð1Þ
� ½G�ð0Þ¼��2�

Z dd�1q

ð2�Þd�1

d

dM2

n"q
"q

¼ 2�2�

ð4�Þðd�1Þ=2�ðd�1
2 Þ

Z 1

0
dqqd�4

n"q
"q

; (B4)

where, in this last integral, we have used the fact that d=dM2

can be replaced by d=dq2 in the integrand and we have
integrated by parts assuming d 	 2. We have expanded the

vacuum pieces T ð0Þ
� ½G� and Bð0Þ

� ½G�ð0Þ up to and including

order � for later convenience. The thermal partsT ð1Þ
� ½G� and

Bð1Þ
� ½G�will be needed only to order �0 and we can thus take

the limit � ! 0 in those contributions.
We proceed similarly for the setting-sun sum integral.

From Eq. (A21), in which we set T? ¼ 0 and also "r �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðk� qÞ2 þM2
p

, we obtain the following decomposition:

S�½G�¼�4�
Z dd�1k

ð2�Þd�1

Z dd�1q

ð2�Þd�1

1

4"k"q"r

1

"kþ"qþ"r
þ3�4�

Z dd�1k

ð2�Þd
n"k
2"k

½Bð0Þ
� ð"kþ i
;kÞþBð0Þ

� ð�"kþ i
;kÞ�

þ3�4�
Z dd�1k

ð2�Þd�1

Z dd�1q

ð2�Þd�1

n"k
2"k

n"q
2"q

�
1

ð"rþ i
Þ2�ð"kþ"qÞ2
þ 1

ð"rþ i
Þ2�ð"k�"qÞ2
�
: (B5)

The terms of the sum above contain in order zero, one and
two statistical factors with positive argument and will be
denoted, respectively, as Sð0Þ

� ½G�, Sð1Þ
� ½G�, and Sð2Þ

� ½G�.
Note that in the present perturbative calculation, the regu-
lator 
 plays no role if we assume M2 > 0. This is always
true for Sð0Þ½G� for it is the zero temperature limit of a
diagram which does not depend on 
. For Sð1Þ

� ½G�, the
analytically continued bubble contribution is evaluated on
the mass shell and therefore does not generate any imagi-
nary part. Similarly, the denominators in Sð2Þ

� ½G� never
vanish since the equation 0 ¼ "2r � ð"k 
 "qÞ2 implies
4ðk2q2 � ðk � qÞ2Þ þ 4ðk2 � kqþ q2ÞM2 þ 3M4 ¼ 0,

which has no solution if M2 > 0 because the three terms
are positive and one of them is strictly positive.
We can also write the zero temperature contribution

Sð0Þ
� ½G� in a covariant form as

S ð0Þ
� ½G� ¼ �4�

Z ddQ

ð2�Þd
Z ddK

ð2�Þd GðQÞGðKÞGðK �QÞ:
(B6)

This integral can be evaluated with the method given in
Sec. 11.5 of Ref. [1]. We only have to obtain the Oð�Þ
contribution of the integral J defined in (11.53) of this
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reference, which using our relation between d and � is
J¼ 3=�þ 3þ�ð3� 11�2=6þ 2	1ð2=3ÞÞþOð�2Þ, with
	1ðxÞ ¼ d2�ðxÞ=dx2 being the trigamma function.
Expanding in series of �, one obtains

Sð0Þ
� ½G�¼ M2

ð16�2Þ2
�
� 3

2�2
þ3

�

�
ln
M2

��2
�3

2

�
�3

��
ln
M2

��2
�3

2

�
2

þ5

4
� 5

36
�2

�
�	1

�
2

3

��
þOð�Þ; (B7)

This expression agrees with the form given in Ref. [44],
upon exploiting a relation between specific values of
the trigamma function and the Clausen function
Cl2ðxÞ ¼ �R

x
0 d� lnð2 sinð�=2ÞÞ, namely,

	1

�
2

3

�
¼ 2

3
�2 � 2

ffiffiffi
3

p
Cl2

�
�

3

�
:

Since Bð0Þ
� ðk0;kÞ is Lorentz covariant (in dimensional

regularization), Bð0Þ
� ð
"k;kÞ does not depend on k and

can be pulled out of the integral in Sð1Þ
� ½G�. In fact this

constant contribution can be computed analytically. We
obtain finally

S ð1Þ
� ½G� ¼ 3

16�2

�
1

�
� ln

M2

��2
þ 2� �ffiffiffi

3
p þOð�Þ

�
T ð1Þ

� ½G�;
(B8)

where, for later purpose, it is enough to expand up to order

�0 the prefactor of T ð1Þ
� ½G�. Finally, the contribution

Sð2Þ
� ½G� will only be needed in the limit � ! 0 where it

yields a finite result due to the presence of the two thermal
factors. After integrating over the angles, we obtain

S ð2Þ½G� ¼ 3

32�4

Z 1

0
dkk

n"k
"k

Z 1

0
dqq

n"q
"q

� ln
4ðk2 þ kqþ q2Þ þ 3M2

4ðk2 � kqþ q2Þ þ 3M2
: (B9)

Using these results, we can now check that the
combination

CðM;m?Þ � ½T ½G� �T ?½G?� þ ðM2 �m2
?ÞB?½G?�ð0Þ�

�B?½G?�ð0Þ � 1

3

�
S½G� � S?½G?�

� ðM2 �m2
?ÞdS?½G?�

dm2
?

�
; (B10)

which appears in Eq. (78) leads to a finite expression from
which the scale � drops out. To see this, we use that the
expression inside the first pair of brackets is finite and that
in terms of the form finite finite � divergent we have
to expand the finite part toOð�aÞ, where the integer a is the
power in the most divergent,Oð��aÞ piece of the divergent
part. Note, however, that we do not need to consider the

order � term originating from Bð1Þ
?;�½G?�ð0Þ in this first

bracket because it is identically canceled by the contribu-

tion originating from T ð1Þ
?;�½G� in the one thermal factor

contribution to dS?;�½G?�=dm2
?. In the limit � ! 0 the

expression reads

CðM;m?Þ ¼ 1

ð16�2Þ2
�
M2

2

�
ln
M2

m2
?

� 2

�
2 � 2m2

?

�
þ 1

16�2

�
ln
M2

m2
?

þ �ffiffiffi
3

p � 2

�
T ð1Þ½G� � 1

16�2

�
M2

m2
?

þ �ffiffiffi
3

p � 3

�
T ð1Þ

? ½G?�

þ 1

16�2

�
M2 ln

M2

m2
?

þ ðM2 �m2
?Þ
�
�ffiffiffi
3

p � 3

��
Bð1Þ

? ½G?�ð0Þ þ ½T ð1Þ½G� �T ð1Þ
? ½G?�

þ ðM2 �m2
?ÞBð1Þ

? ½G?�ð0Þ�Bð1Þ
? ½G?�ð0Þ � 1

3

�
Sð2Þ½G� � Sð2Þ

? ½G?� � ðM2 �m2
?ÞdS

ð2Þ
? ½G?�
dm2

?

�
: (B11)

Similarly, for the combination appearing in Eq. (72)

D ðM;m?Þ � ½B?½G?�ð0Þ �B½G�ð0Þ�B?½G?�ð0Þ þ 1

3

�
dS?½G?�
dm2

?

� dS½G�
dM2

�
; (B12)

the following explicitly finite expression can be obtained:

DðM;m?Þ ¼ 1

128�4

�
ln2

m?

M
þ ln

m?

M

�
þ 1

16�2

�
T ð1Þ½G�
M2

�T ð1Þ
? ½G?�
m2

?

�
þ 1

3

�
dSð2Þ

? ½G?�
dm2

?

� dSð2Þ½G�
dM2

�

þ
�

1

16�2

�
ln
M2

m2
?

� 2þ �ffiffiffi
3

p
�
þBð1Þ

? ½G?�ð0Þ�½Bð1Þ
? ½G?�ð0Þ �Bð1Þ½G�ð0Þ�: (B13)

2. Perturbative results using a 3D cutoff

The techniques of Appendix A can also be applied in the presence of a 3D cutoff. From Eq. (A3) with �ðq0; qÞ ¼
ð2�Þ"ðq0Þ�ðq20 � q2 �m2Þ, we obtain
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T ½G� ¼ 1

4�2

Z �

0
dqq2

1þ 2n"q
"q

¼ 1

8�2

�
�"� �M2arcsinh

�
�

M

��

þ 1

2�2

Z �

0
dqq2

n"q
"q

; (B14)

where "q ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þM2

p
. In the second line of Eq. (A10),

we can perform the integral over p trivially, as well as the
integral over p0 using Eq. (A2). After some obvious shifts
of the integration variables, we obtain

B½G�ðKÞ ¼
Z
q0

Z
jqj<�

jk�qj<�

�ðq0; qÞ"ðq0Þð1þ 2njq0jÞ

�Gði!� q0;k� qÞ

¼
Z

jqj<�
jk�qj<�

1þ 2n"q
2"q

½Gði!� "q;k� qÞ

þGði!þ "q;k� qÞ�; (B15)

where in the second line we have performed the frequency
integral. The angular integrals are computed using the
geometrical picture shown in Fig. 16. With a 3D spherical
coordinate system we integrate over the common region of
two spheres of radius � whose centers are separated by a
distance k � jkj. The contribution is clearly 0 if k > 2�.
There is a nonzero contribution if �< k < 2� but we will
be mainly interested in the case k <�. The integral over
one angle gives 2�, while the remaining angle � goes from
0 to � if 0 � q � jqj � �� k and from 0 to arccos
< �
if�� k � q � �, with
 � ðk2 þ q2 ��2Þ=ð2kqÞ deter-
mined by the intersection ‘‘point’’ of the two spheres.
Using the formula

Z 1



dðcos�ÞGði!
 "q;k� qÞ

¼
Z 1




dðcos�Þ
!2 þ k2 � 2i!"q � 2kq cos�

¼ 1

2kq
ln
k2 � 2kq
þ!2 � 2i!"q

k2 � 2kqþ!2 � 2i!"q
; (B16)

its limit for 
 ! �1, as well as lnzþ ln�z ¼ lnjzj2, the
final form of the bubble integral reads (if k <�)

B½G�ðKÞ ¼ 1

16�2k

�Z ��k

0
dqq

1þ 2n"q
"q

� ln
ðk2 þ 2kqþ!2Þ2 þ 4!2"2q

ðk2 � 2kqþ!2Þ2 þ 4!2"2q

þ
Z �

��k
dqq

1þ 2n"q
"q

� ln
ð�2 � q2 þ!2Þ2 þ 4!2"2q

ðk2 � 2kqþ!2Þ2 þ 4!2"2q

�
: (B17)

Setting ! ¼ 0 and taking the limit k ! 0, one easily
obtains the expression of the bubble integral at vanishing
frequency and momentum

B½G�ð0Þ ¼ 1

8�2

�
��

1þ 2n"�
"�

þ
Z �

0
dq

1þ 2n"q
"q

�
;

(B18)

which can also be obtained from (B14) by taking a deriva-
tive with respect to M2 and using an integration by parts.
For the setting-sun sum integral, we start from Eq. (A20)

with T? ¼ 0. In this limit n?p0
becomes��ð�p0Þ and �np0

becomes "ðp0Þnjp0j. The first line of Eq. (A20) gives just

the zero temperature contribution Sð0Þ½G�. After perform-
ing the frequency integrals and the trivial integral over r,
we obtain

Sð0Þ½G�¼
Z
jkj<�

Z
jqj<�

1

4"k"q"r

�ð��jk�qjÞ
"kþ"qþ"r

; (B19)

where we have renamed p as k and introduced "r ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðk� qÞ2 þM2
p

. The angular integrals can be performed
with the method given in Ref. [31] and one obtains

Sð0Þ½G� ¼ 1

32�4

Z �

0
dk

k

"k

�Z ��k

0
dq

q

"q
ln
"k þ "q þ "þ
"k þ "q þ "�

þ
Z �

��k
dq

q

"q
ln
"k þ "q þ "�
"k þ "q þ "�

�
; (B20)

where "
 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðk
 qÞ2 þM2
p

. The second and third lines
of Eq. (A20) can be treated simultaneously. We note first
that in the second line the factor ���p0

þ �r0 ¼ �1þ
�p0

þ �r0 can be replaced by�1þ 2�r0 ¼ "ðr0Þ, owing to
the symmetry under q0 $ r0 of the integrand. Combining
this contribution with the third line of Eq. (A20) and
performing the frequency integrals, we arrive at

FIG. 16 (color online). Region of integration for the bubble
integral.
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S½G� � Sð0Þ½G�

¼ 3
Z
jkj<�

Z
jqj<�

�ð�� jk� qjÞ n"kð1þ n"qÞ
2"k"q

�
�

1

"2r � ð"k þ "qÞ2
þ 1

"2r � ð"k � "qÞ2
�
: (B21)

Doing the frequency integrals, one obtains finally

S ½G��Sð0Þ½G�¼ 3

32�4

Z �

0
dkk

n"k
"k

�Z ��k

0
dqq

1þn"q
"q

� ln
4ðk2þkqþq2Þþ3M2

4ðk2�kqþq2Þþ3M2

þ
Z �

��k
dqq

1þn"q
"q

� ln
4ð"q"kÞ2�ð�2�q2�k2�M2Þ2

M2ð4ðk2�kqþq2Þþ3M2Þ
�
:

(B22)

3. Monotonous behavior of the perturbative
bubble sum integral

Let us prove that the perturbative bubble sum integral at
finite temperature

B ½G�ðKÞ � T
X
n

Z d3q

ð2�Þ3
�ð�2 � q2Þ

!2
n þ q2 þM2

� �ð�2 � ðq� kÞ2Þ
ð!n �!Þ2 þ ðq� kÞ2 þM2

; (B23)

decreases as one increases ! or k � jkj. This is clear for
the frequency dependence. To prove it for the momentum
dependence, we consider

@

@k
B½G�ðKÞ � 2I1ðKÞ þ 2I2ðKÞ; (B24)

with (we set k̂ ¼ k=k)

I 1ðKÞ � T
X
n

Z d3q

ð2�Þ3
�ð�2 � q2Þ

!2
n þ q2 þM2

� �ð�2 � ðq� kÞ2Þ
ðð!n �!Þ2 þ ðq� kÞ2 þM2Þ2 ðq� kÞ � k̂;

I2ðKÞ � T
X
n

Z d3q

ð2�Þ3
�ð�2 � q2Þ

!2
n þ q2 þM2

� �ð�2 � ðq� kÞ2Þ
ð!n �!Þ2 þ ðq� kÞ2 þM2

ðq� kÞ � k̂
(B25)

and prove that both I1ðKÞ and I2ðKÞ are negative. Let us
treat the contribution I1ðKÞ first. It is convenient to de-
compose the integration domain, which is defined by the
� functions, into three different regions C, D and �D;

see Fig. 16. The region D corresponds to fq <�g\
fjq� kj<�g \ fðq� kÞ � k̂> 0g. The region �D is the
mirror symmetric of D with respect to the axis

ðq� kÞ � k̂ ¼ 0. The region C is fq<�g\fjq�kj<
�gnðD[ �DÞ. One has I1 ¼ IC

1 þ ID
1 þ I �D

1 . In region C

(and also in region �D), one has ðq� kÞ � k̂< 0, from
which it follows that IC

1 < 0. In order to treat the remain-

ing contributions, for each point q in region D, we intro-
duce its mirror symmetrized q0 ¼ q0ðqÞ. More precisely,
we have the formula

q0ðqÞ ¼ q� 2ððq� kÞ � k̂Þk̂: (B26)

From this formula or from the geometrical interpretation
given in Fig. 16, it is easily checked that jq0 � kj ¼
jq� kj, ðq0 � kÞ � k̂ ¼ �ðq� kÞ � k̂ and jq0j> jqj.
Moreover, the previous transformation has the Jacobian
Jij ¼ �ij � 2kikj=k

2 which is such that J2 ¼ 1 and thus

j detJj ¼ 1. We can now use this transformation to express
the contribution from region �D as an integral over region
D. It follows that

ID
1 ðKÞ þ I �D

1 ðKÞ

¼ T
X
n

Z
D

d3q

ð2�Þ3
ðq� kÞ � k̂

ðð!n �!Þ2 þ ðq� kÞ2 þM2Þ2

�
�

1

!2
n þ q2 þM2

� 1

!2
n þ q02ðqÞ þM2

�
; (B27)

which is negative because on region D, jqj> jq0j and

ðq� kÞ � k̂> 0.
In order to treat the contribution I2ðKÞ we can use the

following geometrical argument. Noting that I2ðKÞ repre-
sents the contribution to the variation of B½G�ðKÞ which
comes from the modification of the integration region as k
increases, that the two spheres separate apart in this case
and that the integrand of B½G�ðKÞ is positive, it follows
that I2ðKÞ is negative. Alternatively, we can also perform
the angular integral using the � function. We obtain

I 2ðKÞ ¼ T

16�2k2
X
n

1

ð!n �!Þ2 þ�2 þM2

�
Z �

��k
dqq

q2 � k2 ��2

!2
n þ q2 þM2

; (B28)

which is indeed negative since q2 � k2 ��2 increases on
the interval [�� k,�] and is equal to�k2 < 0 for q ¼ �.

APPENDIX C: RATE OF CONVERGENCE OF
MATSUBARA SUMS

In this section we study the rate of convergence of
Matsubara sums and relate it to the asymptotic behavior
of the summand at large Matsubara frequencies. Consider
first the perturbative tadpole sum integral T ½G�, which we
approximate by
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V N�
½G� � T

XN�

n¼�N�

Z d3q

ð2�Þ3
1

!2
n þ q2 þM2

: (C1)

In order to study how this finite sum converges to its limit
T ½G�, we introduce the error

E N�
½G� � T ½G� �V N�

½G�

¼ T
X

jnj>N�

Z d3q

ð2�Þ3
1

!2
n þ q2 þM2

: (C2)

Note first that a very simple bound of the error is obtained
by setting q2 þM2 to 0 in the previous expression. We
obtain jEN�

½G�j � c0’0ðN�Þ with c0 � �3=ð24�4TÞ and

’0ðN�Þ � P
jnj>N�

1=n2. From

X
jnj>N�

1

n2
� 2

X
n>N�

1

nðn� 1Þ ¼
2

N�

; (C3)

we obtain an even simpler bound jEN�
½G�j � 2c0=N�. A

numerical investigation reveals that the bounds c0’0ðN�Þ
and 2c0=N� are saturated already for values of N� <�=T,
which shows that the bounds provide a good description of
the error in this range of N� and in turn that the conver-
gence of the Matsubara sum is slow.

The functions c0’0ðN�Þ or 2c0=N� are in fact the first
terms of asymptotic expansions of the error at large N�

in some appropriate asymptotic scales which we now
discuss.28 We start from the following identity:

1

aþ b
¼ XK

k¼0

ð�1Þk bk

akþ1
þ rk with

rk � ð�1ÞKþ1

aþ b

bKþ1

aKþ1
: (C4)

Note that, when a and b are both positive, jrkj<
MinðbKþ1=aKþ2; bK=aKþ1Þ, that is the rest of the geomet-
ric series is bounded both by the last term kept in the sum
and by the first term neglected. Plugging this identity into
Eq. (C2), we arrive at

E N�
½G� ¼ XK

k¼0

ck½G�’kðN�Þ þ RðKÞ
N�

½G�; (C5)

with

ck½G� � 2

ð4�2Þkþ2T2kþ1

Z �

0
dqq2ðq2 þM2Þk and

’kðN�Þ �
X

jnj>N�

1

n2kþ2
: (C6)

It can be shown that the functions ’kðN�Þ form an
asymptotic scale as N� ! 1. Now, from the inequality
obeyed by rk, it is easy to show that

jRKj � cKþ1½G�’Kþ1ðN�Þ: (C7)

In other words

E N�
½G� ¼ XK

k¼0

ck½G�’kðN�Þ þOð’Kþ1ðN�ÞÞ; (C8)

for any value of K 	 �1, if we decide conventionally that
the sum is empty when K ¼ �1. This shows precisely that
the error admits an asymptotic expansion in the scale of
functions ’kðN�Þ. The functions ’kðN�Þ admit themselves
an asymptotic expansion in a scale of inverse powers of N�

from which we could also deduce an expansion of the error
in such a simpler scale. The advantage of (C8) is that the
corresponding series converges asK ! 1 for fixedN�. We
get then a better estimate of the error than with an expan-
sion in a scale of inverse powers of N� for which the
corresponding series turns out to be divergent.
Let us now see how the previous considerations allow

us to accelerate the convergence of Matsubara sums.
If, instead of computing V N�

½G�, we compute V 0
N�
½G� �

V N�
½G� þ c0’0ðN�Þ, we see from

T ½G� ¼ V N�
½G� þ EN�

½G�
¼ ½V N�

½G� þ c0’0ðN�Þ� þ ½EN�
½G� � c0’0ðN�Þ�;

(C9)

that the new error is bounded by c1½G�’1ðN�Þ which
is parametrically smaller than c0’0ðN�Þ. Indeed, using
that ’kðN�Þ � 2=N2kþ1

� and taking the dominant con-
tribution of ck½G�, that is ck½G� � 2�2kþ3=ðð2kþ 3Þ�
ð4�2Þkþ2T2kþ1Þ, we obtain

c1½G�’1ðN�Þ
c0½G�’0ðN�Þ

&
3

20�2

�
�

N�T

�
2
: (C10)

It is easy to see that in combination with the trapezoidal
rule (116) and if we replace c0’0ðN�Þ by its leading
asymptotic term in an expansion in inverse powers of N�,
the improvement amounts to using the following approxi-
mate evaluation of the tadpole sum integral:

V 0
N�;Ns

½G� ¼ V N�;Ns
½G� þ ð�kÞ3

24�4

N2
s þ 2N3

s

N�T
; (C11)

where the notationV N�;Ns
½f� was introduced in Eq. (115).

Similar considerations for the bubble sum integral implies
the following improved evaluation:

V 0
N�;Ns

½G2� ¼ V N�;Ns
½G2� þ ð�kÞ3

288�4

N2
s þ 2N3

s

N3
�T

3
: (C12)

As explained in Sec. VE 2, the improvements (C11) and
(C12) are used in the partially improved code and the
improvement (C12) is used in the fully improved code in

28An asymptotic scale is any collection of functions ðc kðN�ÞÞk
such that each c kðN�Þ does not vanish above some value of N�

and that for k < k0, c k0 ðN�Þ=c kðN�Þ ! 0 as N� ! 1. This last
condition is also written c k0 ðN�Þ ¼ oðc kðN�ÞÞ.
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order to determine �0. We can do even better by noticing
that the leading part of the coefficient ck½G� is of the order
or�2kþ3 and it is thus independent ofM. We consider then

V 00
N�
½G� ¼ V N�

½G� �V N�
½G?� þT ½G?�; (C13)

where G? is a free-type propagator for which we assume
that T ½G?� is known exactly. The error becomes now

E 00
N�
½G� ¼ XK

k¼1

ðck½G� � ck½G0�Þ’kðN�Þ þOð’Kþ1ðN�ÞÞ:

(C14)

Because c0½G� does not depend on M, the leading
contribution of the error (k ¼ 0) has dropped. Moreover
the leading contribution to the term of order k, which was
previously of the order of �2kþ3 is now of the order
�2kþ1M2.

The improvement (C13) is at the basis of the optimiza-
tion method described in Sec. VC. Of course, the previous
discussion is not very useful in the case where the mass
M is momentum independent because our acceleration

method requires that we are able to evaluate T½G?� very
accurately which is the same as computing the perturbative
T½G� very accurately. The approach becomes interesting
when we evaluate the tadpole sum integral in the presence
of a propagator �GðQÞ ¼ 1=ðQ2 þ �M2ðQÞÞ with a momen-
tum dependent mass. If the latter remains positive and
grows only logarithmically at large Q, which is precisely
what happens in the two-loop �-derivable approximation,
then it makes a difference to evaluate T½ �G� from Eq. (C1)
which has an error bounded by jEN�

½ �G�j � c0’0ðNÞ �
2c0=N�, or from Eq. (C13) which yields an error
bounded by

jEN�
½ �G� � EN�

½G?�j � T
X

jnj>N�

Z d3q

ð2�Þ3
j �M2ðQÞ �m2

?j
!4

n

;

(C15)

which is expected to be suppressed with respect to
c0’0ðN�Þ if �M2ðQÞ grows only logarithmically at large
Q, as we verified numerically.
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[42] G. Markó, U. Reinosa, and Zs. Szép (to be published).
[43] J.-P. Blaizot and U. Reinosa, Nucl. Phys. A764, 393

(2006).
[44] A. I. Davydychev and J. B. Tausk, Nucl. Phys. B397, 123

(1993).
[45] A. Pelissetto and E. Vicari, Phys. Rep. 368, 549 (2002).

BROKEN PHASE EFFECTIVE POTENTIAL IN THE TWO- . . . PHYSICAL REVIEW D 86, 085031 (2012)

085031-45

http://www.fftw.org
http://dx.doi.org/10.1103/PhysRevD.80.125029
http://dx.doi.org/10.1103/PhysRevD.80.125029
http://www.gnu.org
http://dx.doi.org/10.1016/j.nuclphysa.2005.09.004
http://dx.doi.org/10.1016/j.nuclphysa.2005.09.004
http://dx.doi.org/10.1016/0550-3213(93)90338-P
http://dx.doi.org/10.1016/0550-3213(93)90338-P
http://dx.doi.org/10.1016/S0370-1573(02)00219-3

