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We explicitly construct all kink solitons arising in the recent study of Auzzi, Bolognesi, and Shifman of a

monopole confinement problem inN ¼ 2 supersymmetric QCD. In particular, we show that all finite-energy

kink solitons must be Bogomol’nyi-Prasad-Sommerfield.
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Monopole confinement in the context of supersymmetric
gauge field theories [1–7] is an actively pursued subject,
exploring the initial proposal by Mandelstam [8,9], Nambu
[10], and ’t Hooft [11,12], who attempted to gain some
conceptual understanding of the quark confinement prob-
lem in QCD, known to be an outstanding puzzle in theo-
retical physics, through a vortexline or string interaction
mechanism. In the recent interesting study of Auzzi,
Bolognesi, and Shifman [13], kink solitons arising in
N ¼ 2 supersymmetric theory with the gauge group
Uð2Þ and twoflavors of quarks are formulated and described
numerically, which interpolate several pairs of confined
monopole vacua through 2-strings and are expressed in
terms of two monopole moduli space coordinates called
profile functions (there are four coaxial 2-string moduli
space coordinates but two are irrelevant for the monopole
problem). The purpose of this paper is to obtain all these
finite-energy kinks explicitly. First, we prove that any finite-
energy solution of the Euler-Lagrange equations of the kink
energy of Auzzi, Bolognesi, and Shifman [13] must be BPS
(after the pioneering studies of Bogomol’nyi [14] and
Prasad and Sommerfield [15]). Then we present all the
BPS solutions explicitly. These exact solutions are shown
to depend precisely on two free parameters.

Following Ref. [13], we use � and � to denote the two
monopole moduli space coordinates which are functions of
a single variable x 2 ð�1;1Þ. Then the kink energy is
given by the functional

Eð�;�Þ ¼
Z 1

�1
rf4Að�0Þ2 þ 2ð1� �2Þ2ð�0Þ2 þ Vð�;�Þgdx;

(1)

where

Vð�;�Þ ¼ 2m2ð1� �2Þ2sin22�þ 4m2�2ð1� �2Þ2cos22�
A

(2)

is the potential density, 0 denotes differentiation with respect
to x, and r, A, m are positive parameters. The associated
Euler-Lagrange equations are seen to be

�00¼��ð1��2Þ
A

�
�
ð�0Þ2þm2sin22��m2ð1�3�2Þcos22�

A

�
; (3)

ðð1� �2Þ2�0Þ0 ¼ m2ð1� �2Þ2
�
1� 2�2

A

�
sin4�: (4)

Kinks are finite-energy solutions of these equations
satisfying the boundary condition [13]

�ð�1Þ¼�ð1Þ¼ 0; �ð�1Þ¼ 0; �ð1Þ¼�

2
; (5)

which are difficult to obtain directly. Fortunately, Auzzi,
Bolognesi, and Shifman [13] find that one may follow the
BPS trick [14,15] to rewrite the energy functional (1) into
the form

Eð�;�Þ ¼
Z 1

�1
r

�
4A

�
�0 �m

A
�ð1� �2Þ cos2�

�
2

þ 2ð1� �2Þ2ð�0 �m sin2�Þ2
�
dx

� 2mr
Z 1

�1
ðð1� �2Þ2 cos2�Þ0dx; (6)

which in view of the boundary condition (5) gives rise to
the energy lower bound

Eð�;�Þ � 4mr: (7)

Such a lower bound is attained when ð�;�Þ satisfies the
BPS equations

�0 ¼ m

A
�ð1� �2Þ cos2�; (8)

�0 ¼ m sin2�: (9)
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It is straightforward to check that (8) and (9) imply
(3) and (4). It will take some effort, however, to show
that the converse is also true. In other words, we shall
prove that any solution of (3) and (4) subject to the bound-
ary condition (5) and finite-energy condition

Eð�;�Þ<1; (10)

will also satisfy the BPS equations (8) and (9). Hence all
kinks are necessarily BPS.

We split our proof into several steps in the form of
lemmas. In doing so, we assume ð�;�Þ is a finite-energy
solution of (3) and (4) under the boundary condition (5).

Lemma 1.—For any point a 2 ð�1;1Þ satisfying
j�ðxÞj<�

8
; �2ðxÞ<max

�
1;
A

2

�
; x < a; (11)

we have

�ðxÞ � 0; �1< x < a: (12)

Proof.—Suppose there is some x0 < a such that
�ðx0Þ ¼ 0. Since �ð�1Þ ¼ 0, there is a point b < x0
such that b is either a local maximum or a local minimum
point of �. In either case, �0ðbÞ ¼ 0 but �ðbÞ � 0 other-
wise the uniqueness theorem for the initial value problem
of ordinary differential equations applied to (4) implies
� � 0, which is false. Of course, we may assume that x0 is
the first zero of � above b and �0ðx0Þ � 0. Hence we have
the alternatives

�0ðx0Þ>0 if �ðbÞ<0; �0ðx0Þ<0 if �ðbÞ>0; (13)

and �ðxÞ does not change sign for x 2 ðb; x0Þ. Integrating
(4) over ðb; x0Þ and using (11), we have

ð1� �2ðx0ÞÞ�0ðx0Þ ¼
Z x0

b
m2ð1� �2Þ2

�
1� 2�2

A

�
sin4�dx;

(14)

whose sign is the same as �ðbÞ, which contradicts (13).
Therefore, we have shown that �ðxÞ does not vanish for
x < a.

Since �ð�1Þ ¼ 0, the finite-energy condition already
indicates

lim
x! inf�1 j�0ðxÞj ¼ 0: (15)

For our purpose, however, we need to strengthen this result
into the following.

Lemma 2.—We have the full limit

lim
x!�1�

0ðxÞ ¼ 0: (16)

Proof.—Using Lemma 1 and (4), we see that the quantity
ðð1� �2Þ2�0Þ0 does not change sign for x < a. Thus,
ðð1� �2Þ2�0ÞðxÞ is monotone for x < a. Combining this
observation with the facts �ð�1Þ ¼ 0 and (15), we see
that the lemma follows.

Lemma 3.—For the function �, we also have the full limit

lim
x!�1�

0ðxÞ ¼ 0: (17)

Proof.—Using Lemma 2, we see that there is a point
c 2 ð�1;1Þ such that�
m2ð1� 3�2Þcos22�

A
� ð�0Þ2 �m2sin22�

�
ðxÞ> 0;

1� �2ðxÞ> 0; x < c: (18)

This result allows us to get from (3) the equation

�00 ¼ C0ðxÞ�; C0ðxÞ> 0; x < c: (19)

Hence, �ðxÞ � 0 for x < c or � � 0 otherwise it will
conflicts with the maximum principle in view of the bound-
ary condition �ð�1Þ ¼ 0. Assuming � 6�0 and applying
�ðxÞ � 0 and (19), we see that �0ðxÞ is monotone. In view
of this result and the finite-energy condition, we see that
the proof follows.
To proceed further, we consider the quantities

P ¼ ð1� �2Þ2�0 � ð1� �2Þ2m sin2�; (20)

Q ¼ �0 �m

A
�ð1� �2Þ cos2�; (21)

in terms of a solution pair ð�;�Þ of (3) and (4) under the
boundary condition (5) and the finite-energy condition (10).
Lemmas 2–3 and (5) imply that

lim
x!�1PðxÞ ¼ 0; lim

x!�1QðxÞ ¼ 0: (22)

We now use (22) to establish the following fact.
Lemma 4.—Actually we have P � 0 and Q � 0.
Proof.—In view of (3) and (4), we obtain the following

differential equations fulfilled by the pair ðP;QÞ:
P0 ¼ �2m cos2�Pþ 4m�ð1� �2Þ sin2�Q; (23)

Q0 ¼� 1

Að1��2Þ3 ð�P
2þmð1��2Þ3ð1�3�2Þcos2�QÞ:

(24)

Thus, we have

ðP2þQ2Þ0 ¼�4mcos2�P2

þ2

�
4m�ð1��2Þsin2�� �P

Að1��2Þ3
�
PQ

�2m

A
ð1�3�2Þcos2�Q2

���ðP;QÞ; (25)

where� may be identified with a ‘‘quadratic form’’ which
is represented by the field-dependent matrix
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MðxÞ ¼
4m cos2� �4m�ð1� �2Þ sin2�þ �P

Að1��2Þ3

�4m�ð1� �2Þ sin2�þ �P
Að1��2Þ3

2m
A ð1� 3�2Þ cos2�

0
@

1
A; (26)

so that

�ðP;QÞ ¼
�
P

Q

�
�
MðxÞ

�
P

Q

�
: (27)

In view of (5) and (22), we have

lim
x!�1MðxÞ ¼ 4m 0

0 2m
A

 !
: (28)

Therefore, we can find some x0 2 ð�1;1Þ and constants
0< �1 < �2 <1 such that

�1ðP2 þQ2Þ � �ðP;QÞ � �2ðP2 þQ2Þ; x � x0:

(29)

Inserting (29) into (25), we arrive at the inequality

��2ðP2þQ2Þ � ðP2þQ2Þ0 ���1ðP2þQ2Þ; x� x0:

(30)

If ðP2 þQ2Þðx0Þ> 0, we can integrate (30) to obtain

ðP2þQ2Þðx0Þe�1ðx0�xÞ � ðP2þQ2ÞðxÞ
�ðP2þQ2Þðx0Þe�2ðx0�xÞ; x<x0:

(31)

Letting x ! �1, we have ðP2 þQ2ÞðxÞ ! 1, contradict-
ing Lemmas 2–3 and (5), which indicate that Pð�1Þ ¼
Qð�1Þ ¼ 0.

If Pðx0Þ ¼ Qðx0Þ ¼ 0, we may use this condition in the
coupled system of the first-order equations (23) and (24)
and the uniqueness theorem for the initial value problems
of ordinary differential equations to infer that P � 0 and
Q � 0 so that the proof of the lemma follows.

We can now establish
Theorem 5.—In the context of finite-energy solutions

satisfying the boundary condition (5), the Euler-Lagrange
equations (3) and (4) of the kink soliton energy (1) and the
BPS equations (8) and (9) are equivalent. Thus, ð�; �Þ is a
solution with a nontrivial � component if and only if
�ðxÞ � 0, that is either �ðxÞ> 0 or �ðxÞ< 0, for all
x 2 ð�1;1Þ.

Proof.—Let ð�; �Þ be a solution pair. Then Lemma 4
gives us Q � 0. So (8) is fulfilled. Hence there is no point
x0 such that �2ðx0Þ ¼ 1 otherwise the uniqueness theorem
will imply that �2ðxÞ ¼ 1 for all x, which is inconsistent

with the boundary condition �ð�1Þ ¼ 0. Thus,
1� �2ðxÞ � 0 for any x. Inserting this result into the con-
clusion P � 0 arrived at in Lemma 4, we see that (9) is also
fulfilled.
If � 6�0, then �ðxÞ � 0 for any x 2 ð�1;1Þ since by

virtue of the equation (8) and the uniqueness theorem we
deduce � � 0 if there is a point x0 such that �ðx0Þ ¼ 0.
The above theorem allows us to focus on the BPS

equations (8) and (9) which are upper triangular and can
be integrated readily.
In fact, integrating (9), we have

�ðxÞ ¼ arctanðce2mxÞ; c > 0: (32)

Substituting (32) into (8) with

cos� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2e4mx

p ; (33)

and assuming � > 0, we obtain a separable equation which
can be integrated to give us

ln
�2

1� �2
¼ 2m

A

Z 1� c2e4mx

1þ c2e4mx
dx

¼ 1

A
ð2mx� lnð1þ c2e4mxÞÞ þ C; (34)

where C is an integrating constant.
It will be convenient to absorb the constant c > 0 with

an initial reference point, x0, so that c ¼ e�2mx0 . Thus, with
� > 0, we may summarize our solution into the formulas

�ðxÞ ¼ arctanðe2mðx�x0ÞÞ; (35)

�ðxÞ¼
�

q�ðx�x0Þ
1þq�ðx�x0Þ

�1
2
; �ðxÞ¼ e

2m
A x

ð1þe4mxÞ1A ; (36)

where q > 0 is another free parameter. Hence the explicit
solution depends on two free parameters, x0 and q.
From the structure of Eqs. (8) and (9), we see that if

ð�;�Þ is a solution, so is ð��;�Þ. Thus, we have obtained
all possible finite-energy solutions of (3) and (4) subject to
the boundary condition (5).
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