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We investigate the real-time dynamics of the chiral magnetic effect in quantum electrodynamics and

quantum chromodynamics. We consider a field configuration of parallel (chromo)electric and (chromo)

magnetic fields with a weak perpendicular electromagnetic magnetic field. The chiral magnetic effect

induces an electromagnetic current along this perpendicular magnetic field, which we will compute using

linear response theory. We discuss specific results for a homogeneous sudden switch-on and a pulsed

(chromo)electric field in a static and homogeneous (chromo)magnetic field. Our methodology can be

easily extended to more general situations. The results are useful for investigating the chiral magnetic

effect with heavy ion collisions and with lasers that create strong electromagnetic fields. As a side result

we obtain the rate of chirality production for massive fermions in parallel electric and magnetic fields that

are static and homogeneous.
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I. INTRODUCTION

In quantum electrodynamics (QED) and quantum
chromodynamics (QCD) certain gauge field configura-
tions will induce chirality as follows from the axial Ward
identity [1,2]. These gauge field configurations have a
net topological charge density, which means that the
contraction of the field strength tensor with its dual is
nonvanishing. An example of such a gauge field con-
figuration is one in which the (chromo)electric and
(chromo)magnetic fields are parallel. For massless par-
ticles, chirality is the asymmetry between the number of
particles plus antiparticles with right-handed helicity and
the number of particles plus antiparticles with left-
handed helicity. Here right-handed helicity means that
spin and momentum are parallel, whereas left-handed
helicity means they are antiparallel. If a system of
charged fermions possesses a net chirality, then an ap-
plied (electromagnetic) magnetic field will induce an
electromagnetic current in the direction of the magnetic
field [3]. This is called the chiral magnetic effect. In
magnetic fields that are large enough to fully polarize
the fermions, one can easily convince oneself that the
magnitude of this current is equal to the chirality times
the absolute value of the fermion charge [4].

To improve the understanding of the chiral magnetic
effect it is important to obtain the magnitude of the induced
electromagnetic current in different situations. In many
studies of the chiral magnetic effect the chirality is intro-
duced by hand through a chiral chemical potential �5

[3,5,6]. However, in order to get a full understanding of
the chiral magnetic effect, one should include the dynamics
that leads to a net chirality. Such dynamical studies have
been performed in Euclidean space-time using lattice QCD

[7] and with analytic methods, both in Euclidean [8,9] and
Minkowski [10] space-time.
In this article we will study the real-time dynamics of

the chiral magnetic effect with an analytic method. We will
consider a specific gauge field configuration of parallel
homogeneous (chromo)electric and (chromo)magnetic fields
that are pointing in the z direction. These parallel fields are
the source of the chirality. The (chromo)magnetic field is
assumed to be constant in time, but the (chromo)electric
field can have any time dependence. Perpendicular to these
fields we will consider an electromagnetic magnetic field
with arbitrary time dependence that points in the y direc-
tion. We have sketched the situation in Fig. 1. The goal of
this article is to obtain the current density in the y direction,
which is due to the chiral magnetic effect.
The chiral magnetic effect will take place unsuppressed

if the fields have a magnitude that is at least of order of the
fermion mass squared. In the near future, one hopes to
create such enormous electromagnetic fields with high
intensity lasers (see e.g., Ref. [11]). If one could engineer
a field configuration like the one of Fig. 1 with these lasers,
one could falsify the chiral magnetic effect in QED in a
controlled environment. In heavy ion collisions a similar
configuration built out of flux tubes of parallel chromo-
electric and chromomagnetic fields is induced [12].
Perpendicular to these color fields a large electromagnetic
magnetic field is generated through the currents created by
the colliding charged ions [4,13].
In QCD the probability of generating gauge field con-

figurations with positive and negative topological charge is
equal (assuming � ¼ 0). Hence in heavy ion collisions, the
current along the perpendicular field vanishes on average.
However, because of fluctuations in the initial state [12]
and the presence of sphalerons [14], the topological charge
fluctuates. Hence the current along the perpendicular
magnetic field will fluctuate as well. That will lead to*warringa@th.physik.uni-frankfurt.de
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differences in net electric charge between the two sides of
the reaction plane (the plane in which the beam axis and
the impact parameter lie) on an event-by-event basis [15].
This effect can be analyzed experimentally through a
charge correlation study [16]. Charge correlations have
indeed been observed at both the Relativistic Heavy Ion
Collider [17] and the Large Hadron Collider [18].
However, currently it is not clear if these correlations are
caused by the chiral magnetic effect or by another mecha-
nism [19]. A possible observation of the chiral magnetic
effect in QCD can teach us about the relevance of configu-
rations with topological charge.

Theoretically, the field configuration displayed in Fig. 1
is interesting, because when all fields are static and homo-
geneous it is possible to obtain a full analytic expression
for the induced current density along the perpendicular
magnetic field [10]. The current density behaves exactly
according to the qualitative expectations of the chiral
magnetic effect. For example, for a large perpendicular
magnetic field the magnitude of the current was found to be
equal to the chirality times the absolute value of the charge
of the fermion. Furthermore, the current density is sup-
pressed by the fermion mass, and vanishes if there is no
chirality production.

The calculation in Ref. [10] was built upon a nice argu-
ment based on Lorentz transformations and the particle
production rate in parallel, homogeneous and static fields.
However, this argument cannot be applied to more general
situations that are useful to investigate. For example, in
heavy ion collisions the magnetic field has a strong time
dependence. Furthermore, with high-intensity lasers one
will create inhomogeneous and time-dependent fields. And
for purely academic reasons it is of interest to analyze the
real-time dynamics of the chiral magnetic effect in a
spherical symmetric background gluon field that carries
one unit of topological charge, and is a solution of the
Yang-Mills equations.

To obtain the induced current density along the magnetic
field in a general situation one can in principle just solve
the Dirac equation numerically, and construct the current
from the solutions. However, this might be quite difficult in
practice. In order to make progress, we will start a program

to investigate the chiral magnetic effect using linear
response theory. We will expand to first order in the elec-
tromagnetic field that is the source of the perpendicular
magnetic field. In this way we can investigate the chiral
magnetic effect for weak perpendicular magnetic fields
that have arbitrary space and time dependence. In practical
terms we will confirm in this article the results of Ref. [10]
in the weak magnetic field limit. Furthermore we will
analyze the chiral magnetic effect in pulsed electric fields.
Most of the calculations in this article will be performed

in QED. From the QED results it is easy to obtain the
results for QCD as in Ref. [10] and as explained at the end
of the introduction. We hope that our results will inspire the
reader to perform other studies of the chiral magnetic effect
using linear response theory.
This article is organized as follows. In Sec. II, we will

construct the fermion propagator of QED in a background
of parallel electric and magnetic fields. To support Ansätze
made in Ref. [10], we compute the electromagnetic current
density for massive fermions analytically in Sec. III. In this
section we will also obtain an analytic expression for the
rate of chirality production for massive fermions in parallel
electric and magnetic fields. In Sec. IV, we will then apply
linear response theory to obtain the induced current density
along a magnetic field that is perpendicular to these back-
ground fields. We will discuss our numerical results in
Sec. Vand show among other things that we can reproduce
the results of Ref. [10] in the limit of weak magnetic fields.
The conclusions of this work can be found in Sec. VI.
Some details of this work can be found in the appendi-

ces. In Appendix A, we give several relations involving the
wave functions in a magnetic field. Finally in Appendix B,
we discuss the wave functions in a sudden switch-on
electric field.
The notational conventions we will use in this article are

summarized below. We also explain the relation between
the QED and the QCD setup below.

A. Notation

We will use as a metric g�� ¼ diagð1;�1;�1;�1Þ.
We write p ¼ p� ¼ ðp0;pÞ to denote a four-vector. A
component of a four-vector will be written with either
numbers or with an italic sub- or superscript. For example,
pz¼p3¼�pz¼�p3. We will use roman subscripts to
indicate a component of a three-vector, i.e.,p¼ðpx;py;pzÞ¼
ðpx;py;pzÞ. Hence pz ¼ pz ¼ �pz. Likewise we write
x ¼ ðxx; xy; xzÞ which we most often simplify to

x ¼ ðx; y; zÞ.

B. Relation between QCD and QED setup

As in Ref. [10] we consider an Abelianized gluon field
configuration of the form Aa

� ¼ A�n
a in the QCD setup.

Here na denotes a direction in the adjoint space. Since
the electromagnetic current density, the object we wish
to compute, is gauge invariant, we can perform a gauge

FIG. 1 (color online). Field configuration in which the chiral
magnetic effect is studied in this article. The electric field along
the z-direction (Ez) is homogeneous and can have arbitrary time
dependence. The magnetic field along the z-direction is static
and homogeneous. The goal is to compute the current density jy
along the magnetic field in the y-direction (By).

HARMEN J. WARRINGA PHYSICAL REVIEW D 86, 085029 (2012)

085029-2



transformation to rotate na to the a ¼ 3 direction. From the
covariant derivative D� ¼ @� � igA�t

3, it then follows

that the red quarks effectively experience an electromag-
netic field of magnitude qA� ¼ �gA�=2 whereas the

green quarks experience an effective electromagnetic field
with size qA� ¼ gA�=2. The blue quarks are not affected

by the field. Here q is the charge of the fermion and g is the
QCD coupling constant. The current density along the
perpendicular magnetic field in the QCD setup can thus
be obtained from the QED result, yielding

jy;QCD ¼ 2
X
f

jy;QEDðqEz ¼ gEz=2;

qBz ¼ gBz=2; q ¼ qf;m ¼ mfÞ: (1)

Here f is a sum over quark flavors, m is the mass, and
(Ez)Ez and (Bz)Bz denote respectively the z component of
the (chromo)electric and (chromo)magnetic field.

There is an important difference between the QED and
QCD setup. In QED the electromagnetic current has also a
component in the z direction due to acceleration of charges
along the electric field. In the QCD setup however, this
contribution to the electromagnetic current vanishes due to
a cancellation from the contribution of red and green
quarks. The electromagnetic current in the QCD setup
has thus only a component in the y direction due to the
chiral magnetic effect.

II. FERMION PROPAGATOR IN
ELECTROMAGNETIC BACKGROUND

The goal of this section is to obtain a convenient
expression for the fermion propagator in a background of
electric and magnetic fields both pointing in the z direction.
We will consider a homogeneous static magnetic field,
B ¼ Bzez. The electric field is assumed to be homogene-
ous as well with an arbitrary time dependence,E ¼ EðtÞez.
The corresponding gauge fields will be chosen as follows:
A0 ¼ 0 and A ¼ ð0; Bzx; AzðtÞÞ with limt!�1AzðtÞ ¼ 0 so
that EðtÞ ¼ �@tAzðtÞ.

In this section we will first compute the Dirac spinors in
this electromagnetic background. Using these spinors we
will construct the quantum field for fermions, from which
we will derive the different fermion propagators.

A. Dirac spinors

The spinors c ðxÞ can be obtained from the Dirac equa-
tion which reads

ði��D� �mÞc ðxÞ ¼ 0; (2)

where the covariant derivative D� ¼ @� þ iqA� with q

the electric charge of the fermion.
To solve the Dirac equation in the background given

above we will apply the Ritus method [20]. This method
amounts to making the following Ansatz for the particle

spinors (þ) with momentum p and antiparticle spinors (�)
with momentum �p:

cþ
psðxÞ ¼ Fþ

p ðtÞGpðxÞeipyyþipzzusð~pþÞ; (3)

c�
psðxÞ ¼ F�

p ðtÞGpðxÞeipyyþipzzvsð~p�Þ: (4)

Here the four-vector ~p
�
� ¼ ð�; 0;��; 0Þ, and usð~pþÞ and

vsð~p�Þ denote the usual particle and antiparticle spinors of
the free Dirac equation with momentum ~p�. The free Dirac
spinors satisfy the following equations:

ð~6pþ�mÞusð~pþÞ¼0; ð~6p�þmÞvsð~p�Þ¼0: (5)

Furthermore, � and � are constants that depend on p, and
will be determined below. Finally, F�

p ðtÞ is a 4� 4 matrix

that has to commute with �1 and �2, and GpðxÞ a 4� 4

matrix that should commute with �0 and �3.
By inserting the Ritus Ansatz into the Dirac equation

it follows that this Ansatz is indeed a general solution
if the matrices F�

p ðtÞ and GpðxÞ obey the following two

equations

½i�0@t � �3ðpz � qAzðtÞÞ�F�
p ðtÞ ¼ ��F�

p ðtÞ�0; (6)

½i�1@x � �2ðpy � qBzxÞ�GpðxÞ ¼ �GpðxÞ�2: (7)

We will solve these two equations explicitly below.

By multiplying Eq. (5) from the left with ð~6p� �mÞ it
follows that ~p2� ¼ m2, so that �2 ¼ �2 þm2. We will
normalize the free Dirac spinors as in Ref. [21]. In
that convention the polarization sums, which are the only
nontrivial property of the free spinors required in this
article, read X

s¼�
usðpÞ �usðpÞ ¼ ð6pþmÞ; (8)

X
s¼�

vsðpÞ �vsðpÞ ¼ ð6p�mÞ: (9)

In the remaining part of this subsection, we will deter-
mine the matrices F�

p ðtÞ andGpðxÞ, and the values of � and

� explicitly. Without loss of generality both F�
p ðtÞ and

GpðxÞ can be taken diagonal.

1. Computation of GpðxÞ
From Eq. (7) it follows that GpðxÞ is a function of

x� py=qBz. Therefore let us write the diagonal elements

of GpðxÞ as gaðx� py=qBzÞ with a ¼ 1 . . . 4. By multi-

plying Eq. (7) from the left with �2 one finds that

ð@x þ qBzxÞg1ðxÞ ¼ �g4ðxÞ; (10)

ð@x � qBzxÞg4ðxÞ ¼ ��g1ðxÞ: (11)

Since the other two components satisfy the same set
of equations, g2ðxÞ is proportional to g4ðxÞ and g3ðxÞ is
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proportional to g1ðxÞ. In order to ensure that GpðxÞ
commutes with �0 and �3 as required, we have to take
g2ðxÞ ¼ g4ðxÞ and g1ðxÞ ¼ g3ðxÞ.

By combining Eqs. (10) and (11) one finds that gaðxÞ
satisfies the following equation:

ð�@2x þ q2B2
zx

2 � sqBzÞgaðxÞ ¼ �2gaðxÞ; (12)

with s ¼ 1 for a ¼ 1, 3 and s ¼ �1 for a ¼ 2, 4. Equation
(12) is the eigenvalue equation of a harmonic oscillator
with angular frequency jqBzj. The eigenvalues are given
by �2 ¼ ð2nþ 1ÞjqBzj � sqBz with quantum number
n¼0;1;2; . . . The corresponding eigenfunctions�nðxÞ read

�nðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2nn!

p
�jqBzj

�

�
1=4

Hn

� ffiffiffiffiffiffiffiffiffiffiffi
jqBzj

q
x
�

� exp

�
� 1

2
jqBzjx2

�
; (13)

where HnðzÞ denotes a Hermite polynomial of degree n.
For convenience we define ��1ðxÞ ¼ 0. The eigenfunc-
tions �nðxÞ are normalized asZ 1

�1
dx�nðxÞ�mðxÞ ¼ 	nm; (14)

and satisfy the completeness relation

X1
n¼0

�nðxÞ�nðx0Þ ¼ 	ðx� x0Þ: (15)

Let us now write �2 ¼ 2kjqBzj with k ¼ 0; 1; 2; . . . The
full solution to Eq. (12) can be found by using that g1ðxÞ
and g4ðxÞ must have the same value of �2. This gives
for qBz > 0, g1ðxÞ ¼ c1�kðxÞ and g4ðxÞ ¼ c4�k�1ðxÞ.
Choosing the normalization such that c1 ¼ 1, it follows
from Eq. (10) that c4 ¼ c1 ¼ 1. In this way one obtains

also the sign of �, giving � ¼ sgnðqBzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqBzjk

p
. As long

as qBz > 0 one then finds gaðxÞ ¼ �kðxÞ for a ¼ 1, 3
and gaðxÞ ¼ �k�1ðxÞ for a ¼ 2, 4. If qBz < 0 the solution
is gaðxÞ ¼ �k�1ðxÞ for a ¼ 1, 3 and gaðxÞ ¼ �kðxÞ for
a ¼ 2, 4.

The diagonal matrix GðxÞ can now be written in the
following compact notation:

GpðxÞ ¼
X
s¼�

gpsðxÞP s
g; (16)

where we introduced gpþðxÞ ¼ �kðx� py

qBz
Þ and gp�ðxÞ ¼

�k�1ðx� py

qBz
Þ. The projection operators P s

g are given by

P s
g ¼ ð1þ is sgnðqBzÞ�1�2Þ=2.

2. Computation of F�
p ðtÞ

Let us write the diagonal elements of the matrix F�
p ðtÞ as

f�a ðtÞ with a ¼ 1 . . . 4. Multiplying Eq. (6) from the left
with �0 yields

½i@t þ pz � qAzðtÞ�f�1 ðtÞ ¼ ��f�3 ðtÞ; (17)

½i@t � pz þ qAzðtÞ�f�3 ðtÞ ¼ ��f�1 ðtÞ: (18)

Since the other two components satisfy the same set of
equations it follows that f�2 ðtÞ / f�3 ðtÞ and f�4 ðtÞ / f�1 ðtÞ.
In order to ensure that F�

p ðtÞ commutes with �1 and �2 we

have to take f�2 ðtÞ ¼ f�3 ðtÞ and f�4 ðtÞ ¼ f�1 ðtÞ. We can

therefore write

F�
p ðtÞ ¼

X
s¼�

f�psðtÞP s
f; (19)

where f�pþðtÞ ¼ f�1 ðtÞ, f�p�ðtÞ ¼ f�3 ðtÞ and the projection

operators P s
f ¼ ð1þ s�3�0Þ=2.

By taking the complex conjugate of Eqs. (17) and (18) it
can be seen that f�psðtÞ satisfies the same two differential

equations as fþp�sðtÞ�. Hence both functions are propor-

tional to each other. Since it is natural to normalize the
particle and antiparticle spinors in the same way, we take

f�psðtÞ ¼ fþp�sðtÞ�: (20)

We will use this relation throughout to express our final
results in terms of particle wave functions only.
From Eqs. (17) and (18) it also follows that the sum

jf�pþðtÞj2 þ jf�p�ðtÞj2 is independent of time. As it turns out

it will be convenient to normalize this combination as

jf�pþðtÞj2 þ jf�p�ðtÞj2 ¼ 2: (21)

In the next subsection we will check that the normaliza-
tions we have made are consistent, by verifying that the
quantum fields satisfy the canonical anticommutation
relations.
In general the wave functions f�psðtÞ can only be

obtained numerically. There are only a few cases in which
analytic solutions are known. We will now discuss a few of
them.
For vanishing electromagnetic field, AzðtÞ ¼ 0, combin-

ing Eqs. (17) and (18) gives

½�@2t � p2
z�f�psðtÞ ¼ �2f�psðtÞ; (22)

with s¼�. The solution of the last equation is a linear

combination of phase factors expð�ip0tÞ, where p0¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2þp2

z

p
. The two different solutions correspond to

particles and antiparticles; hence f�s ðtÞ ¼ c�s expð�ip0tÞ
where c�s is a normalization constant. From Eq. (17)
it follows that the ratio of the normalization constants
is c�þ=c�� ¼ �=ðp0 � pzÞ. Applying Eq. (21) gives
ðc�þÞ2 þ ðc��Þ2 ¼ 2, so that

f�psðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0 � spz

p0

s
expð�ip0tÞ: (23)

If � ¼ 0, the two differential equations for f�psðtÞ
decouple. In that case Eqs. (17) and (18) can be integrated
straightforwardly, yielding
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f�psðtÞj�¼0

¼ ffiffiffi
2

p
exp

�
�ijpzjt� is

Z t

�1
dt0qAzðt0Þ

�
�ð�spzÞ:

(24)

In a sudden switch-on electric field the wave func-
tions f�psðtÞ are known analytically [22]. We review the

calculation in Appendix B. It is also possible to
obtain an analytic solution in a pulsed field of the form
EzðtÞ ¼ Ez=cosh

2ðt=
Þ [23].

B. Quantum field

The Dirac field in the electromagnetic background is
given by

�ðxÞ ¼ X
s¼�

X
p

1ffiffiffiffiffiffiffiffiffi
2�p

p �
bpsc

þ
psðxÞ þ dy�psc�

psðxÞ
�
; (25)

where we introduced
P

p � P1
k¼0

R dpy

2�

R dpz

2� and �p ¼ �.

Here c�
psðxÞ are the particle (þ) and antiparticle (�)

spinors in the background field, which are given explicitly
in Eqs. (3) and (4). The operators bps and dps denote

respectively the annihilation operators for particles and
antiparticles with momentum p and spin s in a background
magnetic field. The creation operator for antiparticles in
Eq. (25) has negative momentum, reflecting the fact that in
our notation c�

psðxÞ denotes an antiparticle spinor with

momentum �p.
The creation and annihilation operators satisfy the fol-

lowing anticommutation relations:

fbps; byp0s0 g ¼ fdps; dyp0s0 g
¼ ð2�Þ2	kk0	ðpy � p0

yÞ	ðpz � p0
zÞ	ss0 : (26)

All other anticommutation relations vanish.
To check that all normalization conditions are consistent

we will verify that the quantum field given in Eq. (25)
satisfies the canonical equal-time anticommutation rela-
tion, which reads

f�aðt; xÞ;�y
b ðt; x0Þg ¼ 	ab	

3ðx� x0Þ: (27)

Inserting the explicit expression of the quantum field and
using the properties of the creation and annihilation opera-
tors gives

f�ðt; xÞ;�yðt; x0Þg ¼ X
u;s¼�

X
p

1

2�p

c u
psðt; xÞc u

psðt; x0Þy:

(28)

Inserting the explicit solution for the spinors, and summing
over spins by applying Eqs. (8) and (9) yields

f�ðt;xÞ;�yðt;x0Þg¼ X
u¼�

X
p

1

2�p

eipyðy�y0Þþipzðz�z0Þ

�fuFu
pðtÞ�0Fu

pðtÞy½mGpðxÞGpðx0Þ
��GpðxÞ�2Gpðx0Þ�
þ�pF

u
pðtÞFu

pðtÞyGpðxÞGpðx0Þg: (29)

The last equation can be simplified by inserting the explicit
expression for F�

p ðtÞ. In this way we find that

1

2

X
u¼�

Fu
pðtÞFu

pðtÞy ¼ 14; (30)

X
u¼�

uFu
pðtÞ�0Fu

pðtÞy ¼ 0: (31)

To obtain the last two equations, we have used that by
combining Eqs. (20) and (21) it can be shown that

jfþpsðtÞj2 þ jf�psðtÞj2 ¼ 2; (32)

fþpsðtÞfþp�sðtÞ� ¼ f�psðtÞf�p�sðtÞ�: (33)

Inserting Eqs. (30) and (31) into Eq. (29) yields

f�ðt; xÞ;�yðt; x0Þg ¼ X
p

eipyðy�y0Þþipzðz�z0ÞGpðxÞGpðx0Þ:

(34)

By using the explicit expression for GpðxÞ and applying

the completeness relation Eq. (15), the canonical anticom-
mutation relation, Eq. (27), follows directly. Hence the
normalizations we have chosen are consistent.

C. Propagator

Let us introduce the following definitions for the two-
point correlation functions:

Sþabðx; x0Þ � h0j�aðxÞ ��bðx0Þj0i; (35)

S�abðx; x0Þ � h0j ��bðx0Þ�aðxÞj0i: (36)

Here j0i denotes the in-vacuum, which in this article is
the vacuum before the electric field has been switched on.
The different propagators (retarded, advanced, Feynman)
can be found by the appropriate linear combinations of the
two-point functions. By applying Eq. (25) it follows that
the two-point correlation functions expressed in terms of
Dirac spinors read

S�abðx;x0Þ¼
X
s¼�

X
p

1

2�p

½c�
psðxÞ�a½c�

psðx0Þy�0�b: (37)

By inserting the explicit expressions for the Dirac
spinors, and summing over spins, the two-point correlation
functions become
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S�ðx; x0Þ ¼ X
p

1

2�p

eipyðy�y0Þþipzðz�z0ÞF�
p ðtÞGpðxÞ

� ð~6p� �mÞ�0F�
p ðt0Þy�0Gpðx0Þ: (38)

To evaluate the current density and related quantities,
one has to contract a two-point correlation function with an
arbitrary combination of gamma matrices denoted by �.
These quantities can be expressed in terms of S�ðx; x0Þ in
the following charge symmetric way:

h0j ��ðt; x0Þ��ðt; xÞj0i ¼ � 1

2

X
u¼�

u tr½Suðt; x; t; x0Þ��

þ 1

2
tr½�0��	ðx� x0Þ: (39)

For the current density j� we have � ¼ q��, for the
chirality n5 we have � ¼ �0�5, and for the pseudoscalar
condensate � ¼ i�5. Only for � ¼ �0 the second trace in
Eq. (39) does not vanish.

III. CURRENT AND AXIAL ANOMALY IN
PARALLEL ELECTRIC AND MAGNETIC FIELD

We will now compute the induced current density, chi-
rality density and pseudoscalar condensate in the back-
ground of parallel homogeneous time-dependent electric
and static magnetic fields. To compute these quantities we
need to evaluate the trace of S�ðx; x0Þ� as follows from
Eq. (39). This trace can be easily performed using a
symbolic manipulation program such as Mathematica.
Inserting the explicit forms of F�

p ðtÞ and GpðxÞ gives

tr½S�ðx; x0Þ�3� ¼ � 1

2

X
p

X
r;s¼�

eipyðy�y0Þþipzðz�z0Þ

� sf�psðtÞf�psðt0Þ�gprðxÞgprðx0Þ; (40)

tr½S�ðx; x0Þ�0�5� ¼ � 1

2

X
p

X
r;s¼�

eipyðy�y0Þþipzðz�z0Þ

� sgnðqBzÞsf�psðtÞf�psðt0Þ�
� rgprðxÞgprðx0Þ; (41)

tr½S�ðx; x0Þ�5� ¼ �X
p

X
r;s¼�

m

2�p

eipyðy�y0Þþipzðz�z0Þ

� sgnðqBzÞsf�psðtÞf�p�sðt0Þ�
� rgprðxÞgprðx0Þ: (42)

We have to evaluate these correlators at equal time (t¼t0)
with the x and y components of the direction vectors equal
(x ¼ x0 and y ¼ y0). For reasons we explain below, we will
keep z and z0 different and introduce � � z� z0.

In this situation we can perform the py integration using

the orthogonality properties of the functions gpsðxÞ. This
yields

� 1

2

X
u¼�

u tr½Suðt;�Þ�3�

¼ jqBzj
4�

X1
k¼0

�k

Z dpz

2�
eipz�

X
s¼�

sjfþpsðtÞj2; (43)

� 1

2

X
u¼�

u tr½Suðt;�Þ�0�5�

¼ qBz

4�

Z dpz

2�
eipz�

X
s¼�

sjfþpsðtÞj2
��������k¼0

; (44)

� 1

2

X
u¼�

u tr½Suðt;�Þ�5�

¼ sgnðmÞ qBz

4�

Z dpz

2�
eipz�

X
s¼�

sfþpsðtÞfþp�sðtÞ�
��������k¼0

;

(45)

where �k ¼ 1 for k ¼ 0 and �k ¼ 2 for k > 0. We have
made use of Eqs. (20) and (21) to express all results in
terms of particle wave functions fþpsðtÞ.
The quantities we will compute can be obtained from

Eqs. (43)–(45) in the limit � ! 0. Naively putting � ¼ 0
will not give a well-defined result, due to the presence of
ultraviolet divergences. Therefore we have to regularize
our expressions. For consistency, this regularization should
be performed in a gauge invariant way.
A natural way to achieve this is by using the point-split

regularization [24]. Instead of evaluating the two-point
functions at z ¼ z0 one computes them at z� z0 � �
and integrates them over a distribution hð�Þ. This distri-
bution has to be normalized to unity, and should be
sharply peaked around � ¼ 0. We will choose hð�Þ ¼
expð��2=4�Þ=ð2 ffiffiffiffiffiffiffi

��
p Þ and take the limit � ! 0.

In order to maintain gauge invariance, the correlators
S�ðt;�Þ have to be augmented by a gauge link U connect-
ing z with z0. This gauge link is for both Sþðt;�Þ and
S�ðt;�Þ given by

Uðt;�Þ ¼ exp

�
iq
Z z

z0
dx�A�ðxÞ

�
¼ exp½�iqAzðtÞ��:

(46)

Summarizing, the full point-split regularization prescrip-
tion reads

trr½S�ðtÞ�� ¼ lim
�!0

Z
d�hð�ÞUðt;�Þtr½S�ðt; �Þ��; (47)

here the subscript r stands for ‘‘regularized.’’
We will now apply this regularization prescription to

Eqs. (43)–(45) to evaluate the current density, chirality
density and pseudoscalar condensate. The integral over �
can be performed exactly giving
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jzðtÞ ¼ lim
�!0

q
jqBzj
2�

X1
k¼0

�k

Z dpz

2�
e��½pz�qAzðtÞ�2

� ½jfþpþðtÞj2 � 1�; (48)

n5ðtÞ ¼ lim
�!0

qBz

2�

Z dpz

2�
e��½pz�qAzðtÞ�2 � ½jfþpþðtÞj2k¼0 � 1�;

(49)

ðtÞ ¼ lim
�!0

i sgnðmÞ qBz

4�

Z dpz

2�
e��½pz�qAzðtÞ�2

� X
s¼�

sfþpsðtÞfþp�sðtÞ�
��������k¼0

; (50)

where we used that from Eq. (21) it follows thatP
sjfþpsðtÞj2 ¼ 2ðjfþpþðtÞj2 � 1Þ. In the absence of a regu-

lator and in the limit of vanishing magnetic field, Eq. (48)
agrees with the results obtained in Ref. [25].

We can now verify the axial anomaly relation. In the
massless limit one can show that jfþpþðtÞj2k¼0 � 1 ¼
�sgnðpzÞ. We can now perform the pz integral in
Eq. (49) in the limit � ! 0 giving

n5ðtÞ ¼ � q2

2�2
BzAzðtÞ: (51)

Taking the derivative with respect to time in the last
equation gives the axial anomaly relation for massless
particles in parallel electric and magnetic fields:

dn5ðtÞ
dt

¼ q2

2�2
BzEzðtÞ: (52)

If the fermions are massive the anomaly relation
contains an additional term proportional to the pseudosca-
lar condensate. To obtain the anomaly relation in this
case we will perform the time derivative on the chirality
given in Eq. (49) explicitly. The limiting procedure � ! 0
is equivalent to performing the integration over pz in an
interval symmetric around pz ¼ qAzðtÞ. Therefore

n5ðtÞ ¼ lim
�!1

qBz

2�

Z �þqAzðtÞ

��þqAzðtÞ
dpz

2�
½jfþpþðtÞj2k¼0 � 1�: (53)

The time derivative of n5ðtÞ contains a part arising from the
integration boundaries and a part from the derivative on the
wave functions. It follows directly from Eq. (17) that

@tjfpþðtÞj2 ¼ i�p

X
s¼�

sfþpsðtÞfþp�sðtÞ�: (54)

Also we will use that �pjk¼0 ¼ jmj. Furthermore, for large

pz one can neglect qAzðtÞ, and fromEq. (23) it can be shown
that limpz!1jfpþðtÞj2 ¼ 0 and limpz!�1jfpþðtÞj2 ¼ 2. By

using Eq. (50) and applying the time derivative to the
integration boundaries it follows that

dn5ðtÞ
dt

¼ 2mðtÞ þ q2

2�2
BzEzðtÞ; (55)

which is exactly the anomaly relation in the presence
of mass.
Let us now consider a sudden switch-on electric field of

the form EðtÞ ¼ Ez�ðtÞ. We discuss the functions f�psðtÞ in
this field in Appendix B. We can only compute the induced
current density and the chirality density analytically in the
large t limit. Applying Eq. (B13) we find that for large t

djzðtÞ
dt

¼ q
jqBzjqEz

2�2
e�

�m2

jqEz j
X1
k¼0

�ke
�2�kjqBzqEz

j

¼ q
jqBzjqEz

2�2
coth

���������Bz

Ez

���������
�
e�

�m2

jqEz j;
(56)

dn5ðtÞ
dt

¼ q2EzBz

2�2
e�

�m2

jqEz j: (57)

Since these results are obtained for large t in a sudden
switch-on electric field, they are exact in a constant electric
field.
The result Eq. (56) was derived analytically in a differ-

ent way in Ref. [26]. It was also proved to be correct
numerically in Ref. [27]. The result is easy to understand
starting from the production rate of fermion-antifermion
pairs in parallel homogeneous electric and magnetic fields
[10]. That rate per unit volume equals [22,28] (see also
Refs. [29–31])

� ¼ q2EzBz

4�2
coth

�
Bz

Ez

�

�
exp

�
� m2�

jqEzj
�
: (58)

For Bz ¼ 0 this rate reduces to the pair production rate in a
homogeneous electric field [1,32]. The production of pairs
gives rise to a homogeneous current density that has to
point in the z direction because of symmetry reasons. The
particles are accelerated continuously by the electric field.
Therefore, at some point they will reach (almost) the speed
of light. Hence, every time a pair is created the current will
eventually grow by twice the charge of the fermion. So
therefore the rate of change of the current density is given
by @tjz ¼ 2q�sgnðqEzÞ. Inserting Eq. (58) we see that we
exactly recover Eq. (56). One can also use this argument in
the opposite order, in order to derive the pair production
rate from the calculation of the current density.
The result Eq. (57) generalizes the well-known

production rate of chirality in parallel electric and mag-
netic fields for massless fermions to massive fermions.
We are unaware of an earlier derivation of this result.
The mass suppresses the production of chirality. By com-
bining Eq. (57) with Eq. (55) we find that the pseudoscalar
condensate in static, homogenous and parallel electric and
magnetic fields equals

ðtÞ ¼ q2EzBz

4�2m
ðe��m2

jqEz j � 1Þ: (59)
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IV. LINEAR RESPONSE TO MAGNETIC FIELD

In the previous section we have considered a time-
dependent electric field and a constant magnetic field that
were both pointing in the z direction. To this field configu-
ration we will now add a time-dependent magnetic field in
the y direction, denoted by ByðtÞ. This magnetic field will

be accompanied by a perpendicular electric field as can be
seen from Faraday’s law, r�E ¼ �@BðtÞ=@t. The addi-
tional magnetic field will induce a current density in the y
direction. In this section we will compute this current
density to first order in ByðtÞ using linear response theory.

In the next section we will use this result to study the chiral
magnetic effect.

Let us write the full electromagnetic field as A�ðxÞ ¼
�A�ðxÞ þ ~A�ðxÞ. Here �A�ðxÞ denotes the background field,
consisting of the electric and magnetic fields pointing in

the z direction. The field ~A�ðxÞ denotes the perturbation on
this background, which in this case is the magnetic field
in the y direction with its corresponding perpendicular
electric field.

From linear response theory it follows that to first

order in ~A�ðxÞ the induced current density in the electro-

magnetic field A�ðxÞ equals j�ðxÞ ¼ j
�
A ðxÞ ¼ j

�
�A
ðxÞ þ

	j
�
�A; ~A
ðxÞ where

	j
�
�A; ~A
ðxÞ ¼

Z
d4x0���

R ðx; x0Þ ~A�ðx0Þ: (60)

Here the retarded current-current correlator (or equiva-
lently photon polarization tensor) in the background field
�A�ðxÞ is given by �

��
R ðx; x0Þ ¼ �

��
C ðx; x0Þ�ðt� t0Þ with

���
C ðx; x0Þ ¼ �iq2h0j½ ��ðxÞ���ðxÞ; ��ðx0Þ���ðx0Þ�j0i:

(61)

Using Eqs. (25) and (37) we can express ���
C ðx; x0Þ as

�
��
C ðx; x0Þ ¼ �iq2

X
u¼�

u tr½��Suðx; x0Þ��S�uðx0; xÞ�;

(62)

where S�ðx; x0Þ is the two-point correlation function in the
background field, given explicitly in Eq. (38).

Since the background electric and magnetic fields are
both pointing in the z direction, they cannot solely induce
a current in the y direction. As a result jy�AðtÞ ¼ 0. Hence

the induced current density in the y direction can only
arise from the perturbation and is therefore of the following
form:

jyðtÞ ¼
Z t

�1
dt0Hðt; t0ÞByðt0Þ; (63)

where Hðt; t0Þ can be obtained from �
��
C ðx; x0Þ as we will

explain in more detail below. The photon polarization
tensor in an electric plus magnetic background has been
studied by other authors before in different contexts [33].

Furthermore, the photon polarization tensor in a purely
magnetic background has been studied in detail in several
works [34], for recent analyses and applications we refer to
[5,35].
In the following subsections we will compute the func-

tion Hðt; t0Þ in two cases, labeled by A and B. In case Awe
will take the only nonvanishing component of the pertur-

bation field to be ~AzðxÞ ¼ �ByðtÞx. In case B the only

nonvanishing component is chosen as ~AxðxÞ ¼ ByðtÞz.
These two cases lead to the same magnetic field in the y
direction, ByðtÞ, but give rise to different perpendicular

electric fields. The only nonvanishing component of the
additional electric field is in the first case Ez ¼ @tByðtÞx,
and in the second case Ex ¼ �@tByðtÞz. By taking the

average of the two cases, one obtains a more symmetric
electric field, which is circular in the x–z plane.
If ByðtÞ is constant in time, the perpendicular electric

field vanishes and the two cases are gauge equivalent.
However, we do not know how to implement a constant
magnetic field exactly in a practical numerical calculation.
In the numerical evaluation of Eq. (63) one might replace
the lower integration bound by a finite time ta. But then one
effectively deals with a sudden switch-on perpendicular
field of the following form:

ByðtÞ ¼
8<
: 0 if t < ta;

By if t � ta:
(64)

This sudden switch-on leads to large perpendicular electric
fields, and as a result the current densities in cases A and B
can be different. To instead implement a magnetic field that
is effectively constant in time we have to switch it on
slowly. In our numerical calculations we will take a mag-
netic field of the following form:

ByðtÞ ¼

8>><
>>:
0 if t < ta;

Byðt� taÞ=ðtb � taÞ if ta 	 t 	 tb;

By if t > tb:

(65)

If we choose tb � ta large enough and tb small enough
before the important physical effects happen, the magnetic
field is effectively constant. In that situation the perpen-
dicular electric fields are small and the induced current
density in cases A and B should approximately have the
same magnitude. We will use this feature to test our
methodology.

A. ~AzðxÞ ¼ �ByðtÞx
In the case that ~AzðxÞ ¼ �ByðtÞx we obtain

Hðt; t0Þ ¼
Z

d3x0x0�23
C ðx; x0Þ: (66)

After inserting the explicit expression for S�ðx; x0Þ,
taking the trace, and integrating over y, z, p0

y and p0
z we

find
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Hðt; t0Þ ¼ �q2
X
p

X1
k0¼0

Z 1

�1
dx0x0

�
�
�p

�p

Vp;p0 ðt; t0ÞWp;p0 ðx; x0Þ
�
p0
y¼py;p

0
z¼pz

; (67)

where the functions V and W are given by

Vp;p0 ðt; t0Þ ¼ Im
X
s¼�

sfþpsðtÞfþp0sðtÞfþp�sðt0Þ�fþp0sðt0Þ�; (68)

Wp;p0 ðx; x0Þ ¼ X
s¼�

gp�sðxÞgp0sðxÞgpsðx0Þgp0sðx0Þ: (69)

The expression forHðt; t0Þ can be simplified by perform-
ing the integration over x0 followed by integration over py.

Using the relations from Appendix A it can be shown that

Z 1

�1
dpy

2�

Z 1

�1
dx0x0Wp;p0 ðx; x0Þ

��������p0
y¼py

¼
ffiffiffiffiffiffiffiffiffiffiffijqBzj

p
2�

ffiffiffi
2

p ffiffiffi
k

p ½2	k;k0 � 	k�1;k0 � 	kþ1;k0 �: (70)

Inserting Eq. (70) into Eq. (67) yields

Hðt; t0Þ ¼ q2

2�

X1
k¼1

Z 1

�1
dpz

2�
!k

�½2Vk;kðt; t0Þ�Vk;k�1ðt; t0Þ�Vk;kþ1ðt; t0Þ�pz¼p0
z
;

(71)

where

!k ¼ jqBzjkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqBzjkþm2

p : (72)

To speed up the numerical computation it is convenient to
take the wave functions with the same momenta together in
the integrand. For this reason we rewrite Eq. (71) into

Hðt; t0Þ ¼ � q2

2�

Z 1

�1
dpz

2�
!1V1;0ðt; t0Þ þ q2

2�

X1
k¼1

Z 1

�1
dpz

2�

� ½2!kVk;kðt; t0Þ �!kþ1Vkþ1;kðt; t0Þ
�!kVk;kþ1ðt; t0Þ�pz¼p0

z
: (73)

B. ~AxðxÞ ¼ ByðtÞz
If ~AxðxÞ ¼ ByðtÞz we obtain

Hðt; t0Þ ¼ �
Z

d3x0z0�21
C ðx; x0Þ: (74)

Inserting the explicit expression for the two-point function
and performing the trace, we find that

�21
C ðx;x0Þ¼ i

q2

2

X
p;p0

eiðpy�p0
yÞðy�y0Þþiðpz�p0

zÞðz�z0Þ

�
	
WA

p;p0 ðx;x0Þ
�
VA
p;p0 ðt;t0Þþ m2

�p�p0
VB
p;p0 ðt;t0Þ

�

þ�p�p0

�p�p0
WB

p;p0 ðx;x0ÞVB
p;p0 ðt;t0Þ



; (75)

where we have defined the following functions:

VA
p;p0 ðt; t0Þ ¼ Im

X
s¼�

fþpsðtÞfþp0sðtÞfþpsðt0Þ�fþp0sðt0Þ�; (76)

VB
p;p0 ðt;t0Þ¼ Im

X
s¼�

fþpsðtÞfþp0sðtÞfþp�sðt0Þ�fþp0�sðt0Þ�; (77)

WA
p;p0 ðx;x0Þ¼

X
s¼�

sgpsðxÞgp0�sðxÞgpsðx0Þgp0�sðx0Þ; (78)

WB
p;p0 ðx; x0Þ ¼

X
s¼�

sgpsðxÞgp0�sðxÞgp�sðx0Þgp0sðx0Þ: (79)

To simplify Hðt; t0Þ we can make use of the following
relation:Z dpz

2�

Z dp0
z

2�

Z
dz0z0eiðpz�p0

zÞðz�z0Þfðpz; p
0
zÞ

¼ �i
Z d �pz

2�

�
@

@h
eizhfð �pz þ h=2; �pz � h=2Þ

�
h¼0

:

(80)

Furthermore, using the relations from Appendix A it fol-
lows that Z 1

�1
dpy

2�

Z 1

�1
dx0WA

p;p0 ðx; x0Þ
��������p0

y¼py

¼ jqBzj
2�

ð	kþ1;k0 � 	k�1;k0 Þ; (81)

Z 1

�1
dpy

2�

Z 1

�1
dx0WB

p;p0 ðx; x0Þ
��������p0

y¼py

¼ 0: (82)

Using the last three equations above we find

Hðt; t0Þ ¼ �q2jqBzj
2�

X1
k¼0

Z d �pz

2�

@

@h

�
�
VA
k;kþ1ðt; t0Þ þ

m2

�k�kþ1

VB
k;kþ1ðt; t0Þ

�
; (83)

where pz ¼ �pz þ h=2 and p0
z ¼ �pz � h=2.

C. Numerical procedure

We now will discuss the details of the numerical
evaluation of the current density along the perpendicular
magnetic field. Firstly, we obtain the wave functions fþpsðtÞ
numerically through solving Eqs. (17) and (18) using a
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Runge-Kutta method implemented in MATLAB. We make
sure that we obtain fþpsðtÞ at equally spaced time steps. The

next step is to construct the integrand of Eqs. (73) and (83)
for different t0. The derivative in the integrand of Eq. (83)
is computed using finite differences. We then perform the
t0 integration in Eq. (63) using the trapezoidal rule with a
lower integration cutoff. Thereafter we perform the pz

integral, in an interval symmetric around pz ¼ 0, using
the trapezoidal rule. The upper and lower cutoff are taken
so large that varying them does not change the results. The
last step is to perform the sum over k. The results are
dominated by the small k values; therefore we sum over
k until we reach convergence. Typically one only has to
sum over a few values of k to obtain an accurate answer.

V. RESULTS

We will now study the current density generated by the
chiral magnetic effect in parallel electric and magnetic
fields with a perpendicular magnetic field as in Fig. 1.
We will compute this current density numerically using
the linear response relation Eq. (63). Since the calculation
is based on linear response, our results will be valid for
perpendicular magnetic fields that are small compared to
the parallel electric and magnetic fields.

The full electromagnetic current density has two
components. Firstly, it has a component along the perpen-
dicular magnetic field due to the chiral magnetic effect.
Secondly, it has a component in the longitudinal direction
along the electric and magnetic field due to pair produc-
tion. This component does not vanish for weak perpen-
dicular magnetic fields, and can to first order be computed
using Eq. (48). As explained in the introduction the longi-
tudinal component vanishes in the QCD setup due to a
cancellation of the contribution of red and green quarks.

The electromagnetic current density will generate fields
themselves which can modify the dynamics. This back-
reaction can be safely neglected as long as the fields
induced by the currents stay small compared to the back-
ground fields. Such regime can always be reached by
considering times shortly after the switch-on of the back-
ground fields. In this article we will not consider this
backreaction and leave its study for future work.

We will present results for the chiral magnetic effect in a
sudden switch-on electric field and a pulsed electric field
below. We consider a perpendicular magnetic field that is
effectively constant in time as in Eq. (65). The formalism
we have developed in this article allows one to analyze the
chiral magnetic effect in other settings as well.

We have performed all numerical calculations in an
effectively constant magnetic field using both gauge field
choices A and B. These choices are approximately gauge
equivalent, and the accuracy of the approximation can be
improved by switching on the effectively constant mag-
netic field more slowly. The calculations performed using
gauge field choices A and B are independent and hence can

be used to test our methodology. In the numerical calcu-
lations in an effectively constant magnetic field we have
found excellent agreement between the results obtained
with choices A and B.

A. Sudden switch-on electric field

Here we will consider the chiral magnetic effect in a
sudden switch-on electric field of the form EðtÞ ¼ Ez�ðtÞ.
The corresponding gauge field reads AzðtÞ ¼ �Ez�ðtÞt.
The perpendicular magnetic field is taken to be effectively
constant. In Ref. [10], the current density in the y direction
was computed exactly for t 
 0. For small By and t 
 0

the rate of current density generation equals [10]

@tjy ¼
q2By

2�2

jqEzjB2
z

B2
z þ E2

z

coth

�
Bz

Ez

�

�
exp

�
� m2�

jqEzj
�
: (84)

In order to cancel the rapid oscillations in the current
density arising from the sudden switch-on of the electric
field we will investigate the running average of the current
density, here defined as

hjyðtÞi ¼
Z tþc=

ffiffiffiffiffiffiffiffi
jqEzj

p

t�c=
ffiffiffiffiffiffiffiffi
jqEzj

p dt0jyðt0Þ: (85)

We display the results of the numerical computation of the
running average of the current density using c ¼ 1 in Fig. 2

for different values of ~m ¼ m=
ffiffiffiffiffiffiffiffiffiffiffijqEzj

p
and Bz=Ez ¼ 1. The

linear response calculation shows that after the switch-on
the current quickly grows linear with time. A fermion mass
suppresses the production of chirality as can be seen from
Eq. (57). This explains why the current density is smaller
for particles with a larger mass.
In Fig. 3 we compare our numerical results for the rate of

current density generation to the small By limit of the exact

result, given in Eq. (84). It can be seen that we find
excellent agreement between the results obtained using

FIG. 2 (color online). Running average of the current density
generated by the chiral magnetic effect in an electric field
suddenly switched on at t ¼ 0. Here Bz=Ez ¼ 1.
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linear response and the small By limit of the exact result.

Thus our linear response approach has passed a critical test.
It implies that the study of the dynamics of the chiral
magnetic effect using linear response can be performed
successfully. Alternatively, our results can be seen as an
independent verification of the results obtained in Ref. [10].

It can be seen that the rate of current density generation
increases if Bz is enlarged. This is natural, since the amount
of chirality production is increased. But at the same time
enlarging Bz decreases the degree of polarization of the
fermions in the y direction. The combination of these two
effects results in the saturation of the rate of current
generation for large Bz.

B. Pulsed electric field

We will now study the chiral magnetic effect in a pulsed
electric field that has the form EzðtÞ ¼ Ez=cosh

2ðt=
Þ.
The corresponding gauge field reads AzðtÞ ¼ �Ez½1þ
tanhðt=
Þ�
. The perpendicular magnetic field is taken to
be effectively constant.
In Figs. 4 and 5 we display the current density generated

by the chiral magnetic effect as a function of time for


 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffijqEzj

p
and respectively ~m ¼ m=

ffiffiffiffiffiffiffiffiffiffiffijqEzj
p ¼ 0 and

~m ¼ 0:5. It can be seen that the current density rises
quickly around t ¼ 0. This is because only then an electric
field is present so that chirality will be produced. For large t
the current does not grow anymore because the production
of chirality has stopped. For large values of Bz=Ez we find
that the current density becomes approximately constant in
time if ~m ¼ 0. If the fermions are massive the current
density exhibits a slowly damped sinusoidal oscillation
for large values of Bz=Ez. The mass also suppresses the
magnitude of the current.

FIG. 3 (color online). Rate of current density generation due to
the chiral magnetic effect at late times in a sudden switch-on
electric field as a function of Bz=Ez for different masses. The
lines denote the small By limit of the exact result; points indicate

the results of the numerical calculations using linear response.

FIG. 5 (color online). Same as in Fig. 4 but now for ~m ¼ 0:5.

FIG. 4 (color online). Current density due to the chiral mag-
netic effect in a pulsed electric field, as a function of time. Here


 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffijqEzj

p
and ~m ¼ 0.

FIG. 6 (color online). Average current density at late times in a
pulsed electric field as a function of 
 for different ~m.
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We observe that for smaller values of Bz=Ez the current
density oscillates around the behavior of the current
density at large Bz=Ez. Therefore the running average of
the current density seems to be independent of Bz=Ez. To
investigate the dependence on 
 we have displayed the
running average of the current density at late times in Fig. 6
for Bz=Ez ¼ 10. We find that the running average increases
linear with 
. Through observation of our numerical results
we find that for all values of Bz=Ez the running average of
the current density at late times is summarized by the
following formula:

hjyi ¼ q2jqj

�2

ByEzfð ~mÞsgnðBzÞ; (86)

where we have displayed fð ~mÞ for different values of ~m in
Fig. 7. We find a reasonable fit to our data with the function
fð ~mÞ ¼ expð�� ~m1:4Þ.

VI. CONCLUSIONS

In this article we have investigated the real-time dynam-
ics of the chiral magnetic effect using linear response
theory. We have considered a field configuration in
which a homogeneous (chromo)electric field with arbitrary
time dependence lies parallel to a homogeneous and static
(chromo)magnetic field. These parallel fields are the
source of the chirality. To this field configuration we have
added a perpendicular homogeneous and static magnetic
field. We have computed the induced current density along
this perpendicular magnetic field explicitly for a sudden
switch-on and a pulsed electric field.

In the sudden switch-on electric field we have obtained
excellent agreement with an earlier independent analytic
computation of the current density. In the pulsed electric field
we could summarize the induced current density that we have
obtained numerically with a simple analytic formula.

The main purpose of this article was to demonstrate the
dynamics of the chiral magnetic effect using linear re-
sponse theory. We hope that our results will be extended
to other interesting field configurations in the future. For
example, in heavy ion collisions it would be important to
answer the question of whether there is enough time for the
chiral magnetic effect to occur in the quickly decaying
magnetic field. This question could be addressed using
our methodology. The chiral magnetic effect could also
be investigated with lasers that create strong electromag-
netic fields. For that purpose it would be important to
extend the results to field configurations that are as close
to the experimental situation as possible.
As a side result of our work we have obtained a deriva-

tion of the induced current density in static homogeneous
parallel electric and magnetic fields. We have also obtained
an analytic formula for the chirality production for massive
fermions in static homogeneous parallel electric and mag-
netic fields.
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APPENDIX A: RELATIONS INVOLVING
THE FUNCTION gpsðxÞ

To evaluate these integrals we will make use of the
following four identities which directly follow from the
properties of the Hermite polynomials:

Z 1

�1
dx0x0gpsðx0Þgp0sðx0Þ

��������p0
y¼py

¼ py

qBz

	k;k0 ð1� 	k;0	s�Þ

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqBzj

p ð ffiffiffi
k

p
	k�s;k0 þ

ffiffiffiffiffiffiffiffiffiffiffiffi
kþ s

p
	kþs;k0 Þ; (A1)

1

qBz

Z 1

�1
dpy

2�
pygp�sðxÞgp0sðxÞ

��������p0
y¼py

¼ jqBzj
2�

�
x	k�s;k0 � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2jqBzj
p

� ð ffiffiffiffiffiffiffiffiffiffiffiffi
k� s

p
	k�2s;k0 þ

ffiffiffi
k

p
	k;k0 Þ

�
; (A2)

Z 1

�1
dpy

2�
gp�sðxÞgp0sðxÞ

��������p0
y¼py

¼ jqBzj
2�

	k�s;k0 : (A3)

FIG. 7 (color online). The function fð ~mÞ which describes the
mass dependence of the average current density at late times in a
pulsed electric field. Points are numerical results; a solid line
is a fit.

HARMEN J. WARRINGA PHYSICAL REVIEW D 86, 085029 (2012)

085029-12



Z 1

�1
dxgpsðxÞgp0�sðxÞ

��������p0
y¼py

¼ 	kþs;k0 : (A4)

APPENDIX B: WAVE FUNCTIONS IN A SUDDEN
SWITCH-ON ELECTRIC FIELD

We will review the explicit solutions for the wave func-
tions f�psðtÞ for a sudden switch-on electric field of the form
EðtÞ ¼ Ez�ðtÞ [22]. Then we will evaluate an integral that
is necessary for computing the induced current and chi-
rality production.

For the sudden switch-on electric field we have AzðtÞ ¼
�Ezt�ðtÞ. For t < 0 we can use the wave functions
in vanishing electromagnetic field, given in Eq. (23). If
t > 0 the electric field is no longer vanishing. It follows
from combining Eqs. (17) and (18) that f�psðtÞ then satisfies�

�@2t � q2E2
z

�
tþ pz

qEz

�
2 þ isqEz

�
f�psðtÞ ¼ �2f�psðtÞ:

(B1)

Equation (B1) is an eigenvalue equation for a particle in an
upside-down harmonic potential. There are no bound
states, so � is not quantized. The solution is a linear
combination of parabolic cylinder functions D�ðzÞ,

f�psðtÞ ¼ ��
s D�s

ð�Þ þ ��
s D�sð��Þ; (B2)

where �s ¼ �ðs sgnðqEzÞ þ 1þ i�2=jqEzjÞ=2 and � ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqEzj

p
ei�=4ðtþ pz=qEzÞ.

In the conventional normalization the parabolic cylinder
functions are given explicitly by the following integrals

D�ðzÞ ¼ 1

�ð��Þ e
�1

4z
2
Z 1

0
dt t���1e�zt�1

2t
2
; (B3)

for Reð�Þ< 0, and

D�ðzÞ ¼
ffiffiffiffi
2

�

s
e
1
4z

2
Z 1

0
dt t� cos

�
zt� 1

2
��

�
e�1

2t
2
; (B4)

for Reð�Þ>�1. Using these relations one can show that

D�ð0Þ ¼ 2�=2
ffiffiffiffi
�

p
=�½ð1� �Þ=2�. Asymptotically the para-

bolic cylinder functions behave as follows:

lim
jzj!1

D�ðzÞ ¼ z�e�1
4z

2 � c�

ffiffiffiffiffiffiffi
2�

p
�ð��Þ z

���1e
1
4z

2
; (B5)

with c� ¼ 0 for j argðzÞj< 3�
4 , c� ¼ expði��Þ for �

4 <j argðzÞj< 5�
4 , and c� ¼ expð�i��Þ for� 5�

4 < j argðzÞj<
� �

4 . These asymptotic functions describe the real para-

bolic cylinder functions very well if jzj> 2j�j.
The constants ��

s and ��
s of Eq. (B2) can be found by

requiring continuity of f�psðtÞ and its derivative at t ¼ 0.

This gives the following two equations:

��
s ¼ 1

W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0 � spz

p0

s
½�ei�=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqEzj

q
D0

�sð��0Þ

� ip0D�sð��0Þ�; (B6)

��
s ¼ 1

W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0 � spz

p0

s
½�ei�=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqEzj

q
D0

�s
ð�0Þ

� ip0D�s
ð�0Þ�; (B7)

where �0 ¼
ffiffiffi
2

p
ei�=4pz=jqEzj1=2sgnðqEzÞ and W denotes

the Wronskian of the two independent solutions presented
in Eq. (B1). Applying Abel’s differential equation identity
to Eq. (B2) shows that the Wronskian is independent of �.
Hence without loss of generality we can evaluate W at

� ¼ 0, which yields W ¼ 2ei�=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�jqEzj

p
=�ð��sÞ. Using

the relation D0
�ðzÞ ¼ 1

2 zD�ðzÞ �D�þ1ðzÞ we can simplify

Eqs. (B6) and (B7) to

��
s ¼ �ð��sÞffiffiffiffiffiffiffi

2�
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0 � spz

p0

s �
D�sþ1ð��0Þ þ ei�=4ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2jqEzj
p

� ðpzsgnðqEzÞ � p0ÞD�s
ð��0Þ

�
; (B8)

��
s ¼ �ð��sÞffiffiffiffiffiffiffi

2�
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0 � spz

p0

s �
D�sþ1ð�0Þ � ei�=4ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2jqEzj
p

� ðpzsgnðqEzÞ � p0ÞD�s
ð�0Þ

�
: (B9)

Using the asymptotic expansion of the parabolic cylin-
der functions, Eq. (B4), it is possible to obtain a very good
approximation for the function f�psðtÞ away from the points

pz ¼ �qEzt and pz ¼ 0. Let us now for a moment choose

qEz > 0 and take
ffiffiffiffiffiffiffiffiffiffiffijqEzj

p
t 
 1. In order to obtain the

induced current we need to evaluate jfþpþðtÞj2, for which
we find after taking the dominating terms in the asymptotic
expansion and approximating p0 by jpzj the following:
jfþpþðtÞj2

�

8>>><
>>>:
2 for pz & �qEzt��;

2e�
��2

jqEz j þ gð�Þ for � qEztþ� & pz & ��;

0 for pz * �;

(B10)

where �¼2jqEzj1=2j1þ i�2

2jqEzjj, � ¼ ffiffiffiffiffiffiffiffiffiffiffijqEzj
p ðtþ pz=qEzÞ,

and

gð�Þ¼ 2ffiffiffiffi
�

p 1

�
½e� ��2

4jqEz j �e�
5��2

4jqEz j�

�Re

�
�

�
1� i�2

2jqEzj
�
ei�

2þ i�2

jqEz jlogj
ffiffi
2

p
�jþi�=4

�
: (B11)
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As follows from Eq. (48) we have to evaluate the follow-
ing integral to obtain the induced current:

Ið�; tÞ ¼ lim
�!0

Z 1

�1
dpz

2�
e��ðpzþqEztÞ2½jfþpþðtÞj2 � 1�:

(B12)

In general this integral can only be evaluated numerically.
But using Eq. (B10) we can obtain Ið�; tÞ exactly for large
t. Firstly one realizes that taking the limit � ! 0 implies
that we have to integrate jfþpþðtÞj2 � 1 over pz in an

interval symmetric around pz ¼ �qEzt. The contribution
to the integral in the region where the approximation
Eq. (B10) breaks down can be bounded from below and
above by a time-independent constant. The contributions

for pz <�2qEzt and pz > 0 will cancel each other. The
nonvanishing contribution comes from the intermediate
region in which �2qEzt < pz < 0. The integral over the
rapidly oscillating function gð�Þ is subdominant in the
large t limit. The dominant contribution in the large t limit
is qEzt coming from the interval �2qEzt < pz <�qEzt
and qEzt½2 expð���2=jqEzjÞ � 1� from the interval
�qEzt < pz < 0. Adding both contributions yields

lim
t!1

1

t
Ið�; tÞ ¼ qEz

�
e�

��2

jqEz j: (B13)

By repeating the analysis for qEz < 0 one can verify that
the sign of Eq. (B13) is correct, so Eq. (B13) holds for all
values of qEz.
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