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The origin of spectral singularities in finite-gap singly periodic PT -symmetric quantum systems is

investigated. We show that they emerge from a limit of band-edge states in a doubly periodic finite gap

system when the imaginary period tends to infinity. In this limit, the energy gaps are contracted and

disappear, every pair of band states of the same periodicity at the edges of a gap coalesces and transforms

into a singlet state in the continuum. As a result, these spectral singularities turn out to be analogous to

those in the nonperiodic systems, where they appear as zero-width resonances. Under the change of

topology from a noncompact into a compact one, spectral singularities in the class of periodic systems we

study are transformed into exceptional points. The specific degeneration related to the presence of finite

number of spectral singularities and exceptional points is shown to be coherently reflected by a hidden,

bosonized nonlinear supersymmetry.
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I. INTRODUCTION

The discovery of complex Hamiltonians with the com-
bined space reflection and time reversal (PT ) symmetry,
which have a real spectrum [1], opened a new branch
of quantum mechanics [2]. Recently, systems with
PT -symmetry have gained a lot of attention motivated
by a possibility of its experimental observation in nature,
particularly, in optical systems [3]. The ideas of
PT -symmetry have also been applied to different areas,
including quantum field theory [4], gravitation [5] and
relativistic quantum mechanics [6], among others.

An interesting peculiarity of non-Hermitian
Hamiltonians is related with the presence of exceptional
points [7] and spectral singularities [8] in their spectra.
Exceptional points are particular states in the discrete
spectrum of an operator where two eigenvectors of differ-
ent energies coalesce to form a unique state. These states
were studied in several contexts, see, e.g., Refs. [9–15] and
references therein. Spectral singularities have a nature
similar to that of exceptional points, but within the con-
tinuous spectrum of a non-Hermitian operator [16–18].
The energy values of the spectral singularities appear as
poles in the resolvent of an operator, as zeros of a
Wronskian of the Jost solutions, as well as divergences in
the scattering matrix. In 2009, Mostafazadeh showed that
spectral singularities in nonperiodic complex potentials
appear as zero-width resonances [19]. Although the impli-
cations and applications of spectral singularities have been
analyzed in several directions [20–29], their meaning in
complex periodic potentials remains, however, unknown.

In this article we study a certain class of
PT -symmetric complex potentials in which a finite

number of spectral singularities does appear. Their ori-
gin is explained by analyzing a related, more general
family of doubly periodic quantum models which belong
to a class of finite-gap systems [30]. When the imaginary
period (that can be treated as a hidden imaginary pa-
rameter of the potential) tends to infinity, energy gaps
shrink and disappear, while the pairs of singlet band
states of the same periodicity at the edges of each gap
coalesce and produce singlet states inside the doubly
degenerate continuum. These turn out to be the spectral
singularities. This peculiar phenomenon is shown to be
characteristic for complex potentials, there exists no
analog for finite-gap real potentials. We show that the
appearance of finite number of spectral singularities in
the indicated class of non-Hermitian systems can be
associated with a presence of a hidden, bosonized non-
linear supersymmetry [31]. A compactification of the
system, by imposing the appropriate periodicity condi-
tion for the wave functions, discretizes the spectrum and
transforms spectral singularities into exceptional points.
This provides a unified explanation for spectral singu-
larities and exceptional points for certain class of related
PT -symmetric systems.
The paper is organized as follows. In Sec. II we

construct a family of periodic complex potentials with
spectral singularities by applying Crum-Darboux trans-
formations to a free particle. Section III is devoted to the
description of spectral singularities and exceptional
points in the spectra of the obtained related systems
with noncompact and compact topologies, respectively.
The origin of the same spectral singularities from a
specific limit of finite-gap systems is explained in
Sec. IV. In Sec. V we show that a hidden supersymmetry
is associated with the presence of finite number of
spectral singularities and exceptional points. Discussion
is presented in Sec. VI.
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II. FREE PARTICLE AND COMPLEX
DARBOUX TRANSFORMATIONS

Let us consider a free particle on the real line1 �1<
x <1,

H ¼ � d2

dx2
: (2.1)

The spectrum of the system is continuous and is described
by the states

c�ðxÞ ¼ e�ikx; k � 0: (2.2)

For k > 0, (2.2) are plane waves for doubly degenerate
energy levels with Ek ¼ k2 > 0. A singlet state c ¼ 1
corresponds to E0 ¼ 0 at the bottom of the spectrum.
From the system (2.1) one can construct complex periodic
Hamiltonians with finite number of spectral singularities
by employing Crum-Darboux transformations. The proce-
dure is analogous to the construction of reflectionless
potentials with a finite number of bound states [32]. To
define such a transformation, we introduce a complex
operator

D �;� ¼ d

dx
þ � tanðxþ i�Þ � � cotðxþ i�Þ; (2.3)

where � is a real parameter, 0< �<�=2, and construct a
higher order differential operator

F r;s ¼
Yr
j¼1

Dj;u;

u ¼ uðr; s; jÞ ¼
�
j� rþ s if j� rþ s > 0;

0 if j� rþ s � 0:

(2.4)

The upper index of the ordered product corresponds here to
the first term on the left side while the lower index denotes
the last term on the right side of the product. The parame-
ters r and s take here integer values, and without any loss of
generality we can assume that r > s (see next section).
Operator (2.4) intertwines the free particle Hamiltonian H
with those of nontrivial systems described by Hamiltonians

Hr;s ¼ � d2

dx2
þ rðrþ 1Þ

cos2ðxþ i�Þ þ
sðsþ 1Þ

sin2ðxþ i�Þ ; (2.5)

F r;sH ¼ Hr;sF r;s; (2.6)

where the free particle system H corresponds to the zero
values of the parameters, H0;0 ¼ H.

The nature of the continuous spectrum of H0;0 can be

modified by changing the topology of the quantum prob-
lem. This is achieved by compactifying the coordinate,
�1< x<þ1 ! 0 � x < 2�, via the introduction of
the periodicity condition,

c�ðxþ 2�Þ ¼ c�ðxÞ: (2.7)

This condition is satisfied provided k 2 Z in (2.2),
that transforms the energy spectrum of (2.1) into the
discrete one,

E‘ ¼ ‘2; ‘ ¼ 0;�1;�2;�3; . . . : (2.8)

In this case we have an infinite set of discrete doubly
degenerate positive energy levels, while the ground state
with ‘ ¼ 0 (E0 ¼ 0) is nondegenerate. Figure 1 illustrates
the spectrum in both cases, noncompact and compact ones.
In the next section we discuss general properties of the

Hamiltonian (2.5) and the description of spectral singular-
ities, where the compactification scheme will be useful to
understand the relation with exceptional points in the case
of periodic systems. It is worthwhile to note that in the
compactified case, the length of the space, 2�, is twice
the period of (2.5). This means that the compactification
condition (2.7) comprises (unifies) both the periodic and
antiperiodic Sturm-Liouville problems, c ð0Þ ¼ �c ð�Þ,
c 0ð0Þ ¼ �c 0ð�Þ, for the periodic non-Hermitian system
(2.5). The same job is made, however, just by imposing the
periodicity condition c ð0Þ ¼ c ð2�Þ.

III. SPECTRAL SINGULARITIES OF PERIODIC
PT -SYMMETRIC POTENTIALS

Periodic potentials of complex nature [33–40] are of
interest, particularly, in the context of optics and matter
waves physics, see for example references in Ref. [41].
Hamiltonian (2.5) provides a good example of such a class
of potentials, for which the properties of non-Hermitian
systems can be analyzed using the advantage of exactly
solvable systems.
The potential in (2.5) has a real period T ¼ �, and can

be treated as the complex version of the generalized trigo-
nometric Pöschl-Teller potential. Although the potential is
just a complex shift in the coordinate of the Hermitian case,
its spectral properties are essentially different. Indeed,
when � ¼ 0, the potential in (2.5) is no longer complex,
and has singularities located at x ¼ l� and x ¼ ðlþ 1

2Þ�,
where l 2 Z. Consequently, the quantum interpretation in
the real case is quite different in comparison with the
complex one. The presence of singularities implies that
the particle is confined in the region between the adjacent
singularities, without tunneling through them. Therefore,
one ought to impose the boundary conditions by requiring

FIG. 1 (color online). Spectrum of the free particle in the real
line (left) and in the compactified case (right).

1We work in the units ℏ ¼ 2m ¼ 1.
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that the wave functions vanish at singular points. This
results in an infinite number of bound states which corre-
spond to nondegenerate energy levels. The picture is the
same as in the case of the infinite square well potential.
Moreover, both systems are related by the Crum-Darboux
transformations (2.4) when � ¼ 0, remembering that the
infinite square well potential problem is no more than the
free particle system subjected to the specific boundary
conditions. In the Hermitian case, the quantum interpreta-
tion of a particle with the compactified coordinate requires
also the necessary boundary conditions of vanishing of the
wave functions at the singular points of the potentials.

For � � 0 the situation radically changes. The singular-
ities on the real line disappear, and the simultaneous action
of the parityP ,PxP ¼ �x, and time reversalT ,T iT ¼
�i, operators leaves the Hamiltonian invariant. Before
explaining the spectral properties of the family of systems
(2.5), we review some general aspects of the Hamiltonian
Hr;s.

The shift x ! xþ �=2 in the Hamiltonian (2.5) inter-
changes the parameters r and s, Hr;sðxþ �=2Þ ¼ Hs;rðxÞ,
without affecting the spectral characteristics of the system.
Since the systems Hr;s and Hs;r can also be related by

Crum-Darboux transformations constructed in terms of
operators of the form (2.3), we say that they are self-
isospectral [42].

This fact, in addition to the symmetries r ! �r� 1
and s ! �s� 1, tells us that we can consider just
non-negative integer values of the parameters. The case
when r ¼ s ¼ l is a particular case which is presented
equivalently as

Hl;lðxþ �=4Þ ¼ 4Hl;0ð�Þ ¼ 4

�
� d2

d�2
þ lðlþ 1Þ

cos2ð�þ 2i�Þ
�
;

(3.1)

where � ¼ 2x. Hence, the spectrum of the Hamiltonian
(2.5) with r ¼ s is given by rescaling of that for the case
with s ¼ 0, and then it is indeed sufficient to consider the
cases r > s.

Equation (2.6) represents the intertwining relation be-
tween the free Hamiltonian H0;0 and Hr;s. The eigenfunc-

tions of the latter are given by application of the operator
(2.4) to the plane waves (2.2),

c�k
r;s ¼ F r;se

�ikx: (3.2)

The spectrum of Hr;s is composed by a continuum of

doubly degenerate states with energies Ek ¼ k2, except
for the rþ 1 states

c n
r;s ¼ F r;se

i½nþuðr;s;nÞ�x; n ¼ 0; 1; . . . ; r; (3.3)

which are singlets. The discrete parameter uðr; s; nÞ is
defined here in the same way as in Eq. (2.4). The energy
values of the singlet states (3.3) are

Er;s;n ¼ ðnþ uðr; s; nÞÞ2; n ¼ 0; 1; . . . ; r: (3.4)

Clearly, the singlet states of the form (3.3) correspond
to the states in (3.2) taken for the particular values of k.
Two states obtained by the application of F r;s to the left

and right moving plane waves with these special values of
k � 0 coincide modulo a constant factor. At the same time,
the application of the Crum-Darboux generator F r;s to the

singlet state c 0 of the free particle produces a nontrivial
singlet ground state of the system Hr;s. We shall return to

this point below in the discussion of spectral singularities
in terms of the Wronskian of the solutions.
The picture can be understood alternatively by observ-

ing that the operator F r;s annihilates r states of the free

particle, which are complex linear combinations of the
plane waves. Namely,

F r;s cos�ðxþ i�Þ ¼ 0; � ¼ nþ uðr; s; nÞ ¼ odd;

(3.5)

F r;s sin�ðxþ i�Þ ¼ 0; � ¼ nþ uðr; s; nÞ ¼ even;

(3.6)

with n ¼ 1; 2; . . . ; r and uðr; s;nÞ as defined above. Here
the resulting r singlet states different from zero in the
above relations correspond to spectral singularities, they
are located inside the continuous spectrum. An additional
singlet ground state (E0 ¼ 0) at the bottom of the spectrum
has a different nature with respect to the spectral singular-
ities. States of this kind, being a Crum-Darboux-
transformed ground state of the free particle, also appear
in the Hermitian and non-Hermitian reflectionless poten-
tials [43,44]. In the next section the difference between the
nonzero and zero energy singlet states of the Hamiltonian
(2.5) will be clarified by applying a specific limit to doubly-
periodic finite-gap systems.
Performing a compactification in the coordinate as in the

free particle case, the eigenfunctions are determined by the
condition (2.7) imposed on the states (3.2),

c�m
r;s ¼ F r;se

�imx; m ¼ 0; 1; 2; . . . : (3.7)

The solutions (3.7) form an infinite discrete set of wave
eigenfunctions for doubly degenerate energy levels, except
the states (3.3), which are singlets. Again, we have rþ 1
singlet states, one of which is the ground state of zero
energy while the rest are exceptional points.
This example, provided by the compactified

PT -symmetric systems, reveals a subtlety related to the
definition of spectral singularities and exceptional points in
a periodic case. In such class of the systems, they both have
the same origin since the spectral singularities transform
into exceptional points just by changing the topology of the
quantum problem.
It is useful to look at the peculiarity of these states from

the viewpoint of the Wronskian. For the physical wave
functions (3.2) and (3.7) we have
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W½cþk
r;s ; c

�k
r;s � ¼ �2ik

Yr
n¼1

ðk2 � Er;s;nÞ; (3.8)

where for the case of the states (3.7), the k should be
replaced by m. Being independent of x, the Wronskian
vanishes at the energies of the spectral singularities (3.4) as
well as at the lowest energy E ¼ 0 (which can be treated
as a trivial zero of W corresponding to the case of the
coinciding arguments cþ0

r;s ¼ c�0
r;s ). This reflects linear

dependence of the pairs of states in (3.2) and (3.7). The
second, linear independent solutions of the stationary
Schrödinger equation for those energy values (including
E ¼ 0) are not periodic functions (being not bounded in
the non-compact topology case), and they do not belong
to the physical spectrum of Hr;s. In Ref. [38], Samsonov

and Roy observed a similar phenomenon in the Wronskian
for the Hamiltonian H1;0ðxþ �Þ, where � is a complex

parameter. In their analysis, however, they imposed the
boundary conditions c ð�Þ ¼ c ð��Þ ¼ 0, which elimi-
nate the existence of spectral singularities in the spectrum,
producing an infinite number of discrete singlet states; this
can be compared with the Hermitian case � ¼ 0 we dis-
cussed at the beginning of the section. This provides a
further example of the importance of the topology in
Hermitian and non-Hermitian Hamiltonians.

The differences in the spectrum for the discussed
family of periodic systems with compact and noncompact
topologies, and the comparison with the free particle
are illustrated by Fig. 2 for the cases r ¼ 2, s ¼ 0 and
r ¼ 2, s ¼ 1.

In this section we explained the appearance of spectral
singularities in the spectrum of Hr;s by exploiting their

relation with the free particle system by means of Crum-
Darboux transformations. The nondegenerate nature of
the spectral singularities can be understood taking into
account a peculiar feature of the action of Crum-Darboux
generators. The operator (2.4) annihilates r states in the

spectrum of H0;0, see the relations (3.5) and (3.6). Hence,

one naturally may expect the presence of singlet states,
(3.3), in the spectrum of the intertwined Hamiltonian
Hr;s, whose energies coincide with the energy values of

the annihilated states of the free Hamiltonian. In other
words, we say that the operators (2.4) remove every time
one state located at the level Er;s;n � 0 from a doublet in

the free particle spectrum, generating a spectral singular-
ity in the spectra of Hamiltonians (2.5) at the same energy
Er;s;n � 0.
In next sections we will see that the origin of the

singlet states, in particular the spectral singularities, and
the specific degeneracy in the spectrum of Hr;s have a

remarkable interpretation from the point of view of
finite-gap potentials and a hidden bosonized nonlinear
supersymmetry.

IV. DARBOUX-TREIBICH-VERDIER
POTENTIALS AND THE ORIGIN
OF SPECTRAL SINGULARITIES

Generically, for a quantum periodic system free of sin-
gularities the spectrum is composed by an infinite number
of bands and gaps. By the oscillation theorem [45], the
number of nodes of the band-edge states within the period
interval of the potential increases when energy increases.
In the case of analytical potentials the width of the gaps
decreases exponentially with increasing of the energy.
There exists, however, an important class of the systems
for which the number of bands and gaps is finite; the
corresponding potentials are known as finite-gap. One
example of a regular Hermitian finite-gap potential is
provided by the family of associated Lamé potentials,

VAL
r;s ðxÞ ¼ sðsþ 1Þk2sn2xþ rðrþ 1Þk2sn2ðxþ KÞ (4.1)

¼ sðsþ 1Þk2sn2xþ rðrþ 1Þ k
2cn2x

dn2x
: (4.2)

FIG. 2 (color online). The spectra for r ¼ 2, s ¼ 0 and r ¼ 2, s ¼ 1 for the Hamiltonians with the noncompact (left) and compact
(right) coordinate. The spectrum in the former case is a half-bounded infinite continuum, without spectral singularities above E ¼ 4 for
r ¼ 2, s ¼ 0 and E ¼ 9 for r ¼ 2, s ¼ 1, while in the latter case there is an infinite number of degenerate discrete states above those
values corresponding to exceptional points.
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The potential is expressed in terms of the doubly periodic
Jacobi elliptic functions2 snðx; kÞ, cnðx; kÞ and dnðx; kÞ.
Hereafter we will not display the dependence on the modu-
lar parameter 0< k< 1 in them. The potential (4.1) has a
real, 2K, and an imaginary, 2iK0, periods, where K ¼ KðkÞ
is the elliptic complete integral of the first kind and K0 ¼
Kðk0Þ, k0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p
[46]. The finite-gap nature of the

potentials happens when both parameters r and s take
integer values. Specifically, if we take r > s, the spectrum
has exactly r gaps (the case r ¼ s reduces to the s ¼ 0 case
with a real period K, see Ref. [47]). This property is
correlated with the fact that the potentials (4.1) satisfy
the nonlinear stationary equation of order r of the
Korteweg de-Vries hierarchy.

When the modular parameter tends to the limit values,
we obtain two systems with essentially different spectra. In
the limit k ! 0, when the imaginary period turns into
infinity, any system with a finite number of gaps is reduced
to the free particle. The gaps between all the allowed bands
disappear, and two states of the same periodicity and
number of nodes at the edges of a gap transform into two
different states of the same energy; these correspond to
sine and cosine combinations of the plane-wave states of
the free particle. In the other limit k ! 1, when the real
period tends to infinity, the system is transformed into the
hyperbolic reflectionless Pöschl-Teller potential, with fi-
nite number of bound states equal to the number of gaps.
The valence bands shrink, and each pair of band-edge
states of the same valence band coalesces forming a unique
bound state. Both described situations happen in a generic
case of Hermitian finite-gap potentials. In the case of
complex potentials, the picture radically changes, and
leads to the origin of spectral singularities.

A regular complex finite-gap potential can be obtained
by a complex displacement of the coordinate in (4.1).
Performing the shift in the half of the imaginary period
plus for an imaginary constant i�, 0< �<K0, x ! xþ
iK0 þ i�, the potential becomes

VALS
r;s ðxÞ � VAL

r;s ðxþ iK0 þ i�Þ

¼ rðrþ 1Þ dn
2ðxþ i�Þ

cn2ðxþ i�Þ þ sðsþ 1Þ 1

sn2ðxþ i�Þ :
(4.3)

This potential is PT -symmetric and the Hamiltonian

HALS
r;s ¼ � d2

dx2
þ VALS

r;s is a doubly periodic generalization

of (2.5). When � ¼ 0, the sum of (4.1) and (4.3) gives rise
to the well-known family of Darboux-Treibich-Verdier
potentials [48],

VDTV ¼ VAL
r0;s0 ðxÞ þ VALS

r;s ðxÞ: (4.4)

The limit cases of the modular parameter give us the
systems with a single, real or pure imaginary, period,

HALS
r;s !

k!0
� d2

dx2
þ rðrþ 1Þ

cos2ðxþ i�Þ þ
sðsþ 1Þ

sin2ðxþ i�Þ ; (4.5)

HALS
r;s !

k!1
� d2

dx2
þ sðsþ 1Þ

tanh2ðxþ i�Þ þ rðrþ 1Þ: (4.6)

First we discuss the spectral properties of complex
finite-gap potentials with the noncompact topology.
The limit k ! 1 produces, in analogy with the Hermitian

case, complex reflectionless Hamiltonians (with a single
imaginary period) that have bound states in their spectra
[44,49].
Surprisingly, another limit gives us something not no-

ticed before in the literature. When k ! 0, the gaps shrink
and disappear, and the band edge states at the edges of the
same energy gap coalesce into one singly periodic state
producing a spectral singularity.
As an example of this peculiar situation, let us consider

the case r ¼ 2, s ¼ 0, which corresponds to a 2-gap sys-
tem. The band-edge states are given by

c 0 ¼ 1þ k2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 þ k4

p
� 3

sn2ðxþ i�Þ ; (4.7)

c 1¼ cnðxþ i�Þdnðxþ i�Þ
sn2ðxþ i�Þ ; c 2¼ cnðxþ i�Þ

sn2ðxþ i�Þ ;

c 3¼ dnðxþ i�Þ
sn2ðxþ i�Þ ;

(4.8)

c 4 ¼ 1þ k2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 þ k4

p
� 3

sn2ðxþ i�Þ ; (4.9)

and their energies are

E0 ¼ 2ð1þ k2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 þ k4

p
Þ; (4.10)

E1 ¼ 1þ k; E2 ¼ 1þ 4k; E3 ¼ 4þ k; (4.11)

E4 ¼ 2ð1þ k2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 þ k4

p
Þ: (4.12)

In the limit k ¼ 1, the first valence band between E0 and
E1 disappears, edge state c 0 ¼ 1=sinh2ðxþ i�Þ coincides
up to a multiplicative constant with c 1, and forms a bound
state. The same happens with the second valence band
between E2 and E3, and for c 2¼ c 3¼ coshðxþ i�Þ=
sinh2ðxþ i�Þ. Quasiperiodic Bloch states of the conduction
band are transformed into scattering states of the continu-
ous spectrum, at the bottom of which is located the state
c 4 ¼ 1� 3=tanh2ðxþ i�Þ. The described picture is typi-
cal for Hermitian finite-gap potentials in the real infinite
period limit.
Instead, in the limit when the complex period tends

to infinity, k ¼ 0, the state c 0 ¼ 2� 3=sin2ðxþ i�Þ is

2In (4.2), the properties of the Jacobi elliptic functions under
the real half-period displacement were used, see Ref. [46].
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located at the bottom of the continuum. The remaining
pairs of band edge states, c 1¼ c 2¼ cosðxþ i�Þ=
sin2ðxþ i�Þ and c 3 ¼ �3c 4 ¼ 1=sin2ðxþ i�Þ, coincide
in the form of spectral singularities. In this limit, the quasi-
periodic states inside the valence and conduction bands
transform into periodic states, whose period depends on
energy. In the case with the compact coordinate, the singlet
states transform in the same way discussed above, while
the condition (2.7) selects the periodic states of a fixed
period 2� to be the double period of the resulting potential.

Figure 3 illustrates this example, showing how the en-
ergies of the band-edge states are transformed into corre-
sponding singlets, particularly, into spectral singularities
when k ¼ 0. It is worthwhile to note that periodic
PT -symmetric potentials of the Darboux-Treibich-
Verdier family were treated before in Ref. [50], but the
existence of the spectral singularities in the k ¼ 0 limit was
not noticed.

V. HIDDEN SUPERSYMMETRYAND
SPECTRAL SINGULARITIES

The Hamiltonians Hr;s display a finite number of spec-

tral singularities which appear as singlet energy levels
immersed into doubly degenerate continuous spectrum in
the noncompact topology case. The same happens with
exceptional points in the discrete spectrum of the compac-
tified systems. These features, the presence of several
singlet states and double degeneration of the rest of energy
levels, are typical for a hidden, bosonized (due to the
absence of the spin degrees of freedom) nonlinear super-
symmetry [31]. This kind of symmetry was observed ear-
lier in the reflectionless systems with real [43] and complex
[44] potentials, as well as in Hermitian periodic finite-gap
[47,51] systems. One can expect therefore that such a
peculiar supersymmetry can also be associated with the

spectral singularities and exceptional points in the de-
scribed class of the PT -symmetric systems.
Indeed, from the viewpoint of the limit of finite-gap

potentials (4.3) discussed above, one knows that each
potential VALS

r;s satisfies a corresponding stationary non-

linear equation of the Korteweg-de Vries hierarchy. This
fact implies the existence of a nontrivial integral of motion
A2rþ1 of differential order 2rþ 1, which underlies the
nonlinear nature of the hidden supersymmetry. Together
with the Hamiltonian Hr;s, the operator A2rþ1 composes

the Lax pair [30,52],

½A2rþ1; Hr;s� ¼ 0; �A2
2rþ1 ¼ PðHr;sÞ; (5.1)

where PðHr;sÞ is an order 2rþ 1 (spectral) polynomial in

the Hamiltonian. Using the definition of the operator (2.3),
one can identify the operator A2rþ1 as follows,

A 2rþ1 ¼ F r;s

d

dx
F T

r;s; (5.2)

that is nothing else as a Crum-Darboux dressed free
particle integral d

dx [53]. The transposition T, substituting

here Hermitian conjugation in the case of a Hermitian
Hamiltonian, is defined by inversion of the order of first
order operator multipliers in Eq. (2.4) accompanied by the
change d

dx ! � d
dx .

The remarkable property of the class of the systems
described by Hr;s is related with the physical sense of the

operator (5.2), where the PT -symmetry plays a key role.
In the Hermitian limit of the system when � ¼ 0, the action
of the operator A2rþ1 on physical states is ill-defined. As
was noted in Sec. III, when � vanishes, the potential inHr;s

becomes real, having singularities in the real line. As a
result, the appropriate quantum treatment is such that the
wave functions vanish at singular points, and an infinite
number of the discrete singlet bound states appears.

FIG. 3 (color online). Spectra of the 2-gap system HALS
2;0 are shown for the values of the modular parameter k ¼ 0, 0.3, 0.5, 0.7, 1. In

the limit when the imaginary period tends to infinity, k ¼ 0, the system H2;0 is recovered. The spectral singularities (solid lines) appear

at energies E ¼ 1 and E ¼ 4 when two band-edge states with the same periodicity, separated by a gap, coalesce, and the gap between
them vanishes. In the other limit k ¼ 1, a system with a pure imaginary periodicity is obtained; two bound states (solid lines) appear at
energies E ¼ 2 and E ¼ 5. The singlet state at the bottom of the continuous spectrum (dashed line) at energy E ¼ 6 (E ¼ 0)
corresponds to the limit k ¼ 1 (k ¼ 0); it has a nature of the eigenfunction obtained by the application of the Crum-Darboux operator
(2.4) to the free particle state c ¼ 1. The system in the k ¼ 1 limit corresponds to the complexified Scarf II potential [44,49].
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Though the higher order Lax operator is still commuting
with Hermitian Hamiltonian, its action on physical (bound)
states produces nonphysical states,

� ¼ 0 ! A2rþ1c physical ¼ c nonphysical: (5.3)

Such a situation takes place also in the conformal mechan-
ics model given by the inverse square potential nðnþ1Þx�2

[54], that corresponds to a rational limit (when both, real
and imaginary periods tend to infinity) of finite-gap
Hermitian periodic systems. However, for � � 0 the
PT -symmetry provides the cure for the operator A2rþ1:
the states (3.2) and (3.7) are eigenstates of this operator,

A2rþ1c
�k
r;s ¼ �ik

Yr
n¼1

ðk2 � Er;s;nÞc�k
r;s ;

A2rþ1c
�m
r;s ¼ �im

Yr
n¼1

ðm2 � Er;s;nÞc�m
r;s :

(5.4)

Particularly, the nonlinear operator (5.2) annihilates all the
singlet states. These are spectral singularities (exceptional
points) and the state in the bottom of the spectrum in the
systems with the noncompact (compact) topology. This can
be seen also taking the square of A2rþ1,

� A2
2rþ1 ¼ Hr;s

Yr
n¼1

ðHr;s � Er;s;nÞ2; (5.5)

where the roots of the operator-valued polynomial are
the energies of the singlet states. In this sense we can
say that the PT - symmetry restores the physical meaning
of A2rþ1, which in the Hermitian case, � ¼ 0, was
broken [55].

The supersymmetric structure can be revealed by iden-
tifying the supercharges as follows,

Q1 ¼ iA2rþ1; Q2 ¼ i�Q1; (5.6)

where � is a Z2-grading operator,

�¼P e�2i� d
dx; ½�;Hr;s�¼0; f�;Qag¼0; �2¼1: (5.7)

Integral �, being PT -symmetric, ½PT ;�� ¼ 0, produces
a pure imaginary shifting of the coordinate for �2i�
followed by the action of the parity operator. As the grad-
ing operator commutes with the PT operator, from the
definition of (5.2) and (2.4) it follows that the supercharges
are PT -symmetric operators,

½PT ; Qa� ¼ 0; a ¼ 1; 2: (5.8)

Acting on the Hamiltonian eigenstates cþk
r;s (cþm

r;s ) and

c�k
r;s (c�m

r;s ) given by Eqs. (3.2) and (3.7), operator �
transforms them mutually,

�c�k
r;s ¼ ð�1Þre�2�kc�k

r;s ;

�c�m
r;s ¼ ð�1Þre�2�mc�m

r;s :
(5.9)

On the other hand, all the singlet states are eigenstates
of �. The corresponding N ¼ 2 nonlinear superalgebra
generated by the Hamiltonian Hr;s and supercharges Qa

reads as

½Qa;Hr;s� ¼ 0;

fQa;Qbg ¼ 2�abHr;s

Yr
n¼1

ðHr;s � Er;s;nÞ2:
(5.10)

As follows from (5.10), the nonlinear superalgebra de-
tects all the singlet states in the spectrum; moreover, it
distinguishes spectral singularities from the singlet ground
state: unlike the energy level E ¼ 0, all the spectral singu-
larities appear as double roots of the polynomial in
Hamiltonian. The same holds for exceptional points in
the case of the compact topology.

VI. DISCUSSION

In this article we show from different points of view how
spectral singularities appear in PT -symmetric singly pe-
riodic finite-gap systems with noncompact topology. These
states correspond to exceptional points when topology is
changed for a compact one.
The examples discussed here test the effectiveness

of Crum-Darboux transformations for non-Hermitian
Hamiltonians. Applying them to the free particle
Hamiltonian, we construct the systems which display sin-
glet states inside the continuum. These states are known as
spectral singularities; these are a specific feature of com-
plex Hamiltonians. We note here that the models defined
by (2.5) can be extended to a more generic family of singly
periodic finite-gap systems by using complex Crum-
Darboux transformations different from those in (2.4).
In Ref. [44] it was shown that starting from the

Hamiltonian H0;0, it is possible to obtain complex reflec-

tionless potentials by choosing nonphysical states of the
free system as a kernel of the Crum-Darboux operator. In a
similar way, selecting physical solutions of the free
Hamiltonian, displaced for a complex constant, as zero
modes of the non-Hermitian Crum-Darboux operators,
complex systems with spectral singularities can be con-
structed. Outside the scope of the present paper, an inter-
esting approach for the comprehension of these kinds of
states would be that related to quasiexact solvability, see
Refs. [15,47,51].
Non-Hermitian finite-gap potentials were analyzed from

the point of view of the corresponding infinite period
complex and real limits. We explain how the band-edge
states coalesce and produce the spectral singularities when
the complex period is infinite. In this picture the presence
of spectral singularities is understood: it corresponds to a
remarkable, peculiar feature of complex periodic poten-
tials, with no analog in the Hermitian case. A more detailed
investigation on the hidden supersymmetries and related

SPECTRAL SINGULARITIES IN PT- . . . PHYSICAL REVIEW D 86, 085028 (2012)

085028-7



properties of complex doubly periodic finite-gap systems
deserves a separate, further investigation [56].

The existence of a finite number of spectral singularities
leads to an additional feature of the systems discussed in
this paper. Their non-degeneracy alongside with the doubly
degenerate continuum are naturally explained by a hidden
bosonized nonlinear supersymmetry, whose structure also
distinguishes spectral singularities from the singlet ground
state. The hidden nonlinear supersymmetry, which is re-
lated with the Lax pair of the KdV hierarchy, in the
Hermitian limit, when � ¼ 0, has a completely different
nature. In such a limit the integral of motion is ill defined,
producing nonphysical states. In the sense we show that the
pathologies of the hidden supersymmetry in the Hermitian
case, originated from real singularities, can be circum-
vented by changing the Hermiticity property of the
Hamiltonian for the PT -symmetry.

It would be interesting to study the breaking of
PT -symmetry and the disappearance of spectral singular-
ities by appropriate modification of the systems (2.5). In
the same direction, the meaning of the investigated spectral

singularities in the context of optics and matter waves
could be also a relevant problem to investigate.
As a final remark, we note that it is interesting to apply

the ideas of the present paper to study the models described
by the first order Dirac-type Hamiltonians [57], particu-
larly, to those related to the topologically nontrivial solu-
tions in the Gross-Neveu model [53,58], and to the physics
of nanotubes [59].
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