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A key problem in making precise perturbative QCD predictions is the uncertainty in determining the

renormalization scale � of the running coupling �sð�2Þ. The purpose of the running coupling in any

gauge theory is to sum all terms involving the � function; in fact, when the renormalization scale is set

properly, all nonconformal � � 0 terms in a perturbative expansion arising from renormalization are

summed into the running coupling. The remaining terms in the perturbative series are then identical to that

of a conformal theory; i.e., the corresponding theory with � ¼ 0. The resulting scale-fixed predictions

using the principle of maximum conformality (PMC) are independent of the choice of renormalization

scheme—a key requirement of renormalization group invariance. The results avoid renormalon resum-

mation and agree with QED scale setting in the Abelian limit. The PMC is also the theoretical principle

underlying the Brodsky-Lepage-Mackenzie procedure, commensurate scale relations between observ-

ables, and the scale-setting method used in lattice gauge theory. The number of active flavors nf in the

QCD � function is also correctly determined. We discuss several methods for determining the PMC scale

for QCD processes. We show that a single global PMC scale, valid at leading order, can be derived from

basic properties of the perturbative QCD cross section. The elimination of the renormalization scale

ambiguity and the scheme dependence using the PMC will not only increase the precision of QCD tests,

but it will also increase the sensitivity of collider experiments to new physics beyond the Standard Model.

DOI: 10.1103/PhysRevD.86.085026 PACS numbers: 11.15.Bt, 12.20.Ds

I. INTRODUCTION

A key difficulty in making precise perturbative QCD
predictions is the uncertainty in determining the renormal-
ization scale � of the running coupling �sð�2Þ. It is
common practice to simply guess a physical scale �¼Q
of order of a typical momentum transfer Q in the process,
and then vary the scale over a range Q=2 and 2Q. This
procedure is clearly problematic since the resulting fixed-
order pQCD prediction will depend on the choice of
renormalization scheme; it can even predict negative
QCD cross sections at next-to-leading order [1].

The purpose of the running coupling in any gauge theory
is to sum all terms involving the � function; in fact, when
the renormalization scale � is set properly, all nonconfor-
mal � � 0 terms in a perturbative expansion arising from
renormalization are summed into the running coupling.
The remaining terms in the perturbative series are then
identical to that of a conformal theory; i.e., the theory with
� ¼ 0. The divergent renormalon series of order �n

s�
nn!

does not appear in the conformal series. Thus as in quan-
tum electrodynamics, the renormalization scale � is
determined unambiguously by the principle of maximal
conformality (PMC). This is also the principle underlying
Brodsky-Lepage-Mackenzie (BLM) scale setting [2]

It should be recalled that there is no ambiguity in setting
the renormalization scale in QED. In the standard Gell-
Mann-Low scheme for QED, the renormalization scale is
simply the virtuality of the virtual photon [3]. For example,
in electron-muon elastic scattering, the renormalization

scale is the virtuality of the exchanged photon, spacelike
momentum transfer squared �2 ¼ q2 ¼ t. Thus

�ðtÞ ¼ �ðt0Þ
1��ðt; t0Þ ; (1)

where

�ðt; t0Þ ¼ �ðtÞ ��ðt0Þ
1��ðt0Þ ; (2)

sums all vacuum polarization contributions to the dressed
photon propagator, both proper and improper. [Here
�ðtÞ ¼ �ðt; 0Þ is the sum of proper vacuum polarization
insertions, subtracted at t ¼ 0.] Formally, one can choose
any initial renormalization scale �2

0 ¼ t0, since the final

result when summed to all orders will be independent of t0.
This is the invariance principle used to derive renormaliza-
tion group results such as the Callan-Symanzik equations
[4,5]. However, the formal invariance of physical results
under changes in t0 does not imply that there is no optimal
scale. In fact, as seen in QED, the scale choice�2 ¼ q2, the
photon virtuality, immediately sums all vacuum polariza-
tion contributions to all orders exactly in the conventional
Gell-Mann-Low scheme. With any other choice of scale,
one will recover the same result, but only after summing an
infinite number of vacuum polarization corrections.
Thus, although the initial choice of renormalization

scale t0 is arbitrary, the final scale twhich sums the vacuum
polarization corrections is unique and unambiguous. The
resulting perturbative series is identical to the conformal

PHYSICAL REVIEW D 86, 085026 (2012)

1550-7998=2012=86(8)=085026(11) 085026-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.86.085026


series with zero � function. In the case of muonic atoms,
the modified muon-nucleus Coulomb potential is precisely
�Z�ð� ~q2Þ= ~q2; i.e., �2 ¼ � ~q2. Again, the renormaliza-
tion scale is unique.

One can employ other renormalization schemes in QED,

such as the MS scheme, but the physical result will be
the same once one allows for the relative displacement
of the scales of each scheme. For example, one can start

with the result in the MS scheme for spacelike argument
q2 ¼ �Q2, for the standard one-loop charged lepton pair
vacuum polarization contribution to the photon propagator
using dimensional regularization:

log
�2

MS

m2
‘

¼ 6
Z 1

0
dxxð1� xÞ logm

2
‘ þQ2xð1� xÞ

m2
‘

; (3)

which becomes at large Q2

log
�2

MS

m2
‘

¼ log
Q2

m2
‘

� 5=3; (4)

i.e., �2
MS

¼ Q2e�5=3. Thus if Q2 >> 4m2
‘, we can identify

�MSðe�5=3q2Þ ¼ �GM�Lðq2Þ: (5)

The e�5=3 displacement of renormalization scales between

the MS and Gell-Mann-Low schemes is a result of the
convention [6] that was chosen to define the minimal
dimensional regularization scheme. One can use another
definition of the renormalization scheme, but the final
physical prediction cannot depend on the convention. This
invariance under choice of scheme is a consequence of the
transitivity property of the renormalization group [3,7–9].

The same principle underlying renormalization scale
setting in QED must also hold in QCD since the nf
terms in the QCD � function have the same role as the
leptonN‘ vacuum polarization contributions in QED. QCD
and QED share the same Yang-Mills Lagrangian. In fact,
one can show [10] that QCD analytically continues as a
function of NC to Abelian theory when NC ! 0 at fixed

� ¼ CF�s with CF ¼ N2
C
�1

2NC
. For example, at lowest order

�QCD
0 ¼ 1

4� ð113 NC � 2
3nfÞ ! � 1

4�
2
3nf at NC ¼ 0. Thus

the same scale-setting procedure must be applicable to
all renormalizable gauge theories.

Thus there is a close correspondence between the QCD
renormalization scale and that of the analogous QED pro-
cess. For example, in the case of eþe� annihilation to three
jets, the PMC/BLM scale is set by the gluon jet virtuality,
just as in the corresponding QED reaction. The specific
argument of the running coupling depends on the renormal-
ization scheme because of their intrinsic definitions; how-
ever, the actual numerical prediction is scheme independent.

The basic procedure for PMC/BLM scale setting is to
shift the renormalization scale so that all terms involving
the � function are absorbed into the running coupling. The
remaining series is then identical with a conformal theory

with � ¼ 0. Thus, an important feature of the PMC is that
its QCD predictions are independent of the choice of
renormalization scheme. The PMC procedure also agrees
with QED in the NC ! 0 limit.
The determination of the PMC scale for exclusive pro-

cesses is often straightforward. For example, consider the
process eþe� ! c �c ! c �cg� ! c �cb �b, where all the flavors
and momenta of the final-state quarks are identified. The
nf terms at next-to-leading order (NLO) come from the

quark loop in the gluon propagator. Thus the PMC scale for

the differential cross section in the MS scheme is given

simply by the MS scheme displacement of the gluon

virtuality: �2
PMC ¼ e�5=3ðpb þ p �bÞ2.

In practice, one can identify the PMC/BLM scale for
QCD by varying the initial renormalization scale �2

0 to

identify all of the �-dependent nonconformal contribu-
tions. At lowest order �0 ¼ 1

4� ð11=3NC � 2=3nfÞ. Thus
at NLO one can simply use the dependence on the number
of flavors nf that arises from the quark loops associated

with ultraviolet renormalization as a marker for �0.
In QCD, the nf terms also arise from the renormalization

of the three-gluon and four-gluon vertices as well as from
gluon wave function renormalization.
It is often stated that the argument of the coupling in a

renormalization scheme based on dimensional regulariza-
tion has no physical meaning since the scale � was
originally introduced as a mass parameter in extended
space-time dimensions. However, the QED example above

shows that the MS scale is unambiguously related to
invariants in physical 3þ 1 space. The connection of
�MS to the Gell-Mann-Low scheme can be established at

all orders. This also provides the analytic extension [11] of
the �MS scheme for finite fermion masses as well as to

timelike arguments where the coupling is complex.
An example that shows how critical it is to properly fix

the renormalization scale is the three-gluon vertex. The
PMC/BLM scale that appears in the three-gluon vertex is a
function of the virtuality of the three external gluons q21, q

2
2,

and q23. It has been computed in detail in Ref. [12]. The

results are surprising when the virtualities are very differ-
ent as in the subprocess gg ! g ! Q �Q,

�̂ 2 / q2minq
2
med

q2max

; (6)

where jq2minj< jq2medj< jq2maxj; i.e., q2max has the maximal

virtuality [13]. The prediction based on simply guessing
�2 ’ q2max would give misleading results.
The PMC/BLM scale that appears in the three-gluon

vertex is the mass scale that controls the number of quark
flavors nf that appears in the triangle graph. This is verified

by keeping the quark masses and threshold dynamics in the
loop. Thus we accurately determine the number of flavors
nf that appears in the � function in the three-gluon cou-

pling. This generalizes for all gluonic processes.
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Although these results have been obtained using the
pinch scheme, the final PMC/BLM result is scheme inde-
pendent. The pinch scheme is used because it provides a
gauge-invariant setting for the analysis. In effect one calcu-
lates a scattering amplitude with three on-shell quark cur-
rents. One then obtains 14 invariant amplitudes that describe
the three-gluon vertex, only one of which is renormalized.

In fact the calculation of the PMC scale for the three-gluon
vertex ga ! gbgc given in Eq. (6) uses the pinch scheme
to obtain a gauge-invariant result. In effect, one computes
the entire gauge-invariant on-shell amplitude qa þ �qa !
qb �qb þ qc �qc including the triangle loop graph from quark
loops with general mass. All 14 invariant amplitudes are
computed analytically to one loop, only one of which is
renormalized. The PMC scale for the three-gluon vertex as
given in Eq. (6) also correctly sets the scale that controls the
number of effective flavors that contribute to the � function
for the three-gluon vertex. Details are given in Refs [12,13].

These results show that the usual method of guessing the
renormalization scale for processes involving the three-
gluon and four-gluon couplings typically misses this essen-
tial physics, assigns nF incorrectly, and mischaracterizes
the perturbative prediction. The error that is introduced can
be in principle eliminated at infinite order, but only if one
can sum the renormalon series.

The explicit result for the PMC/BLM scale is the physi-
cal scale controlling the quark threshold in the specific
renormalization procedure used, but it is always possible
to relate one scheme with another by the transitivity prop-
erty of the renormalization group. This property is guar-
anteed by the PMC so there can be a constant displacement
between schemes.

The PMC method is a general approach to set the renor-
malization scale in QCD including purely gluonic processes.
It is scheme independent and void of renormalon growth due
to the absence of the �-function terms in the perturbative
expansion. We stress that the � function is gauge invariant
in any correct renormalization scheme. The resulting con-
formal series is then gauge invariant. Thus the PMC is a
gauge-invariant procedure.

It is sometimes argued that it is advantageous not to fix
the renormalization scale at all, since its variation provides a
measure of higher order contributions to the theory predic-
tions. In fact, one obtains sensitivity only to the�-dependent
nonconformal terms by this procedure. In some cases the
conformal contributions may be unexpectedly large. For
example, the very large electron-loop light-by-light scatter-
ing contribution [14] ’ 18ð�3=�Þ3 to the muon anomalous
magnetic moment is disassociated with renormalization or
the � function. Of course, one can still compute the varia-
tion of the prediction around the PMC scale as an indicator
of higher order nonconformal terms.

Stevenson has proposed that one should set the renor-
malization scale at a point where the predicted cross sec-
tion has minimal variation with respect to�—the principle

of minimal sensitivity (PMS) [15]. However, unlike the
PMC, the application of the PMS to jet production gives
unphysical results [16] since it sums physics into the
running coupling not associated with renormalization.
Worse, the PMS prediction depends on the choice of
renormalization scheme, and it violates the transitivity
property of the renormalization group [17]. Such heuristic
scale-setting methods also give incorrect results when
applied to Abelian QED.
It should be emphasized that the factorization scale that

enters predictions for QCD inclusive reactions is intro-
duced to match nonperturbative and perturbative aspects
of the parton distributions in hadrons; it is present even in
conformal theory, and thus its determination is a com-
pletely separate issue from renormalization scale setting.

II. IDENTIFYING THE RENORMALIZATION
SCALE USING THE PRINCIPLE OF

MAXIMUM CONFORMALITY

Given the analytic form of the hard process amplitude or
cross section as a series in �sð�2

0Þ calculated at an initial

scale �2
0 and at a certain order [NLO, next-to-next-to-

leading order (NNLO), and so on], one can identify the
PMC scale, order by order, in a systematic way:
(1) The variation of the cross section with respect to

log�2
0 can be used to distinguish the conformal

terms versus the nonconformal terms proportional
to the � function.

(2) The identified nonconformal terms have the form
�� logpij=�

2
0 where pij ¼ pi � pj are the scalar

product invariants i � j that enter the hard subpro-
cess. In practice, these terms can be identified as
coefficients of nf, the number of flavors appearing

in the � function; i.e., the flavor dependence arising
from quark loops associated with coupling constant
renormalization. The nf terms in QCD arise from

the renormalization in the three-gluon and four-
gluon vertices as well as from gluon wave function
renormalization.

(3) The scale is then shifted�2
0 ! �2 in order to absorb

the nonconformal terms. Thus when the scale is
correctly set, the coefficients of �sð�2Þ become
independent of the � function and log�2.

(4) The series is then identical to that of the conformal
theory where � ¼ 0 as given by the Banks-Zaks
method [18].

(5) The PMC scale is fixed for an observable (such as a
differential cross section). PMC then can give a
single effective global scale for the whole set of
skeleton graphs entering the calculations that sums
all the nonconformal � terms associated with renor-
malization into the running coupling.
Other examples of this procedure will be given in
the next sections.
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A. The global PMC scale

Ideally, as in the BLM method, one should allow for
separate scales for each skeleton graph; e.g., for electron-
electron scattering, one takes �ðtÞ and �ðuÞ for the t- and
u-channel amplitudes, respectively.

Setting separate renormalization scales can be a chal-
lenging task for complicated processes in QCDwhere there
are many final-state particles and thus many possible
Lorentz scalars p2

ij ¼ pi � pj. However, one can obtain a

useful first approximation to the full PMC/BLM scale-
setting procedure by using a single global scale �2 that
appropriately weights the individual BLM scales.

The global scale can be determined by varying the sub-
process amplitude with respect to each invariant, thus deter-
mining the coefficients fij of logp

2
ij=�

2
0 in the nonconformal

terms in the amplitude. The global PMC scale is then

�2 ¼ C��ij½p2
ij�wij ; (7)

i.e.,

log�2 ¼ X
i�j

wij logp
2
ij þ logC; (8)

where the weight for each invariant is

wij ¼
fijP

i�j
fij

; (9)

and
P

i�jwij ¼ 1. The constant C is the scheme displace-

ment; e.g., C ¼ e�5=3 for MS for �2 >>4m2
f.

As a specific example of the application of a PMC global
scale, consider the electron-electron scattering amplitude
in QED. (For simplicity, we will just take the contribution
of the convection current to the amplitude, as in scalar
QED.) The Lorentz-invariant Born amplitude at the initial
scale t0 is then

M0ðt; uÞ ¼ 4��ðt0Þ
�
s� u

t
þ s� t

u

�
: (10)

The running QED coupling �ðq2Þ in QED sums all proper
and improper vacuum polarization graphs

Mðt; uÞ ¼ 4��ðtÞ
�
s� u

t

�
þ 4��ðuÞ

�
s� t

u

�
; (11)

where to leading order

�ðtÞ ¼ �ðt0Þ
�
1þ n‘

�ðt0Þ
3�

log
�t

t0

�
: (12)

Aside from power-suppressed contributions involving the
lepton masses, the resulting series is identical to the cor-
responding conformal theory with � ¼ 0.

In this process we have contributions from both the
t- and u-channel amplitudes that require separate renor-
malization scales for each skeleton graph. However, at
leading order we can weight the amplitudes to obtain a

single PMC/BLM scale that still sums the nonconformal �
terms into the running coupling �ð�2Þ at leading order. For
example, using the standard Gell-Mann—Low scheme, we
can write

Mðt; uÞ ¼ fðtÞ�ðtÞ þ gðuÞ�ðuÞ ¼ ðfðtÞ þ gðuÞÞ�ð�̂2Þ;
(13)

where fðtÞ ¼ 4�ðs� uÞ=t and gðuÞ ¼ 4�ðs� tÞ=u are the
Born amplitudes for the t and u channels, respectively.
Then in this case we have two basic PMC scales�ðtÞ and

�ðuÞ for each skeleton graph in the standard Gell-Mann—
Low scheme used in QED. These couplings then sum all of
the vacuum polarization corrections to the skeleton graphs
to infinite order. The result is then gauge invariant and the
logarithm of the global scale is

log�̂2 ¼ fðtÞ
fðtÞ þ gðuÞ logð�tÞ þ gðuÞ

fðtÞ þ gðuÞ logð�uÞ;
(14)

which duplicates the multiscale result at NLO.
One can also use the mean value theorem to obtain an

effective single scale that analytically reproduces the exact
multiscale result to next-to-leading order. Since it matches
the exact result at NLO, it also retains gauge invariance
at this order. Moreover, the PMC single or multiscale result
is independent of the choice of scheme. The single scale
result illustrates why it is wrong to guess a single scale like
�2 ¼ p2

T since it fails to agree with this simple example.
Using kinematical constraints such as the total momen-

tum conservation sþ tþ u ¼ 0, the weighted scale depen-
dence can be confined into the logðt=uÞ term inside the
running coupling. The global scale �̂2 is maximal at �CM ¼
�=2 (�̂2 ¼ ffiffiffiffiffi

tu
p ¼ �t ¼ �u) and vanishes at the bounda-

ries ð0; �Þ where tan2ð�CM=2Þ ¼ t=u. The effective renor-
malization scale for electron-electron scattering in Eq. (14)

0
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FIG. 1. The PMC/BLM scale as a function of the CM angle
�CM:ee ! ee scalar QED.
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is weighted by the respective scattering amplitudes. The
t-channel amplitude strongly dominates at �CM ¼ 0, and
the renormalization scale is thus t. Similarly, the u-channel
amplitude strongly dominates at �CM ¼ �, and the effec-
tive renormalization scale in that domain is u. Thus in both
limits the effective renormalization scale �̂ vanishes.

The results are shown in Fig. 1.

A PMC EXAMPLE FOR QCD: APPLICATION
TO JET CROSS SECTIONS IN

ELECTRON-POSITRON ANNIHILATION

As an example of the application of the PMC to QCD,
we will show how the renormalization scale can be deter-
mined for the cross sections for eþe� annihilation into two

and three jets in the MS scheme.
The two-jet cross section has only infrared divergences:

�ð2Þ ¼ �0

�
4��2

q2

�
�=2ð1� �=2Þ�ð1� �=2Þ

�ð2� �Þ ; (15)

where �0 ¼ 4� �2

3q2
NC

PNf

i¼1 e
2
i .

Here � � 4� n is the number of extra space-time
dimensions used to regulate infrared and ultraviolet diver-
gent integrals. Eventually all of the infrared divergences
and the factors involving � will cancel out. In dimensional
regularization the scale � is introduced as a mass scale to
restore the correct dimension of the coupling. The gauge
coupling gR is related to the renormalized coupling con-
stant �R by

g2R
ð4�Þð4��Þ=2 ¼ �sð�2Þ

4�
ð�2Þ�=2e�E�=2; (16)

and here �E is the Euler constant.
As discussed in the Introduction, the mass scale of

schemes defined by dimensional regularization attains its
physical meaning when it is applied to QED. The renormal-
ized gauge coupling is also related to the bare coupling by

gR ¼ ffiffiffiffiffiffi
Z3

p
Z2=Z1g0; (17)

where Z1 is the renormalization constant for the quark-
antiquark-gluon vertex, Z2 for the quark field, and Z3 for
the gluon field. The renormalization constants are

Z1 ¼ 1� g20
16�2

ðNc þ CFÞ
�

2

�UV

� 2

�IR

�
; (18)

Z2 ¼ 1� g20
16�2

CF

�
2

�UV

� 2

�IR

�
; (19)

Z3 ¼ 1þ g20
16�2

�
5

3
Nc � 2

3
Nf

��
2

�UV

� 2

�IR

�
; (20)

where �UV, �IR are related, respectively, to the UV and
IR poles. In the MS only the pole associated with UV
renormalization is subtracted out, and this leads us to a
redefinition of the gauge coupling:

1

gR
	g0 ¼ g2R

16�2

�
2

3
Nf � 11

3
Nc

�
1

�UV

: (21)

A suitable renormalization scheme is the MS that differs
fromMS by a constant term and the respective counterterm
can be inserted in the Born cross section by shifting the
coupling constant:

�0
s ¼ �MS

s

�
1�

�
11

6
Nc � 2

3
TR

�
�MS
s

2�

�
1



þ ðln4�� �EÞ

��

¼ �MS
s

�
1� �0�

MS
s

�
1




��
; (22)

where:

1



¼ 1



þ ðln4�� �EÞ; (23)

�0 ¼ 1

2�

�
11

6
Nc � 2

3
TR

�
; (24)

with TR ¼ Nf=2, 
 ¼ �UV=2.

The Born cross section for eþe� ! qðp1Þ �qðp2Þgðp3Þ for
massless quarks and gluons is

d�ð3Þð�2Þ
dx1dx2

��������Born
¼ �ð2Þ

�
4��2

q2

�
�=2 1

�ð1� �=2ÞF�ðx1; x2Þ

� �MS
s ð�2Þ
2�

CFB
V��=2Sðx1; x2Þ: (25)

Here

F�ðx1; x2Þ ¼ ½ðx1 þ x2 � 1Þð1� x1Þð1� x2Þ���=2; (26)

and

BV��=2Sðx1; x2Þ ¼ BVðx1; x2Þ � �

2
BSðx1; x2Þ; (27)

BVðx1; x2Þ ¼ x21 þ x22
ð1� x1Þð1� x2Þ ; (28)

BSðx1; x2Þ ¼ x23
ð1� x1Þð1� x2Þ ; (29)

where xi ¼ 2Eiffiffiffiffi
q2

p in the eþe� CM. In terms of invariants,

yij ¼ sij=q
2 ¼ ðpi þ pjÞ2=q2. Then x1 ¼ 1� y23, x2 ¼

1� y13, x3 ¼ 1� y12, x1 þ x2 þ x3 ¼ 2.
The renormalized one-loop corrected cross section for

eþe� ! qðp1Þ �qðp2Þgðp3Þ is given by Eq. (2.11) of
Fabricius et al. [19] For our purposes it is sufficient to

quote only the term proportional to �0 in the MS scheme:
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d�ð3Þ

dx1dx2

��������oneloop
¼ d�ð3Þð�2Þ

dx1dx2

��������Born

�
�
1þ �sð�2Þ�ð1� �=2Þ

�ð1� �Þ
�
4��2

q2

�
�=2

� �0

�
log

�2

q2

�
þ � � �

�
; (30)

where the coupling is defined as in Eq. (22):
�MSðelog4���E�2Þ � �MSð�2Þ. The remaining contribu-

tions are independent of nf and �0

We can eliminate the nonconformal log term propor-
tional to �0 by shifting the renormalization scale �MSð�2Þ
in the Born cross section Eq. (25)

�sð�2Þ ’ �sðq2Þ
�
1� �sðq2Þ�0 log

�
�2

q2

��
;

however, it is first convenient to shift the scale to
�2 ! ð�2

0Þ.
Then

d�ð3Þ

dx1dx2

��������oneloop
¼ d�ð3Þð�2

0Þ
dx1dx2

��������Born

�
�
1þ �sð�2

0Þ
�ð1� �=2Þ
�ð1� �Þ

�
4��2

0

q2

�
�=2

� �0

�
log

�2
0

q2

�
þ � � �

�
: (31)

Naively one could simply fix the scale to
ffiffiffiffiffi
q2

p
, but the

three-jet cross section will still be affected by IR divergen-
ces; in order to apply the PMC/BLM prescription we will
first need to include the four-jet contributions.

IV. NUMERICAL SCALE FIXING

The complete differential three-jet cross section has
been calculated by Fabricius et al. [19], and we quote
here the results for the �0-dependent terms:

d2�ð3Þð
; 	Þ
dx1dx2

¼ �0

�sðq2Þ
2�

CF �
�
BVðx1; x2Þ

�
1� �sðq2Þ

� �0

�
log

�
1� cos	

2

�
þ logx̂23 �

13

3

��

� BSðx1; x2Þ�sðq2Þ�0

2

�
þOð	2ÞÞ þ � � � ; (32)

where x̂3 ¼ ð2� x1 � x2Þ and
d�ð3Þð
; 	Þ ¼ d�ð3Þ þ d�ð4Þð
; 	Þ (33)

is the sum of the three- and the four-jets contributions. The
cancellation of the IR poles is guaranteed by the KLN
theorem [20,21].

The variables ð
; 	Þ are small quantities introduced
in the virtual amplitude in order to define the soft and
collinear four-jet contributions to the three-jet cross sec-
tion. In particular, these quantities refer, respectively, to the
fraction of the total energy and to the cone opening angle
that defines the phase volume for a thee-jet event (for more
details, see Ref. [19]).
In order to extract the PMC/BLM scale we first work in

the MS scheme, fixing an arbitrary renormalization scale:
�2 ¼ �2

0. It turns out that the �0 term of the three-jet

differential IR safe cross section has the form

d2�ð3Þð
; 	Þ
dx1dx2

¼ �0

�sð�2
0Þ

2�
CF �

�
BVðx1; x2Þ

�
1� �sð�2

0Þ

� �0

�
log

�
1� cos	

2

�
þ 2 logð2� x1 � x2Þ

� 13

3
þ log

q2

�2
0

��
� BSðx1; x2Þ�sð�2

0Þ
�0

2

�

þOð	2ÞÞ þ � � � : (34)

In principle, we can extract information on the terms in this
formula performing a detailed analysis of the dependence
of the �0 coefficient on the invariants. Performing a blind-
fold study, we can single out the�0 coefficient by means of
the �0 derivative of the whole cross section or either by the
nf derivative since

df

d�0

¼ df

dnf
� d�0

�1

dnf
: (35)

Then we can factorize out the Born amplitude Eq. (25):

d�ð3Þð�2
0Þ

dx1dx2

��������
�1

Born
� d

d�0

d2�ð3Þð
; 	;�2
0Þ

dx1dx2

¼
�
��sð�2

0Þ
�
log

�
1� cos	

2

�
þ 2 logð2� x1 � x2Þ

� 13

3
þ log

q2

�2
0

þ BSðx1; x2Þ
2BVðx1; x2Þ

��
þOð	2ÞÞ þ � � � ;

and at the first order approximation the PMC/BLM scale
can be fixed numerically imposing

�
d�ð3Þð�2Þ
dx1dx2

��������
�1

Born
�
�
d

dnf

d2�ð3Þð
; 	;�2Þ
dx1dx2

���������nf¼0

����������2¼�2
PMC

¼ 0: (36)

In the numerical procedure at NLO, the analytic form of
the cross section is not needed; one must only keep track
of the appearance of number of flavors nf arising from

loop diagrams involving renormalization. This procedure,
which has been shown at NLO here, can also be iterated
to higher orders in �s, by keeping track of the nf terms
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entering the � function, leading us to an improvement of
the accuracy of the PMC/BLM scale �2

PMC.

Following this procedure we can include all the non-
conformal � terms into the running coupling constant for
every physical process, setting the renormalization scale at
the PMC/BLM scale without necessarily knowing the
PMC/BLM analytic form. Thus we end up with a cross
section that is formally equal to the corresponding confor-
mal expansion with� ¼ 0. In this particular case the PMC/
BLM scale has the form

�2
PMC ’ q2ð2� x1 � x2Þ2 	

2

4
e
�13

3þ
BSðx1 ;x2Þ
2BV ðx1 ;x2Þ: (37)

In this case the coefficient depends on the parton energies
x1, x2, on the angle parameter 	, and on the scale ratio
q2=�2

0 (all these quantities can be written in the form of

Lorentz invariants). The different contributions to the
coefficient can be also identified, term by term, by consid-
ering the most differential cross section (i.e., for the three-
jet case the triple differential cross section), by performing
the derivative (or logarithmic derivative) with respect to
the corresponding invariant, and then isolating the constant
term. This procedure will be discussed in detail in the next
section.

V. THE PMC/BLM SCALE AS A FUNCTION OF
THE JET MASS RESOLUTION PARAMETER

As shown by Kramer and Lampe [16], one can define a
QCD jet by defining a resolution parameter y � s as its
maximal virtuality. The jet then consists of particles with
total invariant mass squared smaller than y � s. Using this
definition, we will perform the integration of the entire

three-jet differential cross section, including real, d�ð3Þ,
and virtual, d�ðsÞ, contributions in order to have an IR safe
quantity. This gives a y-dependent integrated formula with
�0-dependent terms that can be absorbed into the argument
of the running coupling, according to the PMC/BLM
prescription.

The entire differential three-jet cross section [22] is

1

�0

d�ðsÞ þ d�ð3Þ

dy

¼
Z 1�2y

y
dz

Z 1�y�z

y
dxT½1� x� z; x; z��sðQ2Þ

�
�
1� �0�sðQ2Þ

�
log½x� þ log½z� � 5

3
. . . . . .

��

¼ �sðQ2ÞðTðyÞ � �0�sðQ2ÞðCðyÞ þ . . . :ÞÞ; (38)

� TðyÞ�sðQ2Þ
�
1� �0�sðQ2Þ2 log

�
�BLMffiffiffi

s
p

��

¼ TðyÞ�sð�2
BLMÞ; (39)

where ��0 ¼ �0CFQ
2=2�, s ¼ Q2, x ¼ y13, z ¼ y23,

T½x1; x2; x3� ¼ 2x21 þ x22 þ x23 þ 2x1ðx2 þ x3Þ
x2x3

; (40)

and TðyÞ, CðyÞ result from the partial integration of the LO
and NLO terms of the three-jet cross section (for more
details see Refs. [16,22]).
Then in the three-jet case, the PMC/BLM scale as

function of the jet-virtuality y, has the analytic form

�̂2 ¼ �2
PMC=BLM ¼ s� e�

5
3þCðyÞ

TðyÞ: (41)

A plot of the PMC/BLM scale against y, the virtuality
resolution of the jet, in eþe� ! q �qg is shown in Fig. 2.
The result agrees with the BLM scale calculated by Kramer

and Lampe in the MS scheme. The PMC/BLM prediction
is scheme independent; the specific value of the renormal-
ization scale is rescaled according to the choice of scheme
so that all results are commensurate. The PMC/BLM scale
also accurately determines nf, the effective number of

flavors in the � function. As is clear from the QED analog,
the renormalization scale reflects the virtuality of the gluon
jet; it thus must vanish when the resolution ys vanishes. As
noted by Kramer and Lampe [16], the renormalization
scales determined by the ad hoc PMS and fastest apparent
convergence [23] procedures have the wrong physical
behavior at ys ! 0, since they become infinite �2 ! 1
as the jet resolution and gluon virtuality vanish.

VI. PMC/BLM SCALE FIXING IN THE THREE-JET
CASE: THE COMPLETE DIFFERENTIAL

CROSS SECTION

In the case of the complete differential cross section, i.e.,
the most differential cross section for a given process
without any constrained variables, the PMC/BLM scales
depend on the number of flavors nf and on the independent

invariants entering the process. In the case of the three jets,
we notice that the cross section depends on the color

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
y

0.1
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0.3

0.4

0.5

FIG. 2. The PMC/BLM scale, �PMC (plane line), as a function
of the jet resolution parameter y, for eþe� ! q �qg. For com-
parison, the behavior �̂ ’ ffiffiffi

y
p

is also shown (dashed line).
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and flavor parameters nf, NC, CF and on the kinematical

invariants s12, s13, s23 where the label 3 refers to the gluon
momentum, and the indices 1, 2 refer to the quark and
antiquark momenta. On the other hand, the nonconformal
terms entering the running coupling depend only on the
number of flavors nf and on a reduced number of kine-

matical invariants. These terms can be identified by first
varying the number of flavors nf and then the invariant sij,

whereas the constant term can be extracted by simply
subtraction at the final step. Starting with the triple differ-
ential cross section for three jets, which is given by the sum
of the singular part of four-jet differential cross section

d�ðsÞ and the real three-jet cross section d�ð3Þ (for more
details see Ref. [22]):

d�ðsÞ þ d�ð3Þ

dzdydx

¼ ~�0

�sðQ2Þ
2�

	ð1� x� y� zÞ
�
T½z; x; y�

�
�
1þ �sðQ2Þ

2�
CFð. . . :Þ þ �sðQ2Þ

2�
NCð. . . :Þ

� �sðQ2Þ�0

�
log½x � y� � 5

3

��
þ �sðQ2Þ

2�
F½z; y; x�

�
;

(42)

with ~�0 ¼ �0CFs. For the sake of simplicity, we are using
the notation ðz; x; yÞ for the final-state gluon energy, quark
energy, and antiquark energy, respectively. In order to
extract the first order terms related to the � function, we
can start performing an ab initio analysis of the cross
section. We can first single out the �0 coefficient by means
of the �0 derivative, or either by the number of flavors nf
derivative, using Eq. (35) and then we can factorize out the
Born amplitude:

d�ð3ÞðQ2Þ
dzdydx

��������
�1

Born

1

�sðQ2Þ
d

d�0

�
d�ðsÞ þ d�ð3Þ

dzdydx

�

¼
�
log½xy� � 5

3

�
þOð�sÞ;

d�ð3ÞðQ2Þ
dzdydx

��������Born
¼ ~�0

�sðQ2Þ
2�

T½z; x; y�	ð1� x� y� zÞ:
(43)

Finally, we can extract the weight for each invariant by
taking the logarithmic derivative:

!i ¼ d

d logðxiÞ
�
d�ð3ÞðQ2Þ
dzdydx

��������
�1

Born

1

�sðQ2Þ
d

d�0

�
�
d�ðsÞ þ d�ð3Þ

dzdydx

��
; (44)

where xi ¼ ðx; y; zÞ. The constant term can be identified
by subtracting out all the logarithm terms from the �0

coefficient. Then at first order approximation in the cou-
pling constant, the �PMC scale for the three-jet differential
cross section has the analytic form

�2
PMC ’ Q2 � C�Y

i

x!i

i ¼ Q2xye�5
3: (45)

A. Commensurate scale relations

Relations between observables must be independent of
the choice of scale and renormalization scheme. Such
relations, called commensurate scale relations [24–26]
are thus fundamental tests of theory, devoid of theoretical
conventions. One can compute each observable in any

convenient renormalization scheme, such as the MS
scheme using dimensional regularization. However, the
relation between the observables cannot depend on this
choice—this is the transitivity property of the renormal-
ization group [3,7–9]. For example, the PMC relates the
effective charge �g1ðQ2Þ, determined by measurements of

the Bjorken sum rule, to the effective charge �RðsÞ,
measured in the total eþe� annihilation cross section:
½1� �g1ðQ2Þ=�� � ½1þ �Rðs�Þ=�� ¼ 1. The ratio of

PMC scales
ffiffiffiffiffi
s�

p
=Q ’ 0:52 is set by physics; it guarantees

that each observable goes through each quark flavor thresh-
old simultaneously asQ2 and s are raised. Because all��0
nonconformal terms are absorbed into the running cou-
plings using PMC, one recovers the conformal prediction
[25]; in this case, it is the Crewther relation [27–31].
Thus by applying the PMC, the conformal commensurate
scale relations between observables, such as the Crewther
relation, become valid for nonconformal QCD at leading
twist.

VII. CONCLUSIONS

As we have shown, the PMC provides a consistent
method for setting the optimal renormalization scale in
pQCD. The PMC scale is determined by identifying the
� terms in the next-to-leading contributions and making
the appropriate shift in order to include the� terms into the
running coupling. This can be done most simply by iden-
tifying the nf terms that come from quark loops of skeleton

graphs. This includes the nf terms that renormalize the

three- and four-gluon couplings. This procedure has been
used to identify the correct PMC scale for the three-gluon
vertex [12,13]. The resulting series is identical to that of
the corresponding conformal theory with � ¼ 0 as given,
for example, by the Banks-Zaks method [18].
The global PMC renormalization scale is particularly

useful for very complex processes; one only requires the
dependence of the calculated subprocess amplitudes on the
initial renormalization scale �2

0 and nf, the number of

quark flavors appearing from quark loops associated with
renormalization. The single global PMC scale, valid at
leading order, can thus be derived from basic properties
of the perturbative QCD cross section.
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We have discussed specific methods for efficiently
determining the PMC renormalization scale analytically
or numerically for QCD hard subprocesses. The analytic
form of the PMC renormalization scale can be determined
by varying the subprocess amplitude with respect to
each invariant, thus determining the coefficients fij of

logp2
ij=�

2
0 in the nonconformal terms in the amplitude.

This result can be used to fix the renormalization scales
for each contributing skeleton graph. However, we have
shown that a single PMC global scale can then be deter-
mined at NLO by appropriate weighting. Alternatively the
numerical value of the PMC scale can be determined
without specific information on the analytic form from
the nf derivative of the cross section. The two methods

give rise to the same results at NLO.
The factorization scale, in contrast, is the scale entering

the structure and fragmentation functions. Unlike the re-
normalization scale, a factorization scale ambiguity occurs
even in a conformal theory. The factorization scale should
be chosen to match the nonperturbative bound state
dynamics with perturbative DGLAP evolution. This could
be done explicitly using nonperturbative models such as
AdS/QCD and light-front holography where the light-front
wave functions of the hadrons are known.

Note that one applies the PMC method to renormaliz-
able hard subprocesses (including the associated radiation
diagrams required for IR finiteness) that enter the pQCD
leading-twist factorization procedure. The initial and final
quark and gluon lines are taken to be on shell so that the
calculation of the hard subprocess amplitude is gauge
invariant. Thus the application of the PMC to hard sub-
processes does not involve the factorization scale, and thus
no double or single logarithms that involve the factoriza-
tion scale enter.

The usual heuristic method of guessing the renormaliza-
tion scale and varying it over a range of a factor of 2 gives
scheme-dependent results, leaves the nonconvergent per-
turbative series, and gives the wrong result when applied to
QED processes. In fact, varying the renormalization scale
around such a guess only exposes nonconformal contribu-
tions involving the � function; it gives no information on
the conformal contributions. The PMS method [15] has
similar faults—it violates the transitivity property of the
renormalization group, depends on the choice of scheme, is
wrong for QED, and as shown by Kramer and Lampe [16],
leads to unphysical results. In contrast, the PMC method,
which has no such disadvantages and satisfies all principles
of renormalization theory, gives the optimal prediction for
pQCD at each finite order.

The PMC is the theoretical principle underlying the BLM
procedure and commensurate scale relations between ob-
servables—the rigorous scale-fixed scheme-independent re-
lations in QCD between observables, such as the generalized
Crewther relation; it is also the scale-setting method used for
precision determinations of �s in lattice gauge theory [32].

In addition, it has been recently shown that for certain
observables in two-jet production, the results of using the
momentum-subtraction scheme and BLM method are very
similar to those of N ¼ 4 super Yang-Mills theory [33,34].
In the case of the BLM method, one deals with separate

renormalization scales for each skeleton diagram, as is
done in QED. The PMC method provides a single effective
renormalization scale that reproduces the BLM scales at
NLO, even for rather complex processes that are in our list
of important projects, such asW þ Jets, eþe� annihilation,
t�t production, and for general observables, e.g., differential
cross sections and asymmetries.
If one considers a process with high multiplicity, then

one confronts a separate BLM scale for each of the mul-
tiple skeleton diagrams; thus the number of BLM scales
will appear as the jet multiplicity increases. The PMC
method replaces these multiple scales with an effective
single scale at NLO.
We have discussed in this paper an illustration of the

PMC procedure for three-jet production in eþe� annihila-
tion where the nf terms arise from the inclusive four-jet

cross section after IR cancellation; these terms are included
in the PMC scale with the effect of lowering its value.
The PMC method provides the correct renormalization

scale from first principles without ambiguity or renormal-
ization scheme dependence. The residual errors from the
resulting conformal series provide an accurate assessment
of higher order errors. The PMC/BLM uncertainty is zero
at the order computed. The PMC is equivalent to the
standard method used to eliminate the renormalization
scale ambiguity in precision tests of QED.
The PMC method gives results that are renormalization

scheme independent at each finite order. The PMC also
determines the correct number of flavors nf; this is

particularly important when one uses a renormalization
scheme that is analytic in the quark masses such as the

analytic extension of the MS scheme [11]; one can then
include the correct flavor threshold dependences and tran-
sitions as one evolves the QCD coupling. The correct
displacement between the argument of the schemes is
also automatically determined.
We stress that PMC does not capture all higher order

effects. One still has higher order corrections in the con-
formal series. These can never be discovered by varying
the renormalization scale, since this variation only exposes
terms proportional to the � function. It is incorrect to
require the scale choice to remove all higher order terms.
For example, in QED, the muon anomalous moment re-
ceives a large contribution at order �3 from the electron-
loop light-by-light insertion. This is due to the physics of
the higher order processes—not the running QED cou-
pling. It is thus incorrect to vary the renormalization scale
to minimize the effect of higher order corrections, since the
variation of�R cannot expose large terms in the conformal
series. Thus the PMC correctly and unambiguously
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exposes higher order terms that are intrinsic to physical
effects, unrelated to the QCD running coupling.

We emphasize that the PMC method for setting the
renormalization scale gives predictions for observables
that are independent of the choice of renormalization
scheme—a key requirement for a valid prediction for a
physical quantity. The argument of the running coupling in
a given scheme that appears in the resulting conformal
series has the correct displacement so that the result is
scheme independent. The number of active flavors nf in

the QCD � function is also correctly determined, and
the renormalization agrees with QED scale setting in the
NC ! 0 Abelian limit. Furthermore, the resulting confor-
mal series avoids the need for renormalon resummation.

A consistent application of the BLM/PMC procedure to
B decays, including B ! Xs þ �, has been developed in-
cluding resummation to all orders in the strong coupling
constant. A review and extension of this procedure is given
by Melnikov and Mitov [35].

The PMC procedure has recently been extended to the
four-loop level [36], demonstrating that it provides a con-
sistent, systematic, and scheme-independent procedure for
setting the renormalization scales up to NNLO. The ex-
plicit application for determining the renormalization scale
of Reþe�ðQÞ up to four loops has also been presented [36].

The PMC is the principle underlying the BLM scale-
setting procedure, a method that has been applied to many
pQCD predictions. For example, the PMC/BLM procedure
for setting the renormalization scale is the standard method
for determining the intercept of the BFKL pomeron [34,37].

A systematic and scheme-independent procedure for
setting the PMC/BLM scales up to NNLO has also been
demonstrated, including an explicit application for deter-
mining the scale for Reþe�ðQÞ up to four loops [36]. The
PMC procedure has recently been applied to the t�t hadro-
production cross section [38,39] and the �tt asymmetry [40]
major tests of the Standard Model at colliders [38,39]. The
PMC prediction for the total cross section �t�t agrees well
with the present Tevatron and LHC data. The initial scale
independence of the PMC prediction is found to be satisfied

to high accuracy at the NNLO level: the total cross section
remains almost unchanged even when taking very disparate
initial scales. After PMC scale setting, the PQCD predic-
tions are within 1� of the CDF [41] and D0 measurements
[42] since the relevant renormalization scale is less than the
conventional estimate; the large discrepancy of the top quark
forward-backward asymmetry between the Standard Model
prediction and the data is thus greatly reduced.
It should also be noted that the principle of maximum

conformality satisfies all of the consequences of renormal-
ization group invariance: reflectivity, symmetry, and tran-
sitivity [43]. Using the PMC, all nonconformal terms in the
perturbative expansion series are summed into the running
coupling, and one obtains a unique, scale-fixed, scheme-
independent prediction at any finite order. The PMC scales
and the resulting finite-order PMC predictions are both to
high accuracy independent of the choice of initial renor-
malization scale, consistent with renormalization group
invariance. Moreover, after PMC scale setting, the residual
initial scale dependence at fixed order due to unknown
higher order f�ig terms can be substantially suppressed.
The PMC thus eliminates a serious systematic scale error
in pQCD predictions, greatly improving the precision of
tests of the Standard Model and the sensitivity to new
physics at collider and other experiments. Further discus-
sion is given in Ref. [43].
Clearly, the elimination of the renormalization scheme

ambiguity using the PMC will greatly increase the preci-
sion of QCD tests and increase the sensitivity of measure-
ments at the LHC and Tevatron to new physics beyond the
Standard Model.
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