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In this work, we adopt the simplest model that spontaneously breaks supersymmetry, namely, the
minimal O’Raifeartaigh model. The effective potential is computed in the framework of the linear delta
expansion approach up to the order 82, conjugated with superspace and supergraph techniques. The latter
can be duly mastered even if supersymmetry is no longer exact, and the efficacy of the superfield approach
in connection with the linear delta expansion procedure is confirmed according to our investigation. That
opens up a way for a semi-nonperturbative superspace computation that allows us to deal with
spontaneously broken supersymmetric models and encourages us to go further and apply this treatment
to the minimal supersymmetric Standard Model precision tests.
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L. INTRODUCTION

The thrilling times of the LHC physics we are living in
open up a great deal of issues connected to fundamental
mechanisms and theories, especially, supersymmetry
(SUSY) and its possible breaking mechanisms [1-10].
Considering fundamental principles of quantum fields the-
ory, SUSY seems to be fairly well motivated as a very
fundamental symmetry of the high-energy regime. At our
accessible energies, it does not show up; it has to be broken
at some scale much above our reachable energies, and its
possible evidences at accelerator energies must be commu-
nicated by means of some mechanism connecting this
(higher energy) breaking scale to our low-energy world.

The present and the near-future LHC outcomes are
crucial for the interplay between SUSY and the
Standard Model parameters. The focus is not on SUSY
itself, once we understand that SUSY is very likely to
show up at very high-energy scales; the actual matter with
SUSY relies on its possible breaking mechanisms and the
ways the latter are driven down to the cutoff region of the
Standard Model, namely, the tera-electron-volt scale. In
this framework, the quest for possible new SUSY viola-
tion mechanisms and a broader exploitation of the already
known models to break down the fermion/boson symme-
try are self-justifiable [11].

On the other hand, LHC physics is also refining
the precision tests and the level of accuracy of the
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measurements of the Standard Model’s parameters. Since
perturbative quantum field-theoretic calculations are the
way we get the phenomenological results for Standard
Model processes to be compared with experiments, we
are face to face with the need to go further in perturbation
theory, so as to incorporate higher order corrections into
the calculation of physical processes.

Placed in this scenario, we are motivated to reassess
SUSY breaking models by computing higher order correc-
tions to their corresponding effective potentials, so as to
probe the effects of SUSY breaking in connection with the
improvement of precision tests at the LHC. It is clear that
LHC is a collider for new discoveries rather than a preci-
sion machine; but, anyhow, it increases the level of the
precision tests of the previous LEP. It becomes a manda-
tory task to ascertain how much loop corrections affect the
pattern of SUSY breaking once we start off from a viola-
tion that takes place at the classical level.

In connection with the discussion of SUSY breaking to
account for the splitting of the masses of supersymmetric
partners, we would like to point out that, very recently, a
new proposal of a model based on SUSY has been pro-
posed by Alvarez et al. [12], in which a structure of
partners do not show up, although SUSY is locally realized.
So, there is no need of SUSY breaking to split masses, and
the (fermionic) matter fields acquire mass through their
coupling with some background geometry.

In a series of previous works [13,14], we have adopted
the minimal O’Raifeartaigh model [1], which realizes
SUSY violation by means of the so-called F terms, and
we have devised a technique to approach the problem with
the use of superfield and supergraph techniques. To get a
richer perturbative series, we have chosen the so-called
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linear delta expansion (LDE)' and we have coupled this
method to our superfield methods. The outcome was en-
couraging and, in view of the efficacy of the conjugating
supergraph techniques with the LDE, here we propose to
carry out a computation of the effective potential up to
0(58?). Owing to a particularity of the LDE, calculations at
this order require one to take into account vacuum dia-
grams up to two loops.

The LDE is a nonperturbative method that automatically
resums large classes of terms in a self-consistent way, to
avoid possible dangerous overcounting of diagrams. This is
achieved by combining perturbation theory with an opti-
mization procedure. It has a long history of successful
applications, describing phenomenological models using
quantum field theory at zero temperature and under ex-
treme conditions. It has been shown that the LDE results go
beyond the standard mean-field or large-N approximation
by explicitly including finite-N effects. Some very inter-
esting results can be found in Refs. [15-23] and in refer-
ences therein, and strong signals of the convergence of the
method can be found in Refs. [24,25].

Usually, when two (or more) loops are present in the
perturbation series, we need to implement a numerical
calculation to perform the optimization procedure. In this
case, it was shown in all applications cited above that the
numerical results of the LDE can go beyond the usual
resummation methods. Here we further develop the super-
space applications of the LDE, by taking into account
0(5?) terms in the effective potential expansion and solv-
ing numerically the optimization procedure. In particular,
we study the convergence of the method, where we contrast
the numerical results with our analytical results obtained at
O(58") using two different optimization procedures.

The general structure of our paper is as follows: in
Sec. II, we briefly review the application of the LDE to
supersymmetric field theories, while working in super-
space. In Sec. III, we employ supergraph techniques to
compute the one- and two-loop diagrams that contribute to
the O(5?) to the effective potential. All the perturbative
calculations of Sec. III and the numerical results we work
out are collected in Sec. IV. Finally, our concluding re-
marks are cast in Sec. V. The Appendix follows, where we
list all the superspace integrals of the supergraphs eval-
uated in Sec. III.

II. CATCHING-UP OF SUPERSPACE LINEAR
DELTA EXPANSION

The purpose of this section is a warming-up with a
general presentation of the LDE in the frame of (matter)
supersymmetric field theories. We adopt a superfield

'In recent studies in the literature some authors have called the
LDE method optimized perturbation theory; since the method is
not only an expansion in the parameter 6, there is an optimiza-
tion procedure on the method.
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approach and follow Refs. [13,14,26]. Building up our
superspace action in terms of chiral and antichiral super-
multiplets, we start off from what we call the interpolated
Lagrangian L°:

L2 =8L(p, @)+ (1= 8)Lo(u, i), (D

where 8 is an arbitrary parameter, L,(u, @) is the free
sector of the Lagrangian, and w, fi are mass parameters.
Notice that, whenever 6 = 1, we recover the original
Lagrangian. The 6 parameter appears in connection with
the interaction terms and is so chosen to be the perturbative
expansion parameter; this means that we do not perturba-
tively expand in terms of the coupling constant itself. The
mass parameters appear in L, and 6 L. The (u, @) de-
pendence of L is summed up into the propagators,
whereas 6 L is regarded as an insertion and is taken as a
quadratic interaction.

Let us now state our methodology. We carry out a usual
perturbative expansion in 6 and, at the very end of the
calculations, we take 6 = 1. At this stage of our approach,
ordinary perturbation theory is applied and a finite number
of Feynman diagrams is calculated; the results are essen-
tially perturbative. However, quantities evaluated at a finite
order in & explicitly depend on the parameters w and f.
Therefore, it is necessary to fix them up. To do this, we
adopt the principle of minimal sensitivity (PMS) [27]. In

this framework, the effective potential 'Vgg( M, L), pertur-
batively evaluated to order 8% must be taken at a point
where it is less sensitive to the parameters w, . Invoking
the PMS, u = uo and g = @y appear as solutions to
the equations

k _
oV, i) 0
8,u, m=po,0=1 (2)
k _
9V & (u, ) 0
oy A=ges=1

and will come out as functions of the original coupling and
fields. We then insert wg, fig in the expression for our

effective potential Vgg, obtaining a nonperturbative result,
once our propagators depend on wu, .

Our method is based upon the calculation of all the
diagrams up to a given order in &, including the vacuum
diagrams. In ordinary quantum field theory, for the calcu-
lation of the effective potential, we do not in general worry
about vacuum diagrams, since they do not depend on the
fields. In our approach, the vacuum superdiagrams do
depend on p and & and become important to the LDE,
once the arbitrary mass parameters will now depend on
fields by virtue of our optimization procedure. Thus, in the
LDE, an order-by-order calculation of the vacuum dia-
grams becomes mandatory. On the other hand, vacuum
diagrams in superspace are identically zero, owing to the
Berezin integrals. In view of this undesirable feature, we
take, from the onset, the parameters w, & as constant
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superfields, and we keep the vacuum superdiagrams till the
end of the optimization procedure. To render the procedure
clearer, let us give below the expression for the superfield
generating functional in the presence of the sources J and J
(chiral and antichiral, respectively):

R 16 156 i - _(J
= S (2 - _ (M, M)
Z[J,J] epr:szt(l, 57" 8j)]exp[2(J,J)G (j):l

3)

with m being the original mass, M = m + u, and M=
m+ i.GM M) is the matrix form of the propagator, and, in
addition to the original interaction terms, one has new
bilinear chiral and antichiral interaction terms proportional
to o and & fi. We are then led to the following expression
for the superfield effective action:

I[d, d]=— % In[sDet(GMM))] — i InZ[J, J]
- [ B2I(2)D(2) [ BTG, @)

where sDet(GMM) is the superdeterminant of GMM)_ Tt
is, in general, equal to one, but here we keep it, since
GMM) depends on w and . Besides, in view of the u
and 4 dependence, the generating functional of the vac-
uum diagrams, Z[0,0], is not identically one. We can

define a normalized functional generator as Zy = %

and set the effective action as written in the expression
below:

I, &] = —é In[sDet(G)] — i1nZ[Jo, Jo] + Ty[®, B],
(5)

where the sources J,, and J,, are defined by the equations

SW(J, J] _ WL, J] _ 87,71
8J() ly=yy  8J@) Nj=5, 8@ 1=y,
_8Z[J,J] _
8J(z) 1=, 0 ©

In (5), the first two terms (usually equal to zero) stand for
the vacuum diagrams, and I'y[®, @] is the ordinary con-
tribution to the effective action.

Let us now work out the interpolated Lagrangian and the
new super-Feynman rules for the O’Raifeartaigh model.
The minimal O’Raifeartaigh model is specified by the
Lagrangian,

£ = fd40(i)iq)i - [[dze(f(bo + mCI)l(I)Q
+ gDy®?) + Hc] (7)

where i = 0, 1, 2.
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Following the work of Ref. [13], to account for the
nonperturbative contributions of all fields in the model,
we apply the LDE with the matrix mass parameters u;; and
fj- By adding and subtracting these mass terms to a
general O’Raifeartaigh-type action, we obtain

L, @) = Lo(u, @) + Lin(p, i), (8)

with
_ 1
Lo(u, o) = fd46q)iq>i - I:[d20<§iq)i + EMij(Diq)j)

+ He. ] ©)

1 1
Lin(p, &) = —I:[d29<§8ijkq)iq’jq)k - Eﬂ‘ij(bi(b])

+ Hc] (10)

where M;; = m;; + wu;; and i, j, k =0, 1, 2 are symme-
trized indices.

We now cast the superfield expansions for the arbitrary
mass parameters as follows:

wij = Aip@r = Aippr + 02 x) = Aijepr + A xi6?
so that
Mij = mij + /.LU = (mlJ + pl]) + bijgz = aij + b”92
(12)
The interpolated Lagrangian (1) takes the form

L£o=r3+ L8

nt’

(13)

where the free and the interaction Lagrangians are given by
= 1
.E g = fd40q)i(pi - [j d29<§iq)i + Eaqu)lq)]

1
+ Eb,»jeﬂqa,-qaj) +Hec. ] (14)

6 6
'Eib;n = _[fdzg(ﬁgijkq)iq)j@k - E,LLUCI),-CI)j) + H.c. ]
(15)

Notice that the interaction Lagrangian now displays soft
SUSY-breaking terms proportional to the x components.
We treat these terms perturbatively in 6 as for normal
interaction terms.

Now, to recover the so-called minimal O’Raifeartaigh
model, built up in terms of three superfields, with 6 = 1 (7),
we choose
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§o=2¢&
M” = b1192 = b02,

My, = agy = po1 = a;

My =ap=mp+tpp=m+p=M o = &
(16)

and all other ¢; and M;; set to zero. With these choices, we
obtain

Lo = fd4g<i>i®i - UdZe(gcbO + MDD, + adyd,

1
+ Eba%b%) + Hc]

nt

ro - —[ j dze(agcpocp% — 8p®, B, — Sadyd,
5b 2(1)2 1
—5 6°®?) + He. |. (17)

This O’Raifeartaigh model possesses an (Abelian) R
symmetry. The R charge assignments of the chiral super-
fields ®,, ®,, and ®, are Ry =2, R =0, and R, = 2,
respectively. To keep the R symmetry of the interpolated
Lagrangian, the R charges of the parameters a and b are
R, = 0 and R, = 0; they are to be left the same after the
optimization procedure.

The new set of modified propagators can be read off
from the free Lagrangian, which also has explicit depen-
dence on 6 and @ through w and f&. Using the techniques
developed in Ref. [28], the new superfield propagators read
as follows:

(DyDy) = (K + IMIP)A(K) 81, + lal*|b*B(k) 636761,
(DyB,) = &bC(k)%D%D%H%&‘I‘Z;

(@ D,) = —MaA(k)8%, + Malb|*B(k)03638%,;
(@,B,) = ER5, + 1bPB®) 1 DRDI5%;

(@, D,) = —MbF(k)625%,;

(D, D,) = (K + |al?)A(k) 51, + M| bI*B(k) 6363 5%,

(DyDy) = —|a|25c(k)%1)§9%5§2;

(DyD,) = aA(k)%D%B‘I‘Z - a|b|23(k)%o%é%0%3§2;
(DyD,) = —MaBC(k)%D%@%S‘I‘z;

(@, D)) = BF(k)%éfD%B‘l‘z;

(D, D,) = MA(k)j—lDfé‘l‘z - MlblzB(k)%D%aféfa‘l‘z;
(D, D,) = —IMIQEC(k)%D%e%S‘b, (18)

where
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1

AW = BT MR + el >

B(k) = !
&+ TMP + [P + [MP + [aP) — [P
1
O = e+ P+ TaPy = BT
1

PO = e e+
F(k) = : (20)

(© + TP+ 1aP) = TP

It is noteworthy to highlight the nontrivial dependence
of the propagators on the parameters a and b: the opti-
mized parameters are present at the poles of the propaga-

tors, as if they were typical mass terms.
The new super-Feynman rules for the vertices are

O, P vertex: 25g/d40;

- 5p/d40;
- 5a/d40;

ob
®, D, vertex: —7[514602.

O, D, vertex:
2D
Oy D, vertex:

We are now ready to start calculating the perturbative
effective potential in powers of §. To do that, we use the
vertex functions defined in the expansion of the effective
action and consider the compatible vacuum diagrams. In
Ref. [13], after the optimization procedure, it is seen that
the order-8° contribution accounts for the sum of all one-
loop diagrams. It was then possible to derive analytical
solutions to the optimization procedure before calculating
the superspace and loop momentum integrals. Nevertheless,
in second order, we are not able to exhibit analytical solu-
tions; so, we must renormalize the theory before the appli-
cation of the optimization procedure. To do that, a numeric
calculation is required.

In Fig. 1, we depict the diagrammatic sum of the effec-
tive potential up to the order 6' (V{1).

Notice that, because of the f-dependent propagators,
tadpole diagrams do not vanish any longer, as it usually
happens in superspace. The first diagram is of order §°, and
we can see that it corresponds to the first term of the
effective action, as given in (5). The third graph is a
vacuum-type superdiagram with a quadratic insertion that
stems from the #> component of the w expansion.

With our super-Feynman rules and the results of
Ref. [13], the effective potential up to the order &' reads
as given below:
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P D Py
P 2 P
O O= G O GG o
1 1 2
FIG. 1. Effective potential up to the order §'.

(]) . 1! In Ref. [14], the renormalization of the effective poten-
Ve = G + Z G; tial up to the order 8 is discussed. At the order &', the
counterterm below is needed:

d*k
4 T 28gb 28gb
[d 0125 TI'III[P K]6 + 5/(2 )4 F(k) g fd4002®0 +He = g fd20®OR+HC (23)
_ 1
X {—Zgb [ d’0d, + > |b|> + H.C.} where @ denotes the renormalized superfield. The chiral
potential is therefore renormalized. The counterterm that
n 5[ B(k){4gc'z|b|2 [d2992(l) renormalizes it depends on b, which is a solution to the
Qm* ! optimization procedure. In Ref. [14], it was shown that,

_ after the optimization, only the K&hler potential is actually
— lal*|bl* — pM|b]* + H.c. } (22)  renormalized.

The renormalized effective potential up to the order 8! is

biz] 4P
(M? + a?)? 2

b(b — 4g(Fy)) + 2[a(a — 4g(¢1)) + pMI(M* + a*)In[M? + a?]

1
Vi = { (M? + a?)? ln[l -

(4?4 (M? + a?) lnliM2 tait b] ”y In [—(M2 ta) - bz] - 3—[)2}

M*+a*—b ,u,4 4
“ 7]

+[ataglon = @) + 3@ty = b) = ph |7 + @+ Bl + 2 + 5]

+ [a(4g(¢1> —a) - %(4g<F0) —b) - pM](M2 b — b)n[M? + @ — b]}. 24)

For the time being, what we have is a perturbative result for the effective potential. To actually obtain a nonperturbative
result, we apply the optimization procedure. We had to break the parameters M;; into #-independent (a;;) and 6-dependent
(b;j) parts and, with the help of (16), the optimized parameters turn out to be ag; = a, by; = b, and p;, = p. Upon
application of the PMS, to find the optimized parameters a, b, and p, we have to solve the three coupled equations

(1)
a’\/eff

W
_ _ Vet
a=ay ab

b=b, 9P

(1)
a’\/eff
da

=0, (25)

P=po
at 0 = 1, and plug the optimized values a,, by, and p, into (24). The following analytical solutions are encountered:
ap = 4g(e1) = ao, by = 4g(F,) = by, po =0 = p,. (26)

The optimized parameters appear now as functions of the original coupling and fields, as expected. By plugging these
results into (24), all the 8! terms vanish and the optimized potential can be cast under the form below:

V-6

1 B 16g%(F,)? m? + 16g%(¢p,)* + 4g(F,)
=l ot | |+ R 6t )
T 16g%F,Y 1n[(mz + 16g% 90154)2 — 16g% F0>2] ~ 48g2<F0>2}. o

The above result represents the Coleman-Weinberg—type potential [29,30] for the O’Raifeartaigh model [13,28], and it
accounts for the sum of all one-loop diagrams. It is a nonperturbative result in that it takes into account all orders (actually
infinite orders) in the original coupling constant.
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IIL. EFFECTIVE POTENTIAL IN THE LDE AT O(6?%)

We now present the order-82 results. At this order, we
have one- and two-loop diagrams. Since the purpose of the
present work is to be as clear as possible, the main part of
this section is rather technical. All the results of this section
are summarized in Sec. IV.

A. One Loop

To analyze the one-loop diagrams, we adopt the follow-
ing strategy: there are 42 diagrams (plus some Hermitian
conjugates), and we separate them in distinct sets; each
diagram belonging to a certain set has the same propagator
structure in the loop and differs from the other diagrams of
the set only by the external classical superfields or by
insertions of a, b, or p. Below, we show the expressions
for these diagrams, set by set. We are going to use the
notation 7;(6, #) for superspace integrals, which are listed
in the Appendix.

The first set (Fig. 2) is

i 47 74 _
GV = 4522 /%@O(l)q)o(z)[—%D%(k)@)]@])]

X [—lD"g(—k)(ch(Dl)] +H.c.

_48%g% _, [ dYk
(16)2 b 2 )4F(k)F(k)J1(0 0) +H.c.
202(F,)>
=5K7;)F0>(772517Jr n*Inn~ —2b). (28)

) d*kd*0 1~
05 = —asign [LEE 20,063 - ke,

% [—iD%(—k)(CDICI)I)] +He.

28% - d*k )
_Wble[WF(k)F(k)jz(e, 0)+H.c.

8% gb(F, — —
= —7gK; 0>(7721m7+ —n%lnn~ —2b).

(29)
d*kd*0,,
@m)?*

X [—%D’%(—k)@@l)] + He.

1 1 -
09— 5% 9%9%[ L b2y, q>l>]

= & |b|* d'k F(k)F(k)J5(0, 6) + H.c
4(16)2 2m)* S -
22 _

= W(nzln”rf’ — n’lnnp~ — 2b). (30)

q) (I)l cI>1 (I>1
U@l [0 (o3

FIG. 2. Diagrams G(ll)‘s , 6(21)52, and 6(31)52.
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The second set (Fig. 3) is

5‘1)52 1682 2[d kd' 012(1)0(1)(1) (2)[ D_%(k)<q)1q)1>j|

x[—zﬁg(—k)<q>oq>,>]+H.c.

2.2 4
=M5ga§ﬂdkF®M%UM&®

s _
5

(1)8?
6

a2 d'kd*0y5
03 _ 52, b/

_ 1)
(162

(16)? 27)*

—|b|*B(k) T 5(6,0)}+H.c.

(Inp* —Iny").

252
S AN an

o0 [“5 d'kd’ 9‘2%(1)[ L DI0@ D) ]

X [——D%(—k)((bodbl)] + He

48%g _
-1 [ S PRI 6.0

— |bI?B(k)J,(6, 6)} + H.c.

28%ga*(Fy) —
K

(Inp* —Tnn"). (32)

d'kd*0 I
— 45 b[ 5 )412®1(1)0§[—1D%(k)

X (®1®1>][_ ZD_%(_k)<(D1q)o>:| + H.c.
48%g d*k
(16) Q2m)*

— |b|>B(k)T5(6, )} + H.c.

_ 252gab(g01)
B K

alb|? F(k){A(k)T (6, 6)

(Inp* —TIn7y"). (33)

oo [ %D%(k)@lcbo]

<[~y DA D@®) ] + e

d*k _
Gyt FOHART (6. 5)
— |bI*B(k)75(6, 6)} + H.c.

atb — .

al?|b)?

—Inn"). (34)
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Py Py P Dg
Ok =00 =0k 00
U@l o, ® B @,

FIG. 3. Diagrams

The third set (Fig. 4) is

18 _ o) 2 d*kd* 01
=8d°g
Gs [ @m?

% [—Zﬁg(—k)@oq)o)] }He.

6292 _ d*k

__8 g2 |a|2b2f _

(16) (27)

:45282‘12<€D1>2
kb

0% _ 450 j‘d(l;d )tzlz ¢1(1)[— %D%(k)(@l‘bﬁ]

x [—%D%(—k)(d)od)o)] + He.

(), @) D@ )]

(n*Inn* — n*Inn~ —2b). (35)

482 _ d4k _
- (16)§“|al2”2f(27,)4 F(K)C(k)T (9, 8) + Hec.
25093
- _%ﬁ("%f - n’lnn~ —2b).  (36)

g(l g (1)82 and G 1)5

<I> P )

. FOREO)
; ; ; + he

U(I)] (I)] q)l

FIG. 4. Diagrams Gg)‘sz, 31)52, and 6(110)52.

e _ L, o [dkd! 912[ 1 ]
S0 2 Q) 4D1(k)<<l>1<131>
X I:_%D_%(_k)@’oq)o)] +H.c.
& pp [k ]
= “agp® 1" | G FRCRT(6,0) + Hee.
8%a* _
— 2% (" — n?Inn~ —2b),. 37)
kb

The fourth set (Fig. 5) is

GIP = go2g2 ]d kd40‘2<I>1(1)<I>1(2)[—ED%(k)<<D1<I>o>][—lD_%(—k)@lq’O}] +He

@2m)*

882g2 i d4
= 4{A(k)A(k)J11(0 0) — 2|bPAK)B(K) T 100, 6) + 1bI*B(k)B(k) T 1,(6, )} + H.c.

62 “ ) 2w
_ W[%mnz — (n? + 2B + (n? — 2b)inn~ + zb]. (38)
kb
> d*kd*6 1 - 1 -
T )4% (0] = D@ @) || ~ DA @) | + e
2
- _?186)§|a|2a Qm)* K AARART 156, 6) — 20bPAMBKIT(6, 8) + b BIOBK)T (6, )} + Hae,
S W[%H% — (% + 2b)Inn* + (9% — 2b)inn~ + 2b). (39)
s _ 1 d*kd*6 1 1 -
6(1)5 E 2,2 o )412[ Dz(k)<<I> ¢O>][_ZD§(—]¢)(<I)1<I)O)] + H.c.
52
= 2062 (2 @m) LR A DAWR)T 146, 8) — 2AbPARBERT o(6, 8) + |6 BIROBIOT 5(6, 6)} + Hec
= iza;[élblnn — (9 +2b)Iny* + (n? — 2b)Iny~ + 2b] (40)

The fifth set (Fig. 6) is
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<I o) Dy D, - P D

o, 1 1 1
QTN o NS g THY'G MK G

il P, Do <I>1 @4 P,

. 182 ~(1)82 1)52 2
FIG. 5. Diagrams G(u) , 6(12) , and 6(13) . FIG. 6. Diagrams G')%, 6(115)52, and G(,lﬁ)a

41 g4
617 =352 [CETER @B - iR D) | - DAk )]

G’
852 2 d4k | |2 | |4
S [ EwE0 T 150.0) + 25 E0B0OT 400.0) + s BwBWT 1006, 0)
= &K(F‘DZ(E - EnZ) + W[mﬁnz — (? + 2b)ian* + (g% — 2b)Inn~ + 2b] 41)

GIP = —252 b[" "d4012c1>0(1)02[ —D%(k)(q)lcbl):l[—%D%(—k)(cf)lcbl):l+H.c.

2 2
_ 25 g5 [ — {E(k)E(k)jlg(H 9) + zl E(K)B(K)T,(6, 8) + (llb;)zB(k)B(k)jw(H 9)} + He.
__ w& _ EnZ) @[4171 nn? — (2 + 2b)nn* + (n? — 2b)ing~ + 2b), 42)
, 47, 14 _ ~ _ _
G — lazw ot 01— D@, @) [ - D3k )
it [ L rwew 0.0+ 225 s w7200, + L Bwsw 7210.0
2(1 6) Q) { 20 16 3 (16)> 2 }
522 . 52h? _ _ —
= 2;l: (Z — lnnz) t 2 [4blnn? — (n* + 2b)Inn* + (n* — 2b)Inn~ + 2b]. (43)

The sixth set (Fig. 7) is

4p 4
Go* = 1652g2fd("d )312 q>0(1)ci>,(z)[—%D%(kxcplcm][—%Dg(—k)@oq)l)] + He

2 2 )
- 1(6186)2 bf Q) C(k){E(")j 2(6. ) +uB(k)ng(9 0)} +H.ec.

252
- RN o

1

d*kd*e =
12 —Dg(—k)<q>0cp1>] + He.

2y

48%g - [ d'k
“er I | Gy
252802<F0>
_ 28Ry

82 —
Giy® = —4d%ga

@y(0] 3 D@ B ][ -

bl
C(k){E(kmw 0)+ 1 BT 20, 0)} +He

(nn* —Tan). (45)

G\)7 — —46%b f d kd4912q> (1)92[ D%(k)((i)ld)p][—%D%(—k)(cbli)o}] T He.

452 d4k
= ——ga|b|2 (2 )4

(16)?
2
_ 26 gib<§0l>(mn+ _ ET]i) (46)

2
C(k){E(k)st(a 8) + uB(k)JZf,(e 0)} + He.
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(I>1 CDQ (I) (I)o q) 1
oh) /—\ Dy . P9 @ . 40 0?2 - @ ; + h.c.
@1\_/@1 Dy D, 3 P,

FIG. 7. Diagrams G(,17)52, 6(1)32 6(119)5 , Q(l)‘s .

2 d*kd*o 1 - - 1 -
w’ = 8%ab f om0 3 D@ @) ||~ D@ | + He

e [ ‘ cwlEwase 0+ 572000, o} + e
(16) 2m)? ’ &

52 2 o
P (lnn —Inn7). 47)

The seventh set (Fig. 8) is

X 47, 14 ~ B _ ~
W = 1602 [ %cbl(l)cbl(z)[—1D%<k><<1>1<1>1>][—1D§(—k)<q>oq>o>]

2,2 4
- / (j )4{<k2 + IMPYEWAR T 25(6, 6) + lal b1 EG)B() T (6, 6)

+ 2+ P2 paw) 72000, 5) + 14

46%g* T In
- %{419(2772 — MH)Inn? + [a*n® + 29" (M? — ") ]inn*

BIOB().T 31(6, é)}

—[a’n* + 20~ (M?> — p)]Inn~ — 2b(a® + 2M? — 27]2)}. (48)
: d*kd* 1 _ 1 _
W7 = vt [CoR 0] -3 D@ ) || DA R@ | + He

2 4
-t (jw’;{(/é + IMPERAKRT 50, 0) + lalIbRER BT 526, 6) + (k2 + M%)

x EB(k)A(k)%(@ g + 1L

28 _ _ _
—%{41)(2772 — M?)Inn? + [a®n* + 29" (M* — n)]Inn* — [a*n* + 29~ (M*> — 7 )]Inn~
K

— 2b(a* + 2M?* — 27?)}.

BU)B(K) T (6, a)} + He.

(49)
W7 _ 522 d*kd*0,T 1 -, - 1, -
= 5lal [ <R D@ @) || D3k
52 d*k
—1gla |? L {(k2 + IMIP)E()AK) T 33(0, 0) + |al?|bIE(k)B(k) T 34(6, 0) + (k2 + [M]?)
|b|? lal*|b]* 5
X e BOART55(6. )+ 2 BUOB(O.T (6. )|
5%a? _ _
=D P = M)nn? + [a®n® + 20" (M? — n")]iny”
K
—[a?n* + 29~ (M? — p7)]Inp~ — 2b(a® + 2M? — 27?)}. (50)
) oy - ) i i) )
SObe 0 O O 0 O
@1\\/@1 o, () D @U@O / il D
FIG. 8. Diagrams Ggl)‘sz, 6(212)52, and 6(213)52. FIG. 9. Diagrams 624 , (215)52, and 6(216)'52.
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The eighth set (Fig. 9) is P9 " ! . 93)1 ! 4 he
d*kd*6 - 1 - - ® ®, ® .
(1)52 1652 2 (27)412(1)1(1)(1)1(2)[_ZD%(kxq)lq)O{I 1 2 1 2
T

! FIG. 10. Diagrams 6(217)52 and 6(218)52.
<[ —ypand ]
4 The ninth set (Fig. 10) is

1098 ko LK e 75(60.0) ey 1
(i6) Gy e 07 = st [ ST 00| g D@ @)
2,22 2
=w(nzﬁn+—n2ﬁn‘—2b) 51) [_1 o
kb x[ -3 D k)<CI>1(I)1>] + He
W8> _ d*kd*0,, 1 . _ 48 o[ d% _
GU” = —a%ga [ 520, ()] D@ By | st h [ P o0.0)
X I:—ED%(_/CXCBND()):I +H.c. — [bI*B(K)T»(6, 0)} + H.e.
4 2
482¢ d*k _ = M(Ef —Inn"). (54)
= (16)3|a|2d|b|2 (277)4C(k)C(k)j38(0, f)+H.c. K
2 3 N 4 B
OO g m. e 68T = o [ LT 6] - @]
2 d*kd*e 1 - = X ——D2 —k{(D, D + H.c.
W = olal [ - DB | 5[ 3] + e
1 _
x [~ L Db )| — oo [ R0 76,0
& e [4k . — |b2B(k)T5(6, 6)} + H.c.
= el bR [ S 0T 500,0) oMt
524" = P (Inp* —1nn"). (55)
= 1b Iny™ — np*lny~ — 2b). (53)

The tenth set (Fig. 11) is

47, 74
W7~ —asigp [TAL )ﬂ”¢1<1)[—§D%<k)<d>1<b2>][—%D%(—k><¢1¢o>] +He
2
- ?156)2 Ma f Gyt ADART 15(60.0) = 21bPAMBKT(0,0) + [bFBUIBOT (0. )} + Hee
— - 208OMAE) [yt — (2 + 20)Tan” + (o — 20V + 20) o

2 d*kd*6 1 - 1
W = 8ap [ SR - @@ | -3 D3R @ | + He

2 4
- (I(ST)szmP [ (gﬂ)4 {AMAGKR)T 14(6, 6) — 21bPAGK)B() T (6, 6) + |bI*BI)B(K) T (6, )} + H.c.

52pMa
2kb

[4bInn? — (92 + 2b)Inn* + (2 — 2b)Inn~ + 2b]. (57)

The eleventh set (Fig. 12) is

085024-10
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D ) D )
@1 0 1 @ 1
— } ; i + h.c.
D, Dy D, Dy

FIG. 11. Diagrams gQJ‘sZ and ggifﬁz.

PHYSICAL REVIEW D 86, 085024 (2012)

Py (i>1 Dy (i’l
=00
i) Dy i) Dy

FIG. 13. Diagrams (313)62 and g(3£1)6Z~

) 41, 74 _ _ ~
61" = —a%p [ <SR = D@ By [ - D@00 | + B

2m)*

2
- ELlaT)%pMa b? _/-(277.)4 F(k)C(k)T+(6, 6) + H.c.

_ 26%gpMale:)
kb
Sap d*kd*6,,

@2m)*

g(1)52

(n*Inn* — n*Inn~ — 2b).

[ i3

][— %D%(—k)(CDZCI)O)] + He.

2 4
= oMl B [ S FOCWTy6.0) + e

82 pMa?

= ———(n’lnp™ — »’lnn~ —2b).

2kb
The twelfth set (Fig. 13) is

d4kd40
(1)5 2. = 12
—46%gp | ————=

482g _

_ 28%gpM( o>(— ~Tan).

R0y -y D@Dy [ - D@0 + He

Mb[(2 )t F(k){E(k)‘718(‘9 0) +fB(k)‘72(0 0)} + H.c.

(1)52—5219 [t "4"d4"'2 o~ D10 B || — g D3-0® ) ] + e

|b]?

2 4y
=2 Smp f ak F(k){E(k)jzo(a )+ 1 BT 30, a)} + He,

16

(2m)*
52 Mb —
= g (Inp* —Inn").

The thirteenth set (Fig. 14) is

<I>1<1>[— 3 DH0@, 0 [ - DAk, 00) | + e

][— %Dg(—k)@l@@] + He.

d*kd*o
()& 2 12
—46°g - - 2
o @2m)*
45 g
pMa sz F(k)C(k)T+(6, 6) + H.
= g PMalbE | 55 FRC(T(6.6) + He.
28%gpM _ _
___;ngfﬁgg(WQHn+‘-nqnn’-—Zb)
K
47, 34
(18> _ _ [ dkd*0 1 -
G36 = 52ap (277)4 Dz(k)<(I) CI)2>
52 _ ) ) d4k
- —(16)2pM|a| b o )4F(k)C(k)j9(9 d) + He.
_ &pMa’

2kb

® Dq Dy Dq Dy
! ; Q ; + hee.
Py Py P4 P,

FIG. 12. Diagrams 6(311)52 and 6512)32.

085024-11

(n*lnp*™ — p*lnn~ — 2b).

®, o, ®, o,
0]
! ; @ ; + h.c
o, D, o, D,

FIG. 14. Diagrams 6215)52 and Gglé)gz.

(58)

(59)

(60)

(61)
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‘I)() (i)g ‘I)() (i)g q:'l (Bl
Q4
4® : @ i + he @
Py Py Py Py g (I)Q
FIG. 15. Diagrams G)°" and G, FIG. 17. Diagram G\)%".

The fourteenth set (Fig. 15) is

d*kd*6,,
Qm)*
48%g _ [ d*k

16 PN @nr
|b|?

16
28°gpMale))

= - —b[4bmn2 — (9% + 2b)Iny*t + (> — 2b)Iny~ + 2b].
K

1)8? —
s = —48%p

@40 = D@ By [ D300 | + B

{—E(k)A(k>J4o(e, B) + |b2ER)B().T 326, 6)

|b]*

EB(k)B(k)Jg(ev, é)} + H.c.

B(k)A(k)j7(0, é) +

47, 74

52 &'k
=__pMlal? | ——
r6PMlal | ooy

b|? ~
L paug.s0.9) +
_ 8*pMa?
2kb
The last four diagrams have unique propagator structure in the loop and are not divided into sets.
The thirty-ninth diagram (Fig. 16) is

21 d*kd*0 1 - 1 -
Gy =502 [ |~ D@y | 3 Bi-R@ @) | + e

1)82 _
gs) = 8%ap

{—E(k)A(k)J33(0, 8) + [bPER)BK)T 346, 0)

|b|*

CBUOBIT (0, é)} + He.

[4bInn? — (92 + 2b)Inn* + (n° — 2b)Inn~ + 2b].

4
8 Lo oo [ d%k _
= - Mzbzf C(k)F(k 0,0) + H.c.
st PP [ G COFWTo(0,) + He
_82p2M2

(n’Inn* — n’iny~ — 2b).

4kb

The fortieth diagram (Fig. 17) is
52 d*kd*0,, 1 - - 1 -

f;o) =&%|pl? W[_ZD%(/C)@%@Q:I[_ZD%(—k)@%‘I’Q]

|b]?

{(k2 + |al)A(K)E(k) T 33(6,0) + (k> + |a|2)EA(k)B(k)J35(0, 0)

82 [ d'k
=—|pl I
16 2m)

|MP]b[*
16

+ IMPIPBIOER).T 54(6,8) + BIOB(K)T 36(6. é)}

52 2 . .
=22 abn? — a)nn® - [20* (n* — @)~ M0’ Jin*

+[2n"(n~ —a?®) —M>n*liny~ +2b(2n% — 24> — M?)}.

<I>1 CI>1 (I)l (1)2
@ + h.c. @ + h.c.
P P, [0} [0

FIG. 16. Diagram G)%". FIG. 18. Diagram G%".
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FIG. 19. Diagram G\)%".

The forty-first diagram (Fig. 18) is

PHYSICAL REVIEW D 86, 085024 (2012)
oy Py

+h(++hc+

FIG. 20. Diagrams 6(12)52, g(22)52, ng)az, and Qf)az.

S | d*kd*6 1 - 1 -
ﬂa=56%9[—E—Fﬁ[——Dﬂ@@%¢01——Dﬁ—M@5®Q]+HL
5? _
= 2(16)2 p>M? (2 e {A(k)A(k)j14(0 6) — 21bIPA(k)B(k) T 5(6, 6) + |b|*B(k)B(k)T5(6, )} + H.c.
2 20
_op 1b [4blnn — (9> +2b)Iny™ + (9% — 2b)Inn~ + 2b]. (68)
Finally, the forty-second diagram (Fig. 19) is 6(12)62 4522 d(‘;p:)‘;k COFRFQP (1)

2 d*kd*o 1
0 = opp [ [~ D@y |

x [—103(—k><<i>2<b,>]

|p|2|M|2|b|2 j

Q2m
52 ue o _
= fT(nzlmf’ — np%lny~ — 2b).

F(k)F (k)T 2(6, 6)

(69)

The diagrams G(l)‘s 6(115)52, and 6(116)52 of the fifth set
give divergent contributions, and we will discuss their
renormalization later.

B. Two Loops

The two-loop diagrams are shown in Fig. 20.

To calculate the two-loop diagrams, we use the tech-
nique developed in Ref. [31]. The contribution of the first
diagram is given by

2 d*pd*kd*6 1
GO =a5g? [“LEESEE LDy |

Q)
[ m@@¢ﬂ[0%w%@@®ﬂ
_ 08 o [LPLK L R 1, (6,6),

- (16)° @2m)®

(70)

with ¢ = (k — p), and the integral I,(6, 6) is given in the
Appendix. Plugging I,(6, #) into (70), we obtain

To handle with the integral above and the other mo-
mentum space integrals that will appear in the following,
we have adopted the following strategy: for each of them,
we split the integrand with the help of the method of
partial fraction decomposition and write each integral as
the sum of other integrals with just three terms in the
denominator. The remaining integrals are well known in
the literature, and we use the results of Refs. [32-34] to
compute them.

From now on, we define n>=m?+a’
nT =m?>+a®>*b and adopt the same notation of

Refs. [32-34] for the integrals I(x,y,z), J(x ),
and J(x):
x J—
kJ(x) = — -+ x(Inx — 1), (72)
1 _
2J(x, y) = xy[ + = (2 Inx — Iny)
(1~ Ty — Ty + mxmw], (73)
c 1/3¢ 1
2I(x, y,z) = — 78 2(7 - L1) - E{Lz — 6L,
+ (y + z — x)Inylnz + (z + x — y)Inzlnx
+ (y + x — g)lnylnx + £(x, y, 2)
+c[7+ L]} (74)
where

085024-13
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Kk = (4m)?,
c=x+ty+yg

— X

InX = ln< ) + vy — Indm,
w?

L, = xIn"x + yln™y + zIn"z,

+y—x—3S§ +x—y—S +y—x—S 2
PRESANLANL) Pag 2L12(7Z SR ) ~ 2L12(7Z A ) +Z
2z 2z 7z 2z 2z

z+x—y—S§

Ex,y,2) = S[Zln

S =q/x2 +y*+ 22— 2xy — 2yz — 2zx,

In(1 — ¢
Liy(z) = — j; Zydt(dilogarithm function).

So, the total contribution of the first two-loop diagram is

GO7 — 5g“[1<n 0t n) = 3t ) + 3 ) — 1 )]

The contribution of the second diagram is given by

2 d*pd*kd* -
D7 = sargt [ LSRR D@y |~ D0 [ 16 D@D g @i
_28%g* . [d*pd*k

= et [ ST APAWFQ) 10.5) ~ 2P APIBOF(@) 1(60.5) + b*B(p)BIIF(9) L, (0, )

Plugging 1,(6, 8), I5(6, 6), and I,(6, ) into (76), we obtain

d* pd*k
@2m)?

d*pd*k

A(p)B(k)F(q)p* + b? o

g(zz)a2 _ —862g2a2b3{2 B(p)B(k)F(Q)}

Decomposing the momentum space integrals, we get the contribution

G = 82g2a[—41(n2, n2 nt) + 4l (pA m2 n7) + It nt, pt) + I(n*, n* )
—I(n",n",n7)—1I(n",n",n7)]

The contribution of the third diagram is given by

) 4 a4y 14 _ _
07 = 16575 [CLE D@D || D30 @0 [P o @b

_ 62g2 asz d4pd4k
(16)° @2m)®

CPICQfEW 0.0+ B0 10.0)].

Plugging I5(6, 6) and I4(6, 6) into (79), we obtain

d*pd*k d*pd*k
C(p)E(k)C(q)p*q* + b*
o (P)E(K)C(q)p*q Q)

2
0 = 16°%a] CPIBUCP )}
Decomposing the momentum space integrals, we have
2
P =28282a[I(n*, 0", 0*) — I(n*, n* m ) = I ™ ") + 1™, 97, 7))

The contribution of the fourth diagram is given by

085024-14
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(2)52 882 2[d4pd4kd4012

PHYSICAL REVIEW D 86, 085024 (2012)

[—%D%(p)@l&)l)][ D3k, <1>1>][ DA(g)D3(- q)((bofi)o)]

Pk
8522 d* pd*k ] 1
= erat? [ B B0 I0,0)+ 2 E(p) B Ty(0.0) + s B)BW 1(0.0)|
2.2 4 a4
ifé “( ;;j);qu + mz){E(P)E(k)Ilo(ﬁ, 6)+ %sz(p)Bw)Ju(e, D+ 2)2 B*B(p)B(k) I 16, é)}. (82)
Plugging I,(6, 8)-1,,(0, 6) into (82), we get
627 = ssgtfa [CPCK b EwB(g) + 202 [EPEK ) B0OB(g)
2m) (2m)
4 g4 4 4 g4
v vt [ B -2 [ T2 BB - 57 [P BpB©AG
4 a4 4
—~ 2m? [ d@”:)f E(p)B(KA(@)K: — m2b? d(zp d)gk B(p)B(HA(9)g? } (83)

Decomposing the momentum space integrals, we obtain the total contribution of the fourth diagram:

2 b b +
Gy = 52g2{8a2[—l(n2, 7% n?) + ?I(nz, 7% nt) — ?1(172, 7% n’)] + 8m2|:—21(n2, 7% 0) + %I(nz, 7", 0)

+ %I(nz, 7, O)] +a’[I(n*, n*,n") +31(nt, nt,n7) + 3l n7 ) +1(n",n", n7)]

+2[—4J(% p?) + 4 ) +4I(pE ) — I, ) = 20(nT m7) — (0, n’)]}-

Unlike the first three two-loop diagrams, 5‘2)52 gives a

divergent contribution; however, its renormalization is
trivial, since it is a vacuum diagram.

C. Regularization and renormalization

The divergent diagrams of order 82 are

2,2
:{85 8 (l_ﬁnz)
K €

28%gb (1 —
GiY = {——g (— - lnnz) -
K €

— (9% + 2b)Iny" + (n> — 2b)Iny~ + 2b]}

(1)82
g14

(85)

&%gh . —
287 [4bTnmy?
2Kb[bm7

X f d*00°®, + He; (86)

2 8%b% /1 — 8%br . _
G(l)‘s { 5 ( nnz) + b [4bInn? — (n* +2b)Iny™"
Kk \€ K

+ (9> —=2b)Iny~ + 2b]} f d*66%6>. (87)

2
The diagram 6(116)5 is a vacuum diagram, and thus its

renormalization is trivial. To renormalize the divergent

(1)82

term in G,° , we introduce the counterterm

252 2 . .
+—bg[4blnn2 — (% +2b)Iny*
K

(84)

832 2

[ d* 0D Do, (88)

and, for the divergent term in 615 , we introduce the

counterterm

28%gb

2 _
267 /d4002d>0R + He = fdzé?d)OR + He

(89)

As mentioned in the previous section and shown in
Ref. [14], plugging the solution for the optimized parame-
ter b in (89), only the Kihler potential is actually renor-
malized, in agreement with the nonrenormalization
theorem.

IV. SUMMARY OF THE RESULTS AND
NUMERICAL ANALYSIS

In this last section we summarize the perturbative
results for the effective potential up to the order 6>. We
also derive nonperturbative corrections to the effective
potential by implementing the PMS criterion numerically.
Up to this order, the renormalized effective potential can
be written as

— t 89 8! 82
VCff - ’Verfe%e + Veff + Veff + chf‘

Below, we write separately the terms of the effective
potential Vg as follows.

(90)
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The tree level potential is given by
Vi =Vip) = (£ +ge})? + m?ei, )

with £ <O0.
The vacuum diagram of order 8° is

o _ 1 { (M? + a2)? ln[l - é(MZ + az)ln[

b? ]+ M2+a2+b]+b_21n[(M2+a2)2—b2]_3_b2}
M>+a*?] 2 ‘

o (42 4 M2+a>—b] 4 w? 4
92)
The one-loop contribution for the effective potential at O(8') is given by
Vi = s {po — detr) + 2ata — gt + paI2 + e + )
a
N I:a(4g<g01> —a)+ %(4g<F0> —b) - pM:I(MZ +a?+ DM + a? + b]
" I:a(4g<¢>1> - a) — 3 (4glFn) — b) - pM](M2 +a? — bI[M? + a® — b]}. 93)
At O(5?), we separate the contributions of one- and two-loop diagrams:
Vi ="Vin+ Vi 94)
where
2 —
Vi, = = {[(a — 4g{@)*(M?* + 3a®) + apM(a — 4g{¢)) + p*(BM? + a*)|In(M? + a?)
1
5[ @~ Ao i@ — age) 0 + 30 + ) + 2ab — 4g(F) + dap]
+ 2 (b = 4g(FOI(b — 4g(Fo) + 4pM] + p*BM? + a? + b)]E(M2 +a®+b)
1
— 5[ @ = 4ol — 45 M + 302 = b) = 2a(b  4g(F) + 4apM]
+ %(b — 4g(F)(b — 4g(Fp)) — 4pM] + p*(BM* + a* — b)]E(zvﬂ +a® - b)}, (95)
and
I {74 4 + @) + bV + a — b2 — 202 + @)~ PEE D e 4 o)
cff(II) (477.)4 (M2+a2) (M2+a2)

X (6M?%+ 17a%) + 2b(M? + 3a®)JIn*>(M? + a + b) — 3(M? + a*> — b)(2M? + 34> — 2b)In*>(M? + a®> — b)
8a2b(M*+a?—b)—
(M?+ a?)

+8(M?+ a® + b)(2a% — b)In(M? + a®>)In(M? + a® + b) + In(M? + a®)In(M? + a*> — b)

— — 8M2b (M? + a?)?
—2(M?*+ a® + b)2M? + 3a* = 2b)In(M? + a®> + b)In(M?* + a®> — b) + ) [bln((M2 I )

M?>+a*+b
—(M?+a)In (7‘12
M*+a>—b
X In(M? + a*> + b) + 12(M? + a®> — b)(2M? + 3a®> — 2b)In(M? + a*> — b) + a*[4E(M?* + a®, M? + a®, M? + a?)
—3EM*+a?+b,M*+a?+b,M*+a?+b)— EM?+a® + b,M?* +a* —b,M* +a*— b)]

)]1 b—24(M> + a?)2M2 + 3a2)In(M? + &) + 120042 + a® + b)2M? + 3 +2b)

4a*(M’ + a* — b) SM2b
(M2+a2) [ér(M2+a2’M2+a2’M2+a2+b)_‘f(M2+az,M2+a2,M2+a2—b)]-|-(M2 )
M2 + 612 M2 + Cl2 —b 4
X 2 + 2 —+ N P 2 + 2 L (MmTa—o B ) 4 5 5 N .
[(M a b)le(Mz T2+ b) (M?*+a b)ng( Y )] 56b 3b77' M b)} (96)
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A. Optimization Procedure

Let us now describe the numerical results obtained by
implementing the PMS criterion. Our numerical approach
consists in solving a system of coupled equations, to
determine the solutions for the optimal parameters a, b,
and p that satisfy the PMS criterion and minimize the
effective potential up to the order §2. We start comparing
our numerical results with the analytical results derived at
order 8! and implement the optimization at order 5.

The numerical implementation was performed using
MATHEMATICA [35]. When we apply the PMS criterion to
the effective potential, there are three coupled equations to
solve:

) Ve =0 %:0 Ve _

) 0. (97
da ab ap o7

We use the effective potential evaluated up to the order
82, which is given by Eq. (90). The criterion that we have
established to choose the optimum roots is to follow the
same family of roots and work with the roots that minimize
the effective potential. Although it is not possible to derive
analytical solutions to the PMS equations up to the order
82, it can be seen that the solutions can be written as

a() = 4g<¢l> + hA(g) (I): (i))r
by = 4g(F,) + hB(g, ®, D), (98)
po =0+ hC(g, ®, D),

where A, B, and C are corrections to the order §! solutions.
This naturally brings nonlinear g contributions and gener-
ates nonperturbative results that go beyond the one- and
two-loop results derived in Refs. [13,31].

The parameters were chosen so that spontaneous SUSY
breaking appears in the O’Raifeartaigh model. We choose
& = —10 and m = 10 and perform one rescaling in all
quantities in terms of the renormalization scale w or, in
other words, our quantities are given in unities of w. In
Fig. 21 we show the tree level effective potential for the
O’Raifeartaigh model, and we can see that SUSY is spon-
taneously broken, since the value of the effective potential
at the minimum is different from zero.

In a previous work [13] it was shown in detail that
different optimization procedures fastest apparent conver-
gence (FAC)” and PMS give the same result for the optimal
parameters a, b, and p at O(8'), and at this order it was
possible to implement these two optimization procedures
analytically.

The effective potential obtained in this case is shown in
Fig. 22, where we show the results obtained up to the order
8! using the PMS and FAC criteria. Our analytical and
numerical results including only @(8") contributions to the

*For a description of the optimization procedure FAC please
see Ref. [13].

PHYSICAL REVIEW D 86, 085024 (2012)
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FIG. 21. The results for tree level effective potential for differ-
ent values of the coupling constant g. Parameters: & = —10.0,
m = 10.0.

effective potential have shown that the solution that mini-
mizes the effective potential is p = 0. In this figure we
apply the PMS criterion numerically at O(5') and compare
with the effective potential analytically evaluated with the
FAC and PMS criteria. We change the value of the coupling
constant g, and we can see that for different optimization
procedures we obtain the same effective potential, as it
should be, based on the analytical results obtained by the
different optimization procedures.

We start with the comparison between the nonperturba-
tive effective potential up to @(8') and O(8?), allowing us
to gauge the performance of each optimization procedure,
regarding both reliability and indications of the conver-
gence of the method.

As a result, we find that at O(8%) the solution that
minimizes the effective potential is again p = 0. We can
see in Table I the results for the value of the minimum of
the effective potential, and we note that the results at O(5?%)
are very similar to the results at O(8') up to g ~ 0.5,
indicating that for the parameters used here, g ~ 0.5 can
be a regime of strong coupling. To our knowledge, this is
the first work in the literature that performs the evaluation
beyond the one-loop approximation of the effective poten-
tial for the O’Raifeartaigh model (with spontaneous SUSY
breaking). For the parameters considered in this study, we
can see strong indications that the nonperturbative method
of LDE is appropriate to deal with the O’Raifeartaigh
model. The results at O(5') are the same as those at
O(8?) up to some value of the coupling constant, indicat-
ing some convergence of the nonperturbative method.

V. CONCLUDING REMARKS

The investigation we have pursued in this paper and the
results of our explicit supergraph evaluations confirm that
superspace techniques, even if SUSY is spontaneously or
explicitly broken, can be consistently combined with the
LDE approach to compute higher order corrections to
effective potentials in the framework of supersymmetric
models. We just highlight that we are here bound to the
minimal O’Raifeartaigh model, but the extension to
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FIG. 22. The results for V 4(¢;) using the optimization procedures FAC and PMS up to O(8!) in LDE for different values of the

coupling constant g. Parameters: ¢ = —10.0, m = 10.0.

generalized (Wess-Zumino—type) matter models can
naturally be pushed forward. Fayet-Iliopoulos D-term
breaking models are also very interesting to be reassessed
with the approach we have adopted in the present work. It
is true that these first attempts to go through higher orders
with the LDE procedure in the realm of supersymmetric
models should drive us to explicit higher order calculations
to compute corrections in the minimal supersymmetric
Standard Model (MSSM), which may allow us to use
our semi-nonpeturbative results in connection with the
constraints on SUSY as imposed by the phenomenology
of the LHC/ATLAS and CMS collaborations.

The level of convergence of our results is satisfactory
and, since our category of SUSY spontaneously broken
model is still protected by the SUSY nonrenormalization
theorem (the spontaneous breaking is a soft mechanism),
we do not run into troubles with our perturbative calcula-
tions, for our coupling constants do not risk taking us to the

TABLE I. Dependence of the minimum of effective potential
with the coupling constant g including the corrections at O(82).
In this table we show the analytical results using FAC and
numerical results for PMS. Parameters are the same as Fig. 22.

Vel = 0]
PMS O(5')  FAC O(s')  PMS O(5?)
g = 0.01 100.002 100.002 100.002
g=0.10 100.233 100.233 100.231
g =0.50 105.828 105.828 104.544
g =0.75 113.101 113.101 107.394
g = 1.00 123.260 123.260 107.865
g =120 133.448 133.448 105.631

strong coupling regime. This very same point must be
reconsidered if we are dealing with a supersymmetric
gauge theory, as it is the case of the MSSM, which is the
ultimate framework to connect SUSY with the accessible
energies. Before going directly to the MSSM, we intend to
extend the calculations we have performed here to include
the Fayet-Iliopoulos D-term [2] models, in which SUSY is
broken and gauge symmetry may also be. In this case, there
appears a number of nontrivial aspects in connection with
superspace and supergraph calculations, such as the gauge
choice (unitary or "t Hooft’s gauge choices in superspace)
and a rich structure of #-dependent terms [36] in the sector
of gauge superfield propagators [37]. The consideration of
the Fayet-Iliopoulos models is clearly mandatory as a step
prior to extending our analysis to the physics of the MSSM.
We shall next be focusing on this specific step of our
project.

Physics in three-dimensional space-time has been ac-
quiring special interest, in view of a very rich diversity of
lower-dimensional condensed matter systems that can be
approached by quantum field-theoretic methods. On top of
that, more recently, renormalizable and unitary massive
gravity models has driven the attention to planar gravity
models. We know that SUSY may be connected to both
types of systems, condensed matter and gravity. Now, the
realization of N = 1 SUSY breaking in three space-time
dimensions is very special, since the structure underneath it
is real and not complex (as it happens in N =1, D =4
SUSY or N = 2, D = 3 SUSY). Also, renormalizability
allows a higher-power scalar potential in D = 3, so that
F-term SUSY breaking demands reassessment and a num-
ber of peculiarities show up. Also, a Fayet-Iliopoulos term
isnotjustasin N =1,D =4 or N =2, D = 3 SUSY,
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for the gauge potential multiplet is spinorial in simple
3D-SUSY. So, in view of these nontrivial aspects and the
potentialities of supersymmetric planar systems, we be-
lieve that there should be some interest in reanalyzing the

T o(6.6) — [ d'0,,Do(D DA () F D2 (K)5%,]

X [D3(=k)D3(—k)1,]

methods and rediscussing the results of the present work. = —(16)%kX(F,); (A6)
ACKNOWLEDGMENTS _ . o A
0,0)= | d*0,,D,(1)[D5(k)01D7(k)b
M.C.B.A. and D.L.N. would like to thank CNPq, J1(0.6) f P (DD BGDI(51, ]
Grantg No. 306276/2009-7 and No. :501317/2009—0, for X [H%D_%(—k)D%(—k)(S?Z]
financial support. J. A. H.-N. would like to thank CNPq
and FAPER]J for constant support. R. L. S. F. would like to = —(16)*k*(¢1); (A7)

thank FAPEMIG for financial support and R. O. Ramos and
M. B. Pinto for discussions on related matters. C.R. S., Jr., _ . oy s .
thanks CAPES-Brazil and Programa Recém-Doutor- T 5(0,0) = f d*01,® (D[ Dy (k)01 D1 (k)51 ]

UNESP for financial support. _ _
X [63D3(—k)D3(—k)036351,]

APPENDIX: SUPERSPACE INTEGRALS = (16)X¢1); (A8)
In this appendix, the superspace integrals appearing in
Sec. I are listed. T (8, 0) = [d4012[0%D%(k)0_%D%(k)6‘1‘2]
The integrals appearing in the one-loop diagrams of
O(5?) are X [D3(~ D3~ 5%,]
_ o = —(16)*k%; (A9)
71(6.8) = [ a6, 00D @IBHOF DI W3}
X [D3(=k)83D3(=k)8},] T 106, 6) = f d*0,,®,(1)®, (2)[D (k) 62D (k) 5%, ]
= (16)(Fy)%; Al _
HO7ro) (4D X [D3(~K)D3(~K)63 5]
— —(16)KXg, )% (A10)
T2(6.0) = [ @6,000DH0FDI05E]
_ - ) — 4 52 201 54
X [02D3(—K)B2D2(— k)54, ] J11(6,0) /d 01,®,(1)®,(2)[Di(k)Di(k)61,]
= (16X(F); (A2) X [D3(=k)D3(—k)57,]
= 0; (A11)

J3(0,0) = | d*0,,[03D3(k)07D3 (k)51
0.0 = [ @00} OnDIOo] Ta(6.8) = [ 00,10, QB WD DGAF 5]
X [Q%D_%(_k)H%D%(_k)‘S?z] % [D—z(_k)Dz(_k)025254 ]
2 2 2U2912

= (16)?; A3
(16 (A9 — (162 (A12)
J4(0,0) = / d*0,, P (1)@, (2)[ D} (k)81 D7 (k)51 ] T 1500, 8) = [ d*0,,®,(1)[D2(k)D2(k)8%,]
X [D3(=k)D3(=k)81,] X [D3(—k)D2(—k)8%,]
= _(16)2k2<F0><€01>3 (A4) =0; (A13)
Ts(0,0) = f d*0,,®,(1)D, (2)[D2(k)62D3 (k) 5%, ] T 14(0,0) = f d*0,[D}(k)D1(k)61,]
X [D3(=k)6305D5(—k)51,] X [D3(=k)D3(—k)8%,]
= (160)XFoXe1); (A5) = 0; (A14)
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T15(6,6) = [ d*0,,00(1) o (2)[D3 ()5, D3(—K)8%,]

= 16(Fp)*; (A15)

T 16060, 6) = [ d*0,,D(1)Do(Q)[D2(K)5%,]
X [D3(—k)D3(—k)62603D3(—k) 6%, ]

= (16)Fo); (A16)

T 16, 8) = [ d6,,0(1) P, (2)
X [D3(k)D3(k)6362 D (k)51,]
X [D3(—k)D2(—k)B263D2(— k) 5%, ]

= (16)*(Fo); (A7)

T1s(6.6) = f d*0,,0o(DLD3(K) 5, [ BRD3(— k)53, ]

= 16(Fo); (A18)

T16(60,6) = ] d*0,,0,(D[DA(K) DA (k)22 D2 (k) 6%,

X [63D3(—k)D3(—k)6363D3(—k)6%,]

= (16)*(F,); (A19)
T8, 6) = ] 0,02 D3 ()5, [ BRD3(~ k)5,
= 16; (A20)

T2(6.8) = f d*0,,[03D3 (k) D3 (k) 0302 D3 (k)51,]

X [63D3(—k)D3(—k)G363D3(—k)81,]

~ (16)%: (A21)
T (6,8) = [ d0,,00(1)®, (2)[D2(1)5%,]

X [DA(—K) DA~ k) DA(— k)35, ]

= —(16)2k*(FoX¢,); (A22)
T (6, 6) = [ d*0,,0,(1)®, (2)
X [D_%(k)D%(k)H%éfD_%(k)S‘l‘z]

X [D3(—k)D3(—k)D3(—k)036%,]

— (160 KX Fo) 1) (A23)
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T24(0,0) = f d*0,,®(1)[D3(k)D}(k)6363 D3 (k) 8%, ]
X [D3(—k)D3(—k)D3(—k)6351,]

= —(16) k¥(Fy): (A24)

\725(0, é) = [d4012‘i)1(1)[D%(k)5?2]
X [03D3(—k)02D3(—k)D3(—k)61,]

= —(162Kpy): (A25)

T 266, 6) = [ d*0,,®, (1N[DA () DA(K) P62 D3 (k) 5%, ]

X [63D3(—k)B3DH(— k) DH(— k)&%,

= —(16)*k*(¢py); (A26)
Tn(6.0) = f d'0,,[61D} (KD (k)6367 D3 (k) 51,]
X [D3(=k)D3(~k)D3(~k)63581,]
= —(167°%; (A27)

T2s(6,8) = [ d6,,0,()®, Q)[D2() 5%, IDA—k)8%]

=0; (A28)
T o6, 8) = [ &0, ®, (1D, ([ D2(k)5%,]
X [D3(~k)32635%]
= 16{¢p,)%; (A29)

Ts06.6) = [ 40,,®,()®, QD2 D2(K) 6 D2(K) 5%,
X [DY(—K)5%]

= — 16/ (A30)

T51(6.6)= [ 40,,0,()®, QD) D2(K) 6 D2(K) 5%,
X [D~K)E625%]

= (16)(¢1 )% (A3D)

T22(6,8) = [ d40,,0, (D[ D3(K) 8%, 11 D3(—K) 26284,

= 16{¢p,); (A32)
T3(6,8) = [ d*0,,[D3(K) 5%, D3~ ) 5%, ]
=0 (A33)
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T24(6,8) = [ d0,,[ D2 (k)54 ][ D3(—K) 12635%, ]

= 16; (A34)

T +5(6,6) = f d*0,,[D2 () D2(K) 252 D2 (k) 5%, ]

X [D3(—k)81,]

= —(16)%k?%; (A35)

T 3606, 6) = [ d*0,,[D2 () D2(K) 0282 D2 (k) 5%,

X [D3(—k)036351,]

— (16)% (A36)
T 5(6,8) = [ 80,0, ()®,(2)
X [D3}(k)83D3 (k) D3 (k)81,]
X [D3(—k)03D3(—k)D3(—k) 61,1
— (167K, ) (A37)

T 356, 6) = f 0,0, (VDA (K) B DY) DA(K) 8%,

X [D}(—k)03D3(—k)D3(—k)81,]

= (16)°k*(¢1); (A38)
T 3(6,6) = f d*0,,[DAF DK DAK) 5%,]
X [D3(—=k)03D3(—k)D3(—k)51,]

= (16)3k4; (A39)

Taol6.8) = [ d*0,,®, (D[D2(k)5%,]D2(—K) 6%]
= (. (A40)

The integrals appearing in the two-loop diagrams of

0(6?) are

1,0.9) = [ d*0,,[ D3(p)D3(p)63 5%, D3 () B2D3(K) 5%,
X [D}(q)D3(—q)03D%(q)5%,]

= 4(16)3 p?; (A41)

1,(6,6) — [ d*0,,[D3(p)D3(p) 5L, D3(K)D3(K) 53]
X [D}(q)D3(—q)03D%(q)5%,]

=0; (A42)
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150, 0) = f d*01,[D1(p)D1(p) &1, ][ D3(k) 0363 D5 (k) 81, ]

X [D(q)D3(=9)1Di(q)81,]

= 4(16)* p*; (A43)
1,(60,6) = [ &0, D3 ()R B D3(p)5%,]
X [D(K)6202D2(K)5%,]
X [D3(q)D3(—q)82D3(q)6%,]
= —4(16)%; (A44)

15(0.9) = [ &0 ,,[D2(p) D2 (p)DAp) 84, 1IDA(K) 5%, ]

X [D3(q)D3(—q)D3(q)D3(q)625%,]
= (16)*p*q*; (A45)
14(6.6)= [ d6.IBYPEDHMDI P}

X [D3(k)D3(k)0365D3(k)61,]
X [D3(q)D3(—q)D3(q)D3}(q)6351,]
= (16)°p*¢*; (A46)

1.(6,6) = [ d*0,,[D3(p) 84, 11D3(0)5%,]
X [DX(q)D3(—q)62525%,]
= (16)2; (A47)

14(60,0) = [ &0,,[D3(p) 5]
X [D3(k)D3(k)0303D3 (k) 81,1
X [DX(q)DY(— )62 254, ]
= (16)%; (A48)
14(0,6) = f d*0,,[D3(p) DX (p) B2 D2 () 5%, ]
X [D3(k)D3(k)0303D3(k)8%,]
X [D3(q)D3(—q)836%64,]
= (16)4; (A49)

110(6,6) = f *0,,[D2(p)54,1ID3(K)5%,]
X [D3(q)D3(—q)5%,]

=0; (A50)
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