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Generalized uncertainty principles are able to serve as useful descriptions of some of the phenome-

nology of quantum gravity effects, providing an intuitive grasp on nontrivial space-time structures such as

a fundamental discreteness of space, a universal band limit or an irreducible extendedness of elementary

particles. In this article, uncertainty relations for single-particle quantum mechanics are derived by a

moment expansion of states for quantum systems with a discrete coordinate and, correspondingly, a

periodic momentum. Corrections to standard uncertainty relations are found, with some similarities but

also key differences to what is often assumed in this context. The relations provided can be applied to

discrete models of matter or space-time, including loop quantum cosmology.
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I. INTRODUCTION

If space is discrete, the form of its underlying structure
should influence the general properties of position and
momentum measurements and, therefore, their fundamental
uncertainty relations. In this context, see e.g., Refs. [1–5].
Compared with standard quantummechanics, there may be
additional limitations to the precision of measurements, as
they can often be captured in generalized uncertainty prin-
ciples, see e.g., Refs. [6–10]. For general reviews, see e.g.,
Refs. [11,12]. Phenomenology and experimental proposals
are discussed, e.g., in Refs. [13–17].

Modifications to the uncertainty principle are bound to
arise because the momentum, on a discrete space, is no
longer defined in all situations; in general, it must be
replaced by finite translation operators for displacements
of at least the lattice spacing. For studies on the question of
momentum conservation in this context, and varying mini-
mum uncertainties, see, e.g., Refs. [18–23].

On scales larger than the lattice spacing, one may in-
troduce an approximate momentum operator, just as one
can define approximate plane waves of wavelength larger
than the spacing. However, as the wavelength approaches
the discreteness scale, the underlying structure becomes
noticeable and deviations from standard properties of mo-
mentum arise.

In the context of the low-energy regime of various ap-
proaches to quantum gravity, it is therefore of interest to
explore the consequences of spatial discreteness for the
basic uncertainty relations. In this paper, we present a
systematic method to compute the leading corrections to
the position and momentum uncertainty relations for dis-
crete spaces. Differences to some common assumptions
about such principles are pointed out. We begin this article
with a brief review of the mathematical structures involved
in discrete matter systems, on the one hand, and some

approaches to quantum gravity, on the other. Our discussion
will focus on localization, in the sense of minimizing
fluctuations in position, and we will study uncertainty
principles without needing to refer to specific representa-
tions. In the main part of this article, Sec. III, we will then
systematically derive the generalized uncertainty principle
for a discrete system.

II. SPATIAL DISCRETENESS

There are numerous examples of discrete structures in
physical models, such as crystals that have periodic poten-
tials. As an illustration, let us consider the one-dimensional
quantum mechanical system of Bloch states. For wavelike
excitations of a length well above the periodicity of the
crystal, one may start with free scattering states expðikqÞ in
the position representation, whose energy is EðkÞ¼ℏ2k2=2m
if they represent particles of mass m. These states are no
longer energy eigenstates if the particles move in a non-
trivial periodic potential VðqÞ with Vðqþ q0Þ ¼ VðqÞ,
where q0 is the periodicity. We decompose the set of plane
waves into sectors labeled by a real number � 2 ½0; 2�Þ in
one-to-one correspondence with wave functions on the
finite interval ½0; q0� subject to the ‘‘almost periodic’’
boundary condition c ðqþ q0Þ ¼ ei�c ðqÞ. Square inte-
grable functions satisfying these boundary conditions de-
fine the Hilbert spaces H �. Parameterized by � for all the
sectors, momentum eigenstates are then

c ð�Þ
n ðqÞ ¼ expði�ð�Þ

n qÞ; (1)

where for all integers n,

�ð�Þ
n :¼

2�nþ�

q0
(2)
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is proportional to the momentum eigenvalues

pð�Þ
n ¼ ℏ�ð�Þ

n : (3)

For each fixed �, these are the discrete momentum
eigenvalues of a particle on a circle with ei� periodicity,
and together, for all �, they fill the whole real line. In this
heuristic way, the continuous momentum spectrum for a
particle in the periodic potential is recovered. This state-
ment is heuristic because the Hilbert spaces H � are all
different as function spaces and independent for different

�, and a wave function c ð�Þ
n ðqÞ would not be normalizable

in the usual continuum Hilbert space L2ðR; dqÞ. One may
view the Hilbert spaces of different � as superselection
sectors in the direct sum

L
� H �: One would consider all

states as lying in the same Hilbert space, but allow super-
positions only of states within the same H �. (The full
direct-sum Hilbert space is nonseparable).

In contrast to the momentum spectrum, the energy spec-
trum in a given periodic potential VðqÞ, while continuous,
need not fill the whole real line. By solving the energy

eigenvalue equation for each �, Ĥc ð�Þ
k ¼ Eð�ÞðkÞc ð�Þ

k where

c ð�Þ
k is subject to the almost-periodicity condition, one ob-

tains a function Eð�ÞðkÞ. Combining all values for the differ-
ent �, in general, leaves out some real numbers that are not
realized as an energy eigenvalue in the periodic potential,
and the band structure of excitation spectra emerges.

Functional analytically, the differential operator
�ℏ2@2q=2mþVðqÞ, when considered on the finite interval

of one periodicity length, becomes self-adjoint once suit-
able boundary conditions are imposed. Its spectrum de-
pends on the boundary conditions. The operator has
deficiency indices (2, 2) and, thus, possesses a family of
self-adjoint extensions parameterized by Uð2Þ. Our pre-
vious boundary conditions c ðqþ q0Þ ¼ c ðqÞei� com-
bined with c 0ðqþ q0Þ ¼ c 0ðqÞei� amount to a subgroup
Uð1Þ � Uð2Þ. For each choice of such a boundary condi-
tion, i.e., for each choice of � 2 ½0; 2�Þ, we obtain a differ-
ent self-adjoint extension Ĥ�, each possessing its own
spectrum and eigenvectors. Each set of eigenvectors spans
the same Hilbert space of square integrable functions over
the interval, and the union of these spectra forms the bands.

Clearly, the underlying periodicity of the crystal, by
leading to the band structure, has direct implications for
the dynamics, which allows one to probe underlying prop-
erties of VðqÞ in experiments. In low-energy experiments,
distance scales larger than the spatial periodicity can easily
be probed and described perturbatively, for instance by
corrected dispersion relations taking into account the mi-
crostructure. Of interest in the present context is the fact
that a discrete structure arises in momentum space as a
consequence of periodicity in position space.

Some approaches to quantum cosmology, especially loop
quantum cosmology [24,25] (see Ref. [26] for a recent
review), begin with a similar but reversed setting, now

dealing with discrete space and almost-periodic or compac-
tified momentum space. In this case, space is not repre-
sented by position coordinates but by geometrical quantities
such as the total volume V of an isotropic universe model
or, in general, by points in minisuperspace. The momentum
P is then related to curvature components or, in cosmology,
the Hubble parameter. As with Bloch states, the Hilbert
space (in the momentum representation) is spanned by
states

c ð�Þ
n ðPÞ ¼ expði�ð�Þ

n PÞ (4)

with the same form (2) of�ð�Þ
n as before, except that q0 is to

be replaced by a quantity P0 signaling the periodicity of P
[27–29]. These are the main aspects of loop quantum
cosmology we need in this article; see Appendix A for
more details.
In addition to technical properties of the dynamics, there

is a key physical difference between the treatment of Bloch
waves as a model for condensed matter physics and iso-
tropic loop quantum cosmology as a model for quantum
gravity: Bloch states represent a system in which the
position coordinate q is almost periodic, and thus its mo-
mentum is discrete. The regime of distances q � q0 much
larger than the periodicity is easily accessible by classical
physics, and one is interested in uncovering what happens
at smaller distances near the scale of periodicity. In loop
quantum cosmology, on the other hand, the (momentum-
like) expansion rate P is almost periodic while the size V is
discrete. Moreover, it is the low-curvature regime P � P0

which is easily accessible by classical physics, and one is
interested in uncovering what happens at large curvature
near P0. This point plays an important role regarding the
specific questions one tries to address. In this article, we
will mainly be concerned with the quantum cosmology like
situation, probing the quantum system well below the
periodicity scale. This regime will be implemented by
the approximations used.

A. Uncertainty with periodic momenta

Motivated by the examples of discrete systems, we as-
sume a general class of models with a periodicity condition
on the momentum: wave functions �ðpÞ in momentum
space obey �ð�p0=2Þ ¼ �ðp0=2Þ for some momentum
value p0. Compared to the more general discussion before,
we set � ¼ 0without loss of generality; nonzero values will
simply shift the lattice structure we obtain in position space.
Here, the superselection assumption is important. The con-
jugate variable q is then quantized to an operator with
discrete spectrum qn ¼ 2�ℏn=p0 with integer n. We will
analyze the possible values of uncertainties that can be
realized in the set F �q of wave functions that possess

some fixed position expectation value �q ¼ hq̂i. In particu-
lar, we ask how small the position fluctuation �q can be in
this set, or how well we can localize a particle at position �q.
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Our aim is to derive a function�qminð �qÞ that determines the
minimally possible uncertainty for localization at �q.

If we choose �q to be one of the lattice points, qn, we may
localize the particle arbitrarily sharply because we could
choose the state to be the q̂ eigenstate with eigenvalue qn.
Thus, �qminðqnÞ ¼ 0. As we will show now, for all other
values of �q, the minimum uncertainty is not zero.

Without loss of generality, we then choose q0 ¼ 0<
�q < q1 ¼ 2�ℏ=p0. A corresponding wave function can no
longer be a position eigenstate, and in order to achieve
minimum position uncertainty, we should choose a super-
position of the eigenstates with position eigenvalue zero
and q1:

� �qðpÞ ¼ ae�iq0p þ be�iq1p ¼ aþ be�2�ip=p0 :

With normalization, jaj2 þ jbj2 ¼ 1=p0. Moreover, we
straightforwardly compute

�q ¼ 2�ℏjbj2; hq̂2i ¼ 4�2ℏ2jbj2=p0: (5)

Eliminating jbj, we obtain

�qminð �qÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�qðq1 � �qÞ

q
for 0 � �q � q1; (6)

extended periodically over the whole q axis, consistent
with the findings in Ref. [22]. For sectors with � � 0, we
obtain the same formula just with q1 interpreted as the
lattice spacing L ¼ q1þ� � q� ¼ q1. The minimal uncer-
tainty, indeed, vanishes for �q a lattice point and is at most
half the lattice spacing: �qmin � L=2. At this stage we see
the importance of the superselection assumption. Without
it, we could have made the minimal uncertainty arbitrarily
small for all �q; for every �q, there is an � sector containing a
q̂ eigenstate with eigenvalue �q. From the perspective of
minimally possible position uncertainty, the discreteness is
thus noticeable only if the � sector is fixed, for instance,
derived from other observations. On one hand, if all �
sectors were allowed, we could localize at every point
with absolute precision. On the other hand, if instead in
momentum space, the boundary condition of periodicity up
to a phase ei� is replaced by Dirichlet boundary conditions,
then p̂ is symmetric but it is not self-adjoint. In this case, at
no point could the position be resolved to absolute preci-
sion, leading to a global finite �qmin. We will also encoun-
ter this case below.

We now turn to momentum uncertainties. The minimum
position uncertainty can be used to probe the lattice struc-
ture only if the resolution of our measurements is close to
the lattice spacing. Moreover, the � sector would have to be
determined by independent means. An important question,
then, is how the lattice structure can be noticed if mea-
surements are done at energies that may be high but not
high enough to resolve the lattice. One way that may offer
an opportunity to overcome this problem may be to test for
small deviations from the usual uncertainty relations,
namely by checking the relationship between both position

and momentum fluctuations. Before we enter a more de-
tailed discussion of generalized uncertainty relations, for
later comparisons it will be useful to continue with the
question of localization and compute some of the corre-
sponding momentum uncertainties.
Again, we choose a position eigenstate of one of the

lattice points, without loss of generality at �q ¼ q0 ¼ 0.
Then, �q0ðpÞ ¼ 1=

ffiffiffiffiffiffi
p0

p
. In addition to �q ¼ 0 and �q ¼ 0,

we have �p ¼ hp̂i ¼ 0 and �p ¼ p0=2
ffiffiffi
3

p
. One of the

consequences of discreteness is that �q ¼ 0 is possible
with finite �p, clearly requiring modified uncertainty re-
lations compared to the continuum case. It will also be
useful to consider higher moments of the state, in particular

�ðpnÞ :¼ hðp̂� �pÞni ¼ pn
0

2nðnþ 1Þ (7)

for even n while �ðpnÞ ¼ 0 if n is odd. The series
�ðpnÞ=pn

0 thus falls off for increasing n.

B. Generalized uncertainty relations

As the preceding example demonstrates, quantum sys-
tems with discrete or periodic structures in phase space
cannot obey the usual uncertainty relation�q�p � ℏ=2 of
quantum mechanics because the lattice structure makes it
possible for �q to vanish at finite �p. Nevertheless, we
still expect some form of uncertainty relation to apply;
after all, at distance scales much larger than the lattice
spacing, we should be able to recover standard continuum
quantum mechanics. A common way to parameterize gen-
eralized uncertainty relations is

�q�p � ℏ
2
ð1þ �ð�pÞ2 þ �ð�qÞ2 þ �Þ; (8)

considered first in Ref. [6], see also, e.g., Refs. [8–10].
The parameters �, � and � are independent of �q and

�p but in general may depend on expectation values of the
overall state. Dimensional analysis of the correction terms
in Eq. (8) indicates that these parameters are not purely
quantum corrections, as perhaps motivated by quantum
gravity. If one uses only Planck’s constant and the Planck
length, dimensionally we must have � / ‘2P=ℏ

2 ¼ G=ℏ
and� / 1=‘2P ¼ 1=Gℏ, both proportional to ℏ�1. As quan-
tum corrections, this behavior is unsuitable because the
terms Gð�pÞ2=ℏ and ð�qÞ2=Gℏ do not necessarily go to
zero for ℏ ! 0, with semiclassical fluctuations squared
usually being about the size of ℏ. Generalized uncertainty
principles, thus, require either modifications to the quan-
tum algebra of basic operators and even the classical
symplectic structure or an additional scale not directly
related to ℏ. This additional scale could be the band limit
of a fundamental band limitation [30], the size of funda-
mental extended objects, or the periodicity or discreteness
scale considered in this paper.
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1. Implications

In Eq. (8), let us first consider the case where �, �> 0,
� >�1. If also�� � 1=ℏ2, then this uncertainty principle
has no solutions, i.e., we can rule out this case: for
x :¼ �q=

ffiffiffiffi
�

p
ℏ and y :¼ ffiffiffiffi

�
p

�p the relation implies
the impossible relationship ðx� yÞ2 � �ð1þ �Þ< 0.
Otherwise, if �, �> 0 and �� � 1=ℏ2, then the uncer-
tainty relation (8) arises from the commutation relation

½q̂; p̂� ¼ iℏð1þ �p̂2 þ �q̂2Þ; (9)

through �A�B � 1
2 jh½A; B�ij, which holds for any sym-

metric or self-adjoint operators A, B on any domain on
which they and their commutator can act. Notice that (9)
induces an uncertainty relation of the type of (8) with a
generally nonvanishing � that depends on hq̂i and hp̂i. A
Hilbert space representation can be constructed using
�-deformed raising and lowering operators, â, ây. (In the
literature on quantum groups, the parameter � is usually
denoted q, but we here use the symbol q for the position
operator). Namely, in this case, the operators q̂ and p̂ can
be represented through

q̂ :¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ð1=ℏ ffiffiffiffiffiffiffiffi

��
p � 1Þp ðây þ âÞ (10)

p̂ :¼ iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ð1=ℏ ffiffiffiffiffiffiffiffi

��
p � 1Þp ðây � âÞ; (11)

where â, ây obey

âây � �âyâ ¼ 1 (12)

with

� :¼ 1þ ℏ
ffiffiffiffiffiffiffiffi
��

p
1� ℏ

ffiffiffiffiffiffiffiffi
��

p : (13)

Note that � 2 ð1;1Þ. As usual, the Hilbert space together
with a representation of q̂ and p̂ can be constructed by the
Fock method on a state j0i obeying âj0i ¼ 0. For a general
analysis of q-deformed a-ay commutation relations, see
also Ref. [31].

For � ¼ 0, the representations of the generalized com-
mutation relation ½q̂; p̂� ¼ iℏð1þ �p̂2Þ are discussed in
Ref. [10], where it was found that their properties qualita-
tively depend on the sign of �:

(i) For �< 0, there are finite-dimensional representa-
tions. In infinite-dimensional ones, p̂ is a bounded
operator and has a finite range of eigenvalues; q̂
possesses self-adjoint extensions whose spectra are
continuous.

(ii) For �> 0, p̂ has a continuous spectrum comprised
of the entire real line. The self-adjoint extensions of
q̂ possess discrete parts to their spectra and normal-
izable eigenvectors.

Let us now return to Eq. (8) for generic �, � and �. It is
of particular interest to probe the smallest allowed scales

by determining how small �q can be made. In the case
�> 0, �> 0, � >�1, �� � 1=ℏ2 of above, it is known
that �q possesses a nonvanishing minimum overall, as we
will recover as a special case. But we also expect that, in
other cases, the vanishing of �q may be possible for finite
�p as required for lattice models.
We begin by noticing that saturating the uncertainty

relation requires

�q ¼ �p� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� ℏ2��Þð�pÞ2 � ℏ2�ð1þ �Þp
ℏ�

: (14)

For fixed �, � and � this expression is minimized for

ð�pÞ2 ¼ 1þ �

�ð1� ℏ2��Þ
such that the uncertainty in position is bounded from
below by

�q ¼ ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1þ �Þ
1� ℏ2��

s
; (15)

provided the square root is well defined. For �ð1þ �Þ> 0,
a positive lower bound for the position uncertainty results
independently of the momentum uncertainty as in the
example of Sec. II A in the case of Dirichlet boundary
conditions. If instead �< 0 and 1þ � > 0, then the gen-
eralized uncertainty relation Eq. (8) allows �q to vanish at

finite �p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ð1þ �Þ=�p
, qualitatively similar to our

example above when fixing an � sector. This confirms
our expectation that the coefficients in generalized uncer-
tainty relations, and especially their signs, carry informa-
tion about underlying discrete structures.
Indeed, even if no direct information is available about

the boundary conditions in momentum space, such as the
specific � sector, indications of negative values of � (for
positive 1þ �) would imply agreement with the discrete
model, while positive � would correspond to a finite lower
bound to the position uncertainty (15).

2. Representations

Properties of operators and Hilbert-space representa-
tions can be surprisingly subtle in the context of general-
ized uncertainty relations. In order to illustrate this, let us
have a closer look at the case of�,�> 0, i.e., at the case of
a finite lower bound to the position uncertainty. The op-
erators q̂ and p̂ then act via Eqs. (10) and (11), on the
domain,D, of all finite complex linear combinations of the
basis vectors ðayÞnj0i. Clearly, D is dense in the Hilbert
space, H , of all (finite or infinite) normalizable linear
combinations of the vectors ðayÞnj0i. It is straightforward
to verify that the commutation relation holds onD and that
q̂ and p̂ are symmetric operators, i.e., that all their expec-
tation values are real: h�jq̂j�i 2 R and h�jq̂j�i 2 R for
all j�i 2 D. As always in quantum mechanics, we obtain
the physical domain Dphysical by enlarging D so as to
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include as many infinite linear combinations of the basis
vectors ðayÞnj0i as possible. Concretely, Dphysical � H is

the maximal domain on which the commutation relation
holds. This means that Dphysical is the maximal domain on

which the images of all operators that occur in the com-
mutation relations are contained in the Hilbert space.
Therefore, Dphysical is the set of all j�i 2 H for which

q̂j�i 2 H , p̂j�i 2 H , q̂ p̂ j�i 2 H , p̂ q̂ j�i 2 H ,
q̂2j�i 2 H and p̂2j�i 2 H .

In this context, let us recall that the presence of finite
lower bounds to �q and �p precludes the existence of
eigenvectors of q̂ or p̂ in Dphysical since they would have

vanishing variance, �q ¼ 0 or �p ¼ 0. The lower bounds
even preclude the existence of sequences of physical vec-
tors whose variance, say �q, goes to zero (even while
allowing that �p might diverge). As one might expect,
therefore, q̂ and p̂ on Dphysical have no complete spectral

decomposition and, therefore, cannot be self-adjoint [6].
The phenomenon that operators, such as q̂ and p̂, are
symmetric on a domain, here Dphysical, without being

self-adjoint, is a subtlety that can occur only in infinite-
dimensional Hilbert spaces.

Interestingly, the detailed functional analysis of these
operators shows that q̂ and p̂ individually do possess exten-
sions of their domain on which they become self-adjoint. In
particular, there exists a family of enlarged domains Dq;�,

parametrized by � 2 ½0; 1Þ, obeyingDphysical � Dq;� � H
such that for each fixed �, the extended q̂� which acts on
Dq;� is self-adjoint and has a discrete spectrum, fqn;�gn2Z,

along with normalizable eigenvectors fjqn;�ign2Z. It has

been shown that as � runs through the interval ½0; 1Þ, the
corresponding discrete grids of eigenvalues fqn;�g cover the
real line exactly once,

S
�2½0;1Þfqn;�gn2Z ¼ R. The fact that

q̂� possesses eigenvectors fjqn;�ign2Z, for which �q� ¼ 0,
is consistent with the fact that we have a positive lower
bound (15) for �q. The reason is, of course, that the eigen-
vectors jqn;�i are in Dq;� but not in Dphysical.

Nevertheless, while keeping in mind that the vectors
jqn;�i are not in the physical domain, we may of course

utilize the fact that any such set of eigenvectors, fjqn;�ign2Z,

for any fixed �, is a basis in the Hilbert space. Namely, we
can use the fact that any physical state j�i 2 Dphysical is

completely specified by its coefficients hqn;�j�i in the

Hilbert basis fjqn;�ign2Z. This means that all physical kine-

matics and dynamics, i.e., that all relationships and maps
between vectors inDphysical can be described as relationships

and maps between the coefficients of these vectors in the
basis fjqn;�ign2Z. The theory can, therefore, be viewed as a

theory living on the discrete set of positions fqn;�gn2Z for

some fixed �. Nevertheless, this is not a discrete theory in
the usual sense because the discretization is optional, and
one may freely change to describing the same physical
dynamics and kinematics on any other grid of positions
fqn;�0 g for some other �0. This equivalence of a whole

family of discrete representations of a theory is made pos-
sible by the fact that the finite lower bound �qmin makes
these discretizations physically indistinguishable by any
physical fields j�i 2 Dphysical.

This mathematical structure provides a generalization of
Shannon sampling theory, see Ref. [32], with �qmin play-
ing the role of a finite bandwidth. (Shannon sampling
theory provides the link between discrete and continuous
representations of information, and it is used ubiquitously
in signal processing and communication engineering.) The
case �> 0, therefore, describes a space which is simulta-
neously discrete and continuous in the same way that
information can be continuous and discrete, see Ref. [30].

3. Back to generalized uncertainty relations

Our interest now will be to understand the interplay
between lower bounds to position uncertainties and actual
spatial discreteness in a way that is independent of repre-
sentations and their functional analytic subtleties.
To analyze the relationship between a discrete length

and coefficients in a generalized uncertainty principle, we
here take a route on which we start with a conventional
quantization of a fundamentally discrete quantum system.
From this, we derive a generalized uncertainty principle of
the form (8), with uniquely determined coefficients. Our
methods will be representation-independent, thus avoiding
the need to address questions of superselection or domains.
Although the example we study is simple, it should be able
to serve as a model for analogous derivations to be per-
formed if one wants to derive predictions for low-energy
effects of fundamentally discrete systems, such as some
versions of quantum gravity.

III. QUANTUM MECHANICS ON A CIRCLE

In order to study the effects of the discreteness of the
position, q, perturbatively, we will now use a simple sys-
tem given by a quantized phase space of a cylinder where
momentum p has periodicity p0 and derive uncertainty
relations in an expansion by p=p0. According to the dis-
cussion above, this is the regime of interest in quantum
cosmology. The expansion can be done in a systematic and
representation-independent way by computing higher mo-
ments of a state, and it provides specific coefficients which
one can compare with the general form (8). Our techniques
are motivated by a general scheme of effective equations in
a canonical setting, which was developed in Refs. [33–35].
Such equations have been derived in loop quantum cos-
mology [36], for which the circle system provides a model
capturing the characteristic representation. In fact, quan-
tum mechanics on a circle can be seen as a sector in the
Hilbert space of loop quantum cosmology, just as the set of
all Bloch states is split into sectors of functions periodic up
to phase. Being based on the same techniques, generalized
uncertainty relations and effective equations may thus be
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combined for further phenomenological applications of
quantum cosmology.

We present a brief overview of this simple well-known
system in order to introduce our notation. Classical varia-
bles are a canonical pair ðq; pÞ with Poisson bracket
fq; pg ¼ 1. In analogy with loop quantum cosmology, we
choose the momentum p to be periodic, such that p is the
angle of a circle and, thus, takes values in S1. Then, q
becomes discrete upon quantization. The phase space can
be described by a complete set of phase-space variables q,
sinð2�p=p0Þ, cosð2�p=p0Þ, where p0 is the periodicity of
p which, p being a dimensionless angle, can be fixed to
p0 ¼ 1 but will be more useful for future expansions if
kept unspecified. Instead of using the sine and cosine, it is
more convenient to use the complex-valued function
h :¼ expð2�ip=p0Þ and its complex conjugate h	, subject
to the reality condition h	h ¼ 1. These basic functions
satisfy the noncanonical algebra

fq;hg¼2�i

p0

h; fq;h	g¼�2�i

p0

h	; fh;h	g¼0 (16)

undertaking Poisson brackets.
The quantum theory can be formulated on theHilbert space

L2ðS1;dp=p0Þ, which has an orthonormal basis fjnign2N,
with momentum representation hpjni ¼ expð2�inp=p0Þ.
Thevariableq is directly quantized to become amultiplication
operator acting by q̂jni ¼ 2�ℏp�1

0 njni, which shows the

discreteness of its spectrum. As before, wave functions
need not be strictly periodic but could also be chosen
periodic up to a phase: c ðpþ p0Þ ¼ expði�Þc ðpÞ with
� 2 R. This is sufficient to ensure that the probability
density is single valued on the circle and introduces a
one-parameter family of inequivalent representations for
� 2 ½0; 2�Þ. They are inequivalent because the q̂-spectrum
possesses the eigenvalues 2�ℏðnþ �Þ=p0 which depend
on �. (We remark that we are now dealing with a closed
circle instead of an interval with boundary conditions, so
that nonstrict periodicity may seem impossible to impose.
Nevertheless, the corresponding Hilbert spaces can be for-
mulated as function spaces on a nontrivial line bundle over
the circle, but we will not explicitly require these structures
here). There is no operator for p, however, because as a
multiplication operator it would not map a basis state into
another allowed state. Another way to see that such an
operator cannot exist is to note that it would generate infini-
tesimal translations in q, which is not possible due to the
discreteness of the q̂ spectrum. There are, instead, well-
defined operators for our basic functions h andh	, satisfying
ĥjni ¼ jnþ 1i and ĥ	jni ¼ jn� 1i. The reality condition

for p is satisfied since ĥĥ	 ¼ 1̂ and ĥ	 ¼ ĥy.

A. Moment algebra

Irrespective of the representation chosen, these basic
operators satisfy the commutator algebra

½q̂; ĥ�¼�2�ℏ
p0

ĥ; ½q̂; ĥy�¼2�ℏ
p0

ĥy; ½ĥ; ĥy�¼0; (17)

which faithfully quantizes the classical basic algebra. The
following calculations and our main results will make use
only of this algebra and the reality condition, as well as the
general Schwarz inequality; therefore, they will be mani-
festly representation independent.
Instead of working with wave functions as states, wewill

be using only the algebra (17) and functionals on it, sug-
gestively characterized by expectation values q ¼ hq̂i,
h ¼ hĥi, h	 ¼ hĥyi and moments

�ðqahbÞ :¼ hððq̂� qÞaðĥ� hÞbÞWeyli (18)

of expectation values in Weyl ordering, where a, b 2 N
and aþ b � 2. These variables form an (over-) complete
set of functionals, assigning complex numbers to the op-
erators in our algebra. It follows from Hamburger’s theo-
rem that the probability density of a wave function can be
reconstructed from the moments �ðqnÞ, while the phase of
the wave function can be found using moments involving
h. For a pure state, the set of all moments is overcomplete.
The additional freedom in the set of moments allows one to
include mixed states as well). The moments can be varied
independently of expectation values to describe different
states, provided they respect inequalities and reality con-
ditions as discussed below. They are also useful for an
analysis of coherent-state properties as e.g., in Ref. [37],
which provides a link to the uncertainty relation. Our
analysis here provides an independent and more direct
relationship. From now on, we denote expectation values
of basic operators by q and h without distinguishing them
from the classical variables. This convention simplifies the
notation and should not give rise to confusion.
Often, it is more convenient to work directly with equa-

tions for the moments rather than taking the detour of wave
functions or density matrices, presenting a complete de-
scription from a more algebraic and representation-
independent viewpoint. All crucial aspects of the system
are then contained in the basic algebra, which in our case in

particular means to use ĥ as a basic operator on the circle,
possibly combined with a Hamiltonian or a constraint. The
main challenge then is to organize the infinitely many
variables provided by the moments, and the equations of
motion they must fulfill. An example where these equa-
tions can be organized in manageable ways is given by
semiclassical regimes, in which moments of high order are
small, but the treatment is not restricted to this case. Our
approximation below will only assume the momentum
(related to h) to be small compared to p0, and any moments
involving p (relative to p0) to fall off with increasing order
as they do for semiclassical states but not only for such
states; with these assumptions, fluctuations may still be
large. Moreover, the size of the q moments will remain
unrestricted and need not be small compared to powers
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of ℏ. An advantage of the use of expectation values and
moments instead of wave functions is not only the repre-
sentation independence but also its larger generality: it
includes mixed states as well as pure ones.

Wewill be working mainly with moments of lower order
where aþ b is small. For better clarity, we will then
replace the superscript ‘‘a, b’’ by a list of operators used
in the moments. For instance, we have the h variance
�ðh2Þ 
 ð�hÞ2 ¼: �h2 and the covariance

�ðqhÞ ¼ 1

2
hðq̂� qÞðĥ� hÞ þ ðĥ� hÞðq̂� qÞi

¼ 1

2
hq̂ ĥþĥ q̂i � qh:

B. Reality conditions

Expectation values and second-order moments are re-
lated to one another by the reality condition: taking an

expectation value of the relation ĥĥy ¼ 1̂ implies

hh	 ¼ 1� �ðhh	Þ: (19)

This relation can be interpreted as reducing the number of
independent expectation values of the basic variables to the
canonical value two, such as q andReðhÞ (at fixedmoments).

Similarly, at higher orders of the moments, we obtain
additional reality conditions which reduce the number of
moments to the canonical values as already used in
Ref. [38]. For the second-order moments, we begin with

the identities ĥ2ĥy ¼ ĥ and q̂ ĥ ĥy ¼ q̂ that follow from

ĥĥy ¼ 1̂ and take expectation values. With some symmet-
ric reorderings according to the definition of the moments,
we obtain

h	�h2 þ h�ðhh	Þ ¼ ��ðh2h	Þ (20)

h	�ðqhÞ þ h�ðqh	Þ ¼ ��ðqhh	Þ: (21)

The first equation is complex and implies two independent
conditions for the moments, while the second equation is
real. There are, thus, three conditions to restrict the second-
order moments (at fixed third-order ones) to the correct
canonical number: out of six initial moments �q2,
Re�ðqhÞ, Im�ðqhÞ, �ðhh	Þ, Re�h2 and Im�h2, three mo-
ments are left independent, amounting to two fluctuations
and one correlation.

C. Uncertainty relations

The main interest here lies in uncertainty relations which
can be formulated in terms of the moments even if they are
not used for a canonical pair ðq; pÞ but for a pair of our
basic operators. (See e.g., Ref. [37] for more details). As
usual, from the Schwarz inequality one derives

�A2�B2 � �ðABÞ2 � 1

4
hi½Â; B̂�i2 (22)

for any pair ðÂ; B̂Þ of self-adjoint or symmetric operators.
In our case, we can form three pairs of self-adjoint opera-

tors from the set ðq̂; ĥþ ĥy; iðĥ� ĥyÞÞ, giving uncertainty
relations

�q2�ðhþ h	Þ2 � �ðqðhþ h	ÞÞ2
¼ 2�q2ðRe�h2 þ�ðhh	ÞÞ � 4ðRe�ðqhÞÞ2

� ��2ℏ2

p2
0

ðh� h	Þ2 (23)

for Â ¼ q̂ and B̂ ¼ ĥþ ĥy,

�q2�ðiðh� h	ÞÞ2 ��ðqiðh� h	ÞÞ2
¼ 2�q2ð�Re�h2 þ �ðhh	ÞÞ � 4ðIm�ðqhÞÞ2

� �2ℏ2

p2
0

ðhþ h	Þ2 (24)

for Â ¼ q̂ and B̂ ¼ iðĥ� ĥyÞ, and
�ðhþ h	Þ2�ðiðh� h	ÞÞ2 � �ððhþ h	Þiðh� h	ÞÞ2

¼ 4ð�ðhh	Þ2 � ðRe�h2Þ2Þ � 4ðIm�h2Þ2 � 0

(25)

for Â ¼ ĥþ ĥy and B̂ ¼ iðĥ� ĥyÞ.
In semiclassical regimes, with moments of third or

higher orders ignored, one can use the reality conditions
to show that (24) implies (23) and (25). If moments of
higher order are kept, (23) and (25) in combination with
(24) and the reality conditions imply conditions for third-
order moments, an example for higher-order uncertainty
relations. For instance, (20), solved for h	�h2 and then
taken in its absolute value, implies

jhj2ð�ðhh	Þ2 � j�h2j2Þ
¼ �j�ðh2h	Þj2 � 2Reðh	�ðhh	Þ�ðh2h	ÞÞ

and then

� 2Reðh	�ðhh	Þ�ðh2h	ÞÞ � j�ðh2h	Þj2 (26)

with (25).

Given that i2 ðĥ� ĥyÞ corresponds to the sine of p̂, which
should reduce to p̂when acting on states supported only on
small p, we expect that it is (24) which reduces to the
standard uncertainty relation when p is small enough so
that the periodicity can be ignored. To confirm this expec-
tation, we first consider only leading orders in the
p�1
0 -expansion: we expand the operator

ĥ ¼ 1þ 2�i

p0

p̂� 2�2

p2
0

p̂2 þ � � � ; (27)

which is valid on a set of states supported on values of p
small compared to p0, and then compute the moments for
the expansion. To leading order in p�1

0 , we need only the

term ĥ� h ¼ 2�ip�1
0 ðp̂� pÞ þ � � � , for which
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�ðhh	Þ ¼ hðĥ� hÞðĥy � h	Þi ¼ 4�2

p2
0

�p2 þ � � � (28)

and

�h2 ¼ hðĥ� hÞ2i ¼ � 4�2

p2
0

�p2 þ � � � : (29)

(As one can easily verify to this order, the reality condition
�ðhh	Þ ¼ 1� jhj2 is identically satisfied in terms of the p
moments).

For mixed moments we have to be more careful with the
ordering:

�ðqhÞ ¼ 1

2
hq̂ ĥþĥ q̂i � qh

¼ i�

p0

hq̂ p̂þp̂ q̂i � 2�i

p0

qpþ � � �

¼ 2�i

p0

�ðqpÞ þ � � � : (30)

Inserting this in (24) provides the uncertainty product

2�q2ð�ðhh	Þ � Re�h2Þ � 4ðIm�ðqhÞÞ2

¼ 16�2

p2
0

ð�q2�p2 � �ðqpÞ2Þ þ � � � (31)

which together with

�2ℏ2

p2
0

ðhþ h	Þ2 ¼ 4�2ℏ2

p2
0

þ � � �

results in the standard uncertainty relation

�q2�p2 � �ðqpÞ2 � ℏ2

4
: (32)

Equations (23) and (25) are satisfied identically to this
order up to p�2

0 .

D. Corrections to the uncertainty relation

Corrections do arise, however, if we expand to higher
orders in p�1

0 , in which case we will obtain a generalized

uncertainty relation as we demonstrate now. For instance,
expanding to the next order on the right-hand side of the
uncertainty relation (24) gives

1

2
ðhþ h	Þ ¼ 1� 2�2

p2
0

ðp2 þ �p2Þ þ � � � : (33)

These corrections are identical to what would be obtained
from a modified commutator of q̂ and p̂ as in (9),

½q̂; ~̂p� ¼ iℏð1� 2�2 ~̂p2=p2
0Þ with ~p :¼ p0ðĥ� ĥyÞ=2�,

as it follows from a formal operator expansion

½q̂; ĥ� ĥy� ¼
�
q̂;
4�ip̂

p0

� 8�3ip̂3

3p3
0

þ � � �
�

¼ � 4�ℏ
p0

�
1� 2�2

p2
0

p̂2 þ � � �
�
:

(This contribution to the corrected uncertainty relation for
systems with compact configuration space is analogous to
what is discussed in Ref. [39]).
However, the moments on the left-hand side of the

uncertainty relation provide additional corrections to this
order which must be included for a consistent expansion.
Generalized uncertainty principles thus are not just con-
sequences of modified commutators. We will need �ðqhÞ,
Re�h2 and �ðhh	Þ up to the order p�4

0 :

�ðhh	Þ¼4�2

p2
0

�p2�4�4

3p4
0

�ðp4Þþ4�4

p4
0

ð�p2Þ2þ8�4

p4
0

p2�p2

(34)

�h2 ¼ � 4�2

p2
0

�p2 � 8�3i

p3
0

�ðp3Þ � 16�3i

p3
0

p�p2

þ 28�4

3p4
0

�ðp4Þ þ 32�4

p4
0

p�ðp3Þ � 60�4

p4
0

ð�p2Þ2

� 24�4

p4
0

p2�p2 (35)

�ðqhÞ ¼ 2�i

p0

�ðqpÞ � 2�2

p2
0

�ðqp2Þ � 4�2

p2
0

p�ðqpÞ

� 4�3i

3p3
0

�ðqp3Þ � 4�3i

p3
0

p�ðqp2Þ � 4�3i

p3
0

p2�ðqpÞ

þ 2�4

3p4
0

ð�ðqp4Þ þ 4p�ðqp3Þ þ 6p2�ðqp2Þ

þ 4p3�ðqpÞÞ: (36)

A demonstration of the lengthy calculations can be found
in Appendix B. Moreover,

�ðh2h	Þ ¼ 8�3i

p3
0

�ðp3Þ � 8�4

p4
0

ð�ðp4Þ þ 2p�ðp3Þ

� 7ð�p2Þ2 � 6p2�p2Þ: (37)

(One can verify that the reality condition (26) is identically
satisfied in terms of the ðq; pÞ moments).
To this order, our three uncertainty relations read

�q2�ðp4Þ þ 4p�q2�ðp3Þ � 7�q2ð�p2Þ2 � 2p2�q2�p2

� 4p�ðqpÞ�ðqp2Þ ��ðqp2Þ2 � 4p2�ðqpÞ2 � ℏ2p2;

(38)

from (23),
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�q2�p2 ��ðqpÞ2 � 4�2

3p2
0

ð�q2�ðp4Þ þ 3p�q2�ðp3Þ

� 6�q2ð�p2Þ2 � 3p2�q2�p2Þ � 4�2

3p2
0

ð��ðqpÞ�ðqp3Þ

� 3p�ðqpÞ�ðqp2Þ � 3p2�ðqpÞ2Þ

� ℏ2

4

�
1� 4�2p

2 þ�p2

p2
0

�
(39)

from (24), and

�p2�ðp4Þ � �ðp3Þ2 � 7ð�p2Þ3 � 6p2ð�p2Þ2 � 0: (40)

In order to eliminate some of the high-order moments in
terms of second-order ones, we rewrite the three uncer-
tainty relations as follows: (40) implies

�1 :¼ �ðp4Þ � 7ð�p2Þ2 � 6p2�p2 � �ðp3Þ2
�p2

� 0 (41)

while (38) can be written as

�2 :¼�q2ð�ðp4Þ�7ð�p2Þ2�6p2�p2Þþ4p�q2�ðp3Þ
þ4p2ð�q2�p2��ðqpÞ2�ℏ2=4Þ�4p�ðqpÞ�ðqp2Þ

��ðqp2Þ2�0: (42)

With the two non-negative quantities �1 and �2, the
central uncertainty relation (39) reads

�q2�p2��ðqpÞ2

�ℏ2

4

�
1�4�2p

2þ�p2

p2
0

�
þ�2

p2
0

�
�2þ1

3
�q2�1þℏ2p2

þ4

3
�q2ð�p2Þ2�4

3
�ðqpÞ�ðqp3Þ

�
�ℏ2

4

�
1�4�2

p2
0

�
�p2þ4

3

�q2ð�p2Þ2
ℏ2

�4

3

�ðqpÞ�ðqp3Þ
ℏ2

��
;

(43)

using�1 � 0 and�2 � 0 (and�q2 � 0) in the last step. If
we assume that �ðqpÞ ¼ 0, only the remaining two fluctu-
ations appear; all higher moments have been eliminated to
order p�4

0 in favor of additional fluctuation terms.

Moreover, we can self-consistently insert the uncertainty
relation on its right-hand side in (43) to bound �q2�p2

from below, resulting in the generalized uncertainty relation

�q2�p2 � ℏ2

4

�
1� 16�2

3p2
0

�p2

�
(44)

expanded to second order in 1=p0. Taking a square root to
this order, we have

�q�p � ℏ
2

�
1� 8�2

3

ð�pÞ2
p2
0

�
; (45)

which is of the form (8) with a negative � ¼ �8�2=3p2
0.

We see that �q can vanish at a finite critical value of �pc,

namely �pc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi�1=�

p ¼ ffiffiffiffiffiffiffiffi
3=2

p
p0=2�. While this value

for�pc shows the expected qualitative behavior, it can only
be a rough estimate, given that the correction term
8�3ð�pcÞ2=3p0 is certainly not small when it cancels the
standard term ℏ=2 of the uncertainty relation. Nevertheless,
the so-obtained value for the critical �pc is quite close to
what we derived earlier for a position eigenstate. Our
expansion by the moments assumes that all momentum
variables, including the moments, are small compared to
suitable powers of p0, with �ðpnÞ=pn

0 falling off as n gets

larger. Even for n ¼ 2, the ratio is not small compared to
one. For higher moments, as remarked at the end of
Sec. IIA, position eigenstates (corresponding to �q ¼ 0)
do fulfill the fall-off assumption, but with a comparatively
small rate of 2�n=ðnþ 1Þ. (For comparison, semiclassical
expansions usually make use of moments falling off as ℏn

relative to some classical scale with the dimension of an
action, providing much smaller numbers). Leaving position
eigenstates aside, there is a large class of states that easily
fulfill our assumptions provided they are sufficiently
strongly peaked in p. For such states, our generalized
uncertainty relation (45) reliably exhibits implications of
discrete space on fluctuations.

IV. CONCLUSIONS

We have derived the first order of corrections to the
standard uncertainty relation as they result for a quantum
system with a momentum space of the topology of S1 and,
thus, discrete position. Without needing to assume correc-
tions to the basic operator algebra (17), we showed that an
underlying discreteness of position spectra implies specific
respresentation-independent correction terms in a general-
ized uncertainty principle. Formally, there is no self-adjoint
operator associated with the coordinate of the compact
direction of the phase space, which is rather quantized via
periodic functions of an angular coordinate. (Group-
theoretical quantization [40], for instance, can be used to
construct the quantum representation). For angle separations
that are small compared to the periodicity, one can then
expand quantum variables such as fluctuations, correlations
and higher moments and, to leading order, reproduce the
standard uncertainty relations. Higher orders of the expan-
sion, which include terms sensitive to the periodicity, lead to
a derived form of a generalized uncertainty principle.
Heuristically, a generalized uncertainty principle of a

form that implies a positive lower bound for position
uncertainty has been interpreted as a signal of spatial
discreteness, as it may be realized in quantum gravity.
This has been supported in Ref. [10] by an analysis of
the representation theory of operator algebras which imply
such a generalized uncertainty principle. Perhaps surpris-
ingly, the specific form of the generalized uncertainty
principle derived in our calculations has the opposite sign
of its coefficients compared to what leads to a finite mini-
mal position uncertainty: Even though we know that the
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underlying Hilbert space implies discrete spectra and thus
spatial discreteness in a rigorous sense, there is no finite
lower bound to �q.

Of course, as we discussed, one may expect the absolute
minimum to be zero because normalizable eigenstates of
sharp position exist. In this case, a more refined version of
minimum uncertainty can be introduced which depends on
the expectation value hq̂i: the minimum uncertainty could
vanish when hq̂i equals an eigenvalue of q̂, but would be
nonzero otherwise. Such relations for the minimum
�qminðhq̂iÞ can be derived at the Hilbert space level, but
are not realized by the treatment used here. As we showed
in Sec. II A, the presence of nonvanishing minima of
fluctuations depends on the quantum representation.
Generalized uncertainty principles, on the other hand, are
representation independent as derived here; they follow
from algebraic properties of quantum observables. While
leading corrections to the standard uncertainty relation are
hq̂i independent and cannot directly give rise to minimal
uncertainties of the functional form �qminðhq̂iÞ, one may
expect that higher orders could bring in such a dependence
on hq̂i. Indeed, the dependence of �qmin on hq̂i is most
pronounced near q̂ eigenstates, where the leading terms of
the expansion in moments are not reliable. If higher orders
are included, such a dependence may arise at least indi-
rectly via moments involving q. These moments are inde-
pendent of the expectation value, but specific classes of
states, such as q̂ eigenstates, could imply restrictions on the
moments compatible with the form of�qmin seen before in
(6). We leave this question open for future investigations.

Thus, there is no simple relationship between positive
lower bounds for uncertainties according to generalized
uncertainty principles, on one hand, and true discreteness
of operator spectra on the underlying Hilbert space, on the
other. Onemay view the existence of a positive lower bound
for �q as an indication for a theory with a universal
bandwidth, or a theory based on extended fundamental
objects, which would be consistent with the fact that gen-
eralized uncertainty relations with a positive lower bound
have been argued to arise, also from string theory. A key
signature of a fundamental discreteness of space, by con-
trast, is the possibility of vanishing position fluctuations at
finite momentum fluctuation. We reemphasize, however,
that our treatment works well for values of variables that
are small compared to their periodicity, for which curvature
bounds in quantum gravity are an example. If one instead
probes an underlying periodic structure of position space,
separations comparable to the periodicity scale would have
to be considered where our present expansions do not apply.

As an alternative to string theory as a quantum theory of
gravity, loop quantum gravity [41–43] provides a kinemati-
cal quantization where geometrical operators have discrete
spectra [44,45]. While this property has not been derived
for physical observables, the discrete form of kinematical
spectra affects the dynamics because of the form of basic

operators which are combined to a Hamiltonian (con-
straint) operator. Dynamical implications can be studied
in loop quantum cosmology [24–26], for instance in the
context of space-time singularities [46]. The formulation
of isotropic models in loop quantum cosmology makes use
of complex exponentials of curvatures, rather than curva-
ture components themselves [27]. The example analyzed
here can thus be taken as a model for isotropic loop
quantum cosmology, which indicates the form of general-
ized uncertainty principles as they may appear in cosmo-
logical applications. Our results here would apply only to
small-curvature regimes, where the discreteness of spatial
geometry does not play a large role, corresponding to the
fact that we had to expand our exponentials on a circle in
the inverse periodicity in order to derive our generalized
uncertainty principle.
Taking the circle example as a model for the kinematical

structure of a sector in loop quantum cosmology suggests
that the canonical variables V and P, related to the volume
and expansion rate as introduced in Appendix A, are sub-
ject to a generalized uncertainty principle

�V�P � ℏ
2

�
1� 2

3
ð�PÞ2

�
: (46)

This inequality is valid as long as P and �P are small
compared to the scale P0 ¼ 2� of almost periodicity. (As
in the general derivation, we also assume a vanishing
ðV; PÞ-covariance; otherwise, there will be additional cor-
rections as shown by the previous formulas). Loop quan-
tum cosmology does not show uniquely what variables
behave almost periodically. Taking ambiguities into ac-
count, the periodicity scale in terms of the scale factor is
set by two parameters, f0 and x, according to the power-
law parameterization P ¼ �f0a

2x _a. The dimension of f0
depends on the value of x, given that P must be dimen-
sionless. For the value x ¼ �1=2, for instance, f0 has the
dimension of length and due to its quantum-gravity origin,
one may expect it to be of the order of the Planck length

f0 � ‘P ¼
ffiffiffiffiffiffiffi
Gℏ

p
. (For consistency with other corrections

from loop quantum cosmology, it must be sufficiently
larger than the Planck length [47]). In this case, a
Planckian bound _a=a < ‘�1

P for the Hubble parameter is
required for the applicability of our derivations here and
leading corrections are of the order ð‘P�ð _a=aÞÞ2.
In fact, as observed in Ref. [48], the use of modified

commutation relations between the canonical variables
which correspond to a generalized uncertainty principle
of the form derived here can mimic some of the effects of
loop quantum cosmology. The main example is a bounce in
isotropic models sourced by a free scalar [36,49]. However,
such an example for high-curvature effects appears when
P� P0 and, thus, falls outside the regimewhere derivations
of the present paper are valid. We nevertheless note that our
derivations are not restricted to purely semiclassical
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regimes; all we need is a hierarchy of moments organized
by powers of P�1

0 , not of ℏ.
In addition to the gravitational degrees of freedom, loop

quantization also applies to matter fields. A scalar field, for
instance, can be represented on the loop Hilbert space in an
almost-periodic fashion similar to the gravitational con-
nection or the canonical variable P in isotropic cosmology
[50,51]. In a setting of quantum field theory, generalized
uncertainty relations should then appear, with possible
phenomenological consequences during inflation.

Let us recall that our considerations here have been
kinematical, using a moment expansion in uncertainties.
The same tool is the key to analyzing quantum backreac-
tion effects in the dynamics, where equations of motion (or
constraints) are expanded by moments [33]. This can be
done either in canonical variables or in variables analogous
to h used on the circle [36]. We leave it open to further
studies to see what a combination of both types of moment
expansions would provide.

Finally, let us consider how the present considerations
could be extended to account for particle interactions.
There are, in principle, two approaches, bottom up and
top down. In the top-down approach, a multiparticle version
of the present considerations is provided by any top-level
quantum gravity theory, such as loop quantum gravity,
which then yields a single-particle generalized uncertainty
principle in a suitable limit. In the bottom-up approach, one
can try to extend generalized uncertainty principles to a
multiparticle theory. For example, in the case of a constant
finite minimum uncertainty in position, e.g., at the Planck
scale, the space of fields is known to be band limited with
the smallest wavelength determined by the minimum length
uncertainty. A quantum field theory is then obtained by
taking an ordinary quantum field theoretical path integral
and restricting the integration range to just these band-
limited functions, thereby, in effect, eliminating the most
extreme quantum fluctuations. This approach has been
pursued, for example, in Ref. [32]. The bottom-up approach
then also encounters the question of the addition of mo-
menta, see for example Ref. [13]. For example, when
multiple band-limited functions are multiplied naively to
describe the scattering of multiple particles, the product of
these functions needs not obey the same band limit. Indeed,
when particles scatter whose combined energy reaches or
exceeds the Planck energy, then their interaction with the
background spacetime must become strong. It is plausible
that this interaction could lead to a transfer of excess
momentum to curvature degrees of freedom, thereby re-
solving the issue of the conservation of the momenta and of
the band limitation. These questions are beyond the scope
of the present paper.
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APPENDIX A: LOOP QUANTUM COSMOLOGY

We present a brief review of loop quantum cosmology
with a focus on aspects relevant for questions of the dis-
creteness or periodicity of some directions in phase space.
In this context, we must take a general viewpoint in order
to see all possible forms of discreteness that can arise,
especially at a dynamical level. Our summary here, there-
fore, differs from some contributions and reviews in the
recent literature, where models are specialized further by
ad hoc choices so as to produce detailed studies of some
specific cases.
In loop quantum gravity [41–43], one uses as one of

the basic canonical fields a densitized triad Ea
i of three

orthonormal vector fields labeled by i ¼ 1, 2, 3, related
to the spatial metric qab by Ea

i E
b
i ¼

ffiffiffiffiffiffiffiffiffi
detq

p
qab. As a

smeared version, the field is quantized via flux operators

F̂ðSÞ ¼ R
S Ê

a
i nad

2y integrated over two-dimensional sur-

faces in space rather than by its pointwise values. In an
isotropic setting, Ea

i ¼ p	a
i is completely determined by

the scale factor a up to orientation, with jpj ¼ a2 and the
sign of p giving the orientation of space. Fluxes, then,
reduce to arealike quantities such as A ¼ ‘20jpj, where ‘0
provides a linear measure (in terms of coordinates) for the
surfaces used.
In quantum states, areas A obtained from flux operators

play the role of quantum numbers that determine the
elementary discreteness of space. Indeed, the quantum
representation implies a discrete spectrum for flux opera-
tors, whose smallest possible nonzero values are of the
order A� ‘2P. One is thus led to a discrete (minisuper)

space as used in this paper. For isotropic geometries, the
canonically conjugate almost-periodic momentum of A is
‘0 _a (represented via holonomy operators). But while the
spectrum of flux operators for fixed surfaces is fully deter-
mined and of a simple equidistant form, the question of
what the dynamical stepsize of physical scales is, for
instance in an expanding universe, remains open. The
dynamics of a classical expanding universe is described
by the scale factor or the triad variable p, while elementary
fluxes in quantum theory determine the possible sizes of
‘20jpj with ‘0 depending on the coordinate size of surfaces

(or plaquettes in a latticelike state of discrete space) giving
rise to the smallest flux eigenvalues. If the lattice is chang-
ing, a process called lattice refinement which is generically
realized in loop quantum gravity [52,53], ‘0 must be
assumed to depend on time or the scale factor as well.
The known equidistant spectrum for fluxes A then deter-
mines the stepsize of geometrical measures related to the
scale factor only if ‘0 for lattice plaquettes is known as a
function of a or p.
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Evaluating the full dynamics of loop quantum gravity,
for instance as in Ref. [54], remains extremely challenging;
it is thus impossible to derive some function ‘0ðpÞ from
first principles. However, on general grounds there are
certain restrictions on its behavior. If ‘0 did not depend
on p, for instance, the discreteness scale of a lattice state
would be constant in terms of coordinates but would be
magnified as the scale a‘0 measured in an expanding
universe. For sufficiently long expansion, one would be
in conflict with continuum physics. A decreasing scale
‘0ðpÞ is thus required, with one useful example being the
power-law form ‘0ðpÞ ¼ f0jpjx with two constants f0 for
the discreteness scale and x < 0 for the refinement behav-
ior. It is then the product ‘0ðpÞ _a ¼ f0a

2x _a, not _a, which is
almost periodic, and the conjugate variable

R
‘0ðpÞ�1dp ¼

f�1
0 jpj1�x=ð1� xÞ, not p, which is equidistant.

In terms of the cosmological scale factor a, we thus
define canonical variables

V ¼ 3
Va2�2x

8�Gð1� xÞf0 and P ¼ �f0a
2x _a with

fV;Pg ¼ 1; (A1)

where G is the gravitational constant. These conventional
variables absorb the precise periodicity scale of a2x _a in f0
such that P0 ¼ 2� and �ð�Þ

n ¼ nþ �=2�. In V, moreover,
the spatial volume V of an integration region used to
average to isotropy, measured in coordinates, appears, as
well as 
 ¼ �1which determines the orientation of space.
With the factor of 
, allowed values of V cover the whole
real line because loop variables are derived from triads,
which by changing orientation can take both signs; see
Ref. [25] for derivations and details.

The dynamics of a loop quantum cosmological model
take different forms depending on which variable precisely
is almost periodic. Unlike the condensed-matter example
in Sec. II, it is not clear a priori whether it is, say, a itself
that acquires an equidistant spectrum in any of the periodic
dynamical sectors or a different power of a (or yet another
functional behavior). We, therefore, keep this freedom in
our definition of basic variables, where the power x re-
mains unspecified. (Arguments loosely based on the full
theory of loop quantum gravity indicate that �1=2<x<0
generically [52,53], with values near �1=2 preferred phe-
nomenologically [55–57] at least in near-isotropic cosmol-
ogy). Moreover, even if the precise discrete variable would
be specified, the discreteness scale remains free. This is
parameterized by the second constant f0 whose dimension
depends on x [58].

A further difference to the Bloch example is that this so-
called kinematical Hilbert space of states (4), as it follows
[59] from the full theory of loop quantum gravity, carries a
different representation than is typically used in quantum

mechanics [28]: All states c ð�Þ
n are normalizable despite

their plane-wave form, and they form an orthonormal

basis. (Although nonstandard, this representation may be
advantageously used also in quantum mechanics [64] and
quantum field theory [65]). Since there are uncountably
many such states, the Hilbert space is nonseparable. A
specific way to write the inner product is the integral form

hf; gi ¼ lim
T!1

1

2T

Z T

�T
fðPÞgðPÞdP: (A2)

Since V is conjugate to P, it can be represented as the

usual derivative operator V̂ ¼ iℏ@=@P. The states (4) then
turn out to be true normalizable eigenstates of V̂, which
thus has a discrete spectrum. For the scale factor a, the

eigenvalues in terms of the quantum number �ð�Þ
n read

að�Þn ¼
�
8�Gℏf0ð1� xÞj�ð�Þ

n j
3V

�
1=ð2�2xÞ

¼
�
8�Gℏf0ð1� xÞjnþ �=2�j

3V

�
1=ð2�2xÞ

: (A3)

As in the case of Bloch states, it is the dynamics which
must determine the specific realization and effects of the
underlying discreteness as well as potentially observable
implications. Classically, cosmological dynamics is gov-
erned by the Friedmann equation

0 ¼ C ¼ a _a2 � 8�G

3
EðaÞ; (A4)

where a is the scale factor and E the matter energy in the
universe. Since _a, according to (A1) is related to the
variable P, which, after a loop quantization, becomes al-
most periodic, it is not possible to represent the Friedmann
equation directly on the Hilbert space of loop quantum
cosmology. Instead, one has to look for an operator which
is well defined and which produces _a2 in the classical limit
of small curvature, where _a � 1 (or more precisely
f0a

2x _a � 1). With P parameterized to reflect the scale
of almost periodicity, a simple and often-used operator
that satisfies the requirements is obtained after replacing
a _a2 in (A4) with f�2

0 a1�4xsin2P, where a1�4x is propor-

tional to V2–3=ð2�2xÞ in terms of canonical variables. This
specific process of adapting the classical equation in large-
curvature regimes is called ‘‘holonomy modification.’’ It
plays the role of a regularization to ensure that the classical
expression can be promoted to an operator in the quantum
representation used.
A detailed derivation of the precise functional form of

the Hamiltonian, or the specific form of functions such as
sin2P in holonomy modifications, must await further de-
velopments in evaluating the theory. This would be like
asking to derive the potential VðxÞ relevant for the motion
of electrons in a crystal from first principles of the under-
lying many-body system composed of all nuclei and elec-
trons. Such a derivation is certainly complicated, but still
the Hamiltonian resulting from the simple basic assump-
tions made above has several characteristic properties for
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which the detailed form is not crucial. They influence the
dynamics, which in qualitative terms will depend on the
size of parameters such as f0 and x. In contrast to a
condensed-matter Hamiltonian, in this context one is not
interested in all energy eigenvalues but only in the zero
eigenspace, so-called physical states annihilated by the
combined Hamiltonian of gravity and matter, which forms
a constraint rather than an expression of energy. There is
thus no band structure, but implications of the discreteness
do show up in other dynamical properties of the solutions.

From the action of a holonomy modification like sin2P
as a multiplication operator

dsin2Pc ð�Þ
n ðPÞ ¼ � 1

4
ðc ð�Þ

nþ2ðPÞ � 2c ð�Þ
n ðPÞ þ c ð�Þ

n�2ðPÞÞ
(A5)

on V̂-eigenstates c ð�Þ
n of the form (4), with a matter

Hamiltonian operator Êc ð�Þ
n ðPÞ ¼ Eð�Þ

n c ð�Þ
n ðPÞ, the con-

straint C ¼ 0 in (A4) is quantized to a difference
Eqs. [27,66]

Cð�Þ
þ ðnÞsð�Þnþ2 þ Cð�Þ

0 ðnÞsð�Þn þ Cð�Þ� ðnÞsð�Þn�2 ¼
8�G

3
Eð�Þ
n sð�Þn

(A6)

for the coefficients of physical states c ðPÞ¼P
n;�s

ð�Þ
n c ð�Þ

n ðPÞ
expanded in (4). The coefficients Cð�Þ

0 ðnÞ and Cð�Þ
� ðnÞ of the

difference equation follow from quantizing the a-dependent
terms in (A4); see e.g., Refs. [25,27,67] for concrete ex-
amples. Equation (A6) may appear like an eigenvalue equa-

tion for Eð�Þ
n , but solutions to this constraint are not required

to be normalizable. In fact, if the system describes an ever-
expanding cosmology, wave functions are expected to be
supported at all n without a strong fall-off at n ! �1.
Thus, general solutions are not normalizable. However,
they describe the change of the wave function of an evolving

universe for any given Ê in accordance with the matter
model.

APPENDIX B: EXAMPLE FOR THE EXPANSION
OF MOMENTS

Here, we show some of the calculations necessary to
expand moments up to third order in p�1

0 . In the main text,

we had to use results up to fourth order, which are more
lengthy but follow from analogous calculations.
First, we have

�h2 ¼ hĥ2i � h2

¼ � 4�2

p2
0

�p2 � 8�3i

p3
0

�ðp3Þ � 16�3i

p3
0

p�p2

þ � � � ; (B1)

where we used the third-order moment

�ðp3Þ ¼ hðp̂� pÞ3i ¼ hp̂3i � 3php̂2i þ 2p3: (B2)

For mixed moments we have to be more careful with the
ordering:

�ðqhÞ¼1

2
hq̂ĥþĥq̂i�qh¼ i�

p0

hq̂p̂þp̂q̂i�2�i

p0

qp��2

p2
0

hq̂p̂2þ p̂2q̂iþ2�2

p2
0

qhp̂2i�2�3i

3p3
0

hq̂p̂3þ p̂3q̂iþ4�3i

3p3
0

qhp̂3iþ���

¼2�i

p0

�ðqpÞ�2�2

p2
0

�ðqp2Þþ4�2

p2
0

p�ðqpÞ�4�3i

3p3
0

�ðqp3Þ�4�3i

p3
0

p�ðqp2Þ�4�3i

p3
0

p2�ðqpÞþ��� ; (B3)

where in the last step the moments

�ðqp2Þ¼1

3
hðq̂�qÞðp̂�pÞ2þðp̂�pÞðq̂�qÞðp̂�pÞ

þðp̂�pÞ2ðq̂�qÞi
¼1

2
hq̂p̂2þ p̂2q̂i�q�p2�2p�ðqpÞ�qp2 (B4)

�ðqp3Þ¼1

4
hðq̂�qÞðp̂�pÞ3þðp̂�pÞðq̂�qÞðp̂�pÞ2

þðp̂�pÞ2ðq̂�qÞðp̂�pÞþðp̂�pÞ3ðq̂�qÞi
¼1

2
hq̂p̂3þ p̂3q̂i�q�ðp3Þ�3p�ðqp2Þ

�3p2�ðqpÞ�qp3 (B5)

have been used.
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