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We present tree-level scattering amplitudes in �-deformed super Yang-Mills theory in terms of new

generating functions, derived by construction of a phase operator and application thereof to the N ¼ 4

superamplitudes. The technique is explicitly illustrated for the maximally helicity violating (MHV) and

next-to-MHV sectors. Along these lines we propose a phase representation of theN ¼ 4 superconformal

algebra realized on deformed amplitudes in the planar limit. Validity of the MHV vertex expansion is

proven and a connection to nonplanar multiloop unitarity cuts is established. Our derivations are also

compatible with the related �-deformation.
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I. INTRODUCTION

Maximally supersymmetric (N ¼ 4) super Yang-Mills
theory in four dimensions is a very special quantum field
theory in several ways. First of all, it has surprisingly
simple and well-behaved amplitudes. The N ¼ 4 super-
multiplet is CPT self-conjugate and in addition the theory
is both classically and quantum mechanically conformally
invariant because the renormalization group �-function
vanishes identically. Even more remarkably, although
gravitational interactions are absent, the N ¼ 4 theory
is intimately related to a supergravity theory via the cele-
brated AdS/CFT correspondence.

Multiloop N ¼ 4 scattering amplitudes are very ele-
gantly studied within the on-shell superspace formalism
[1–13]. The principle is to arrange the entire supermultiplet
as a superfield expanded in Grassmann variables. All pos-
sible scattering combinations are realized by formation
of superamplitudes, defined as generating functions of n
copies of superfields corresponding to the external legs.
Single amplitudes are then projected out by unique strings
of Grassmann differential operators or pieced together in a
graphical framework. Superamplitudes for general particle
and helicity configurations may be constructed with the
Britto-Cachazo-Feng-Witten (BCFW) on-shell recursion
relations [4,7,14,15].

It is of course very interesting to examine features of the
N ¼ 4 theory in more general settings. Super Yang-Mills
theories with less than maximal supersymmetry do not
possess all of the amazing properties mentioned, although
the superspace formalism can be generalized [5,6,16].
However, exactly marginal deformations of the N ¼ 4
super Yang-Mills theory preserving only reduced amount
of supersymmetry in particular inherit conformal invari-
ance [17], and have recently attracted considerable atten-
tion especially catalyzed by the AdS/CFT duality. Exactly
marginal deformations have also been subject to intense
investigations within the perturbative regime [18–33]. In
particular, it has been of special interest to understand how

scattering amplitudes are modified by the so-called
�-deformation. It can be shown that conformal invariance
of the planar �-deformed super Yang-Mills theory requires
reality of �, the deformation parameter. The theory enjoys
only N ¼ 1 supersymmetry and a global Uð1Þ1 �Uð1Þ2
flavor symmetry, and may be formulated with both sym-
metries manifest in the N ¼ 1 superspace formalism in
terms of three charged chiral superfields and a neutral
vector superfield, and a star product operation which in-
corporates the charges of the fields under the flavor sym-
metry. Using this Lagrangian approach the �-deformed
Feynman rules of the deformed theory may be obtained,
and the behavior of its scattering amplitudes elucidated
[18]. It turns out that theN ¼ 4 and �-deformed theories
are very similar.
Motivated by the developments in exactly marginal

deformations and inspired by how powerfully on-shell
scattering amplitudes are constructed from analyticity
and unitarity in the N ¼ 4 on-shell framework, we recast
the deformed theory in terms of generating functions.

II. NOTATION AND CONVENTIONS

Several modern techniques apply to present gauge
theory scattering amplitudes very effectively. With all
states in the adjoint representation of the gauge group,
say SUðNcÞ, any tree-level amplitude can be color decom-
posed as

Atree
n ð1; 2; . . . ; nÞ ¼ gn�2

X
�2Sn=Zn

TrðTa�ð1ÞTa�ð2Þ � � �Ta�ðnÞ Þ

� Atree
n ð�ð1Þ; �ð2Þ; . . . ; �ðnÞÞ; (1)

where g is the gauge coupling constant and
Atree
n ð�ð1Þ; �ð2Þ; . . . ; �ðnÞÞ are partial amplitudes soaking

up the entire kinematical structure corresponding to a
particular ordering of the n external legs encoded by the
trace of the gauge group generators Ta. The sum is over all
permutations Sn with trace preserving cyclic permutations
Zn modded out.
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The partial amplitudes are written in terms of Lorentz
invariant, little group covariant holomorphic and antiholo-
morphic spinor products. In order to distinguish the two
chiralities we use angle and square brackets, and define

hiji ¼ �hjii � ����
�
i �

�
j ; ½ij� ¼ �½ji� � � _� _�

~� _�
i
~�

_�
j ;

(2)

for commuting spinors ��
i and ~� _�

i related to momentum by
p� _�
i ¼ ��

i �
_�
i .

III. ON-SHELL N ¼ 4 SUPERSYMMETRY

The N ¼ 4 gauge multiplet has the unique property of
CPT self-conjugacy which implies that all on-shell states
can be assembled by a single holomorphic superfield
�ðp;�Þ. It is expanded in Grassmann variables �a where
a ¼ 1; . . . ; 4 is a fundamental index of SUð4ÞR, the
R-symmetry group of the theory. Within this setup the
sixteen physical states transform in r-rank antisymmetric
tensor representations as two gluons gþ and gabcd� , four
fermion pairs faþ and fabc� , plus six real scalars sab. The
tensor rank r and particle helicity h are related through
2h ¼ 2� r.

The superfield is [10] (repeated indices are summed)

�ðp;�Þ ¼ gþ þ �af
aþ þ 1

2!
�a�bs

ab þ 1

3!
�a�b�cf

abc�

þ 1

4!
�a�b�c�dg

abcd� : (3)

There also exists an antiholomorphic superfield

~�ðp; ~�Þ ¼ g� þ ~�af�a þ 1

2!
~�a ~�bsab þ 1

3!
~�a ~�b ~�cfþabc

þ 1

4!
~�a ~�b ~�c ~�dgþabcd; (4)

linked to�ðp;�Þ by the Grassmann Fourier transform, but
with the exact same particle content encoded. Due to this
equivalence either representation may be preferred. In this
paper we reserve the holomorphic and antiholomorphic
descriptions for maximally helicity violating (MHV) and
MHV amplitudes, respectively.

A. MHV superamplitudes

Proliferation of scattering amplitudes in N ¼ 4
super Yang-Mills theory is handled by introduction of
superamplitudes, which are functions of n copies of the
superfield, one for each external leg. The full n-point tree-
level superamplitude is organized ascendingly according to
Grassmann degree in steps of four,

A nð�; ~�;�Þ¼Að�1 ����nÞ
¼AMHV

n þANMHV
n þ���þAMHV

n ; (5)

ranging from eight �’s to 4n� 8. It follows in particular
that all MHV amplitudes may be packaged into a generat-
ing function, also referred to as the MHV superamplitude.

Each term thus corresponds to a regular scattering
amplitude involving gluons, fermions and scalars. It is
convention to extract the MHV sector from the full super-
amplitude as an overall factor.
The MHV tree-level superamplitude is in addition to the

well-known overall momentum conservation proportional
to an eightfold Grassmann delta function conserving total
supermomentum Q�

a � P
n
j¼1 �

�
j �ja, and is defined by [1]

AMHV
n ¼ i

ð2�Þ4	ð4ÞðPn
i¼1 piÞQ

n
r¼1hrðrþ 1Þi 	ð8Þ

�Xn
j¼1

��
j �ja

�
: (6)

For calculational purposes it proves advantageous to
expand the Grassmann delta function present in the
MHV superamplitude as a sum of monomials in the �’s,
first in all possible values of the group index,

	ð8Þ
�Xn
j¼1

��
j �ja

�
¼ Y4

a¼1

	ð2Þ
�Xn
j¼1

��
j �ja

�
; (7)

and then using 	ð�Þ ¼ � for Grassmann variables,

	ð8Þ
�Xn
j¼1

��
j �ja

�
¼ Y4

a¼1

X
i<j

hiji�ia�ja: (8)

Frequently we write holomorphic and antiholomorphic
spinor products of supermomenta of the individual legs
defined by

hqiaqjai � �iahiji�ja; ½~qai ~qaj � � ~�a
i ½ij�~�a

j : (9)

Consequently, the MHV generating function reaches the
very clean form

AMHV
n ¼ i

Q
4
a¼1

P
i<jhqiaqjaiQ

n
r¼1hrðrþ 1Þi ; (10)

with four-momentum conservation stripped.
For four external legs, some simple examples of MHV

component amplitudes are

AMHV
4 ð1�

g1234
; 2�

g1234
; 3þg ; 4þg Þ ¼ i

Q
4
a¼1hq1aq2ai

h12ih23ih34ih41i ; (11)

AMHV
4 ð1�

gabcd
; 2�

fabc
; 3þ

fd
; 4þg Þ

¼ i
hq1aq2aihq1bq2bihq1cq2cihq1dq3di

h12ih23ih34ih41i ; (12)

AMHV
4 ð1�

fabc
; 2�

fabd
; 3scd ; 4

þ
g Þ

¼ i
hq1aq2aihq1bq2bihq1cq3cihq2dq3di

h12ih23ih34ih41i : (13)

Analogous to the MHV superamplitude we may use the
antiholomorphic superfields (4) to build aMHV generating
function. The MHV superamplitude conserves total con-

jugate supermomentum ~Q _�a ¼ P
n
i¼1

~� _�
i ~�

a
i and is apart
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from an ordinary momentum conserving delta function
given by

AMHV
n ¼ ið�1Þn 	

ð8ÞðPn
i¼1

~� _�
i ~�

a
i ÞQ

n
r¼1½rðrþ 1Þ�

¼ ið�1Þn
Q

4
a¼1

P
i<j½~qai ~qaj �Q

n
r¼1½rðrþ 1Þ� : (14)

It is mapped from the ~�-coordinates to the untilded super-
space using the Grassmann Fourier transform realized by
the n-leg operator

F̂� �
Z Y

i;a

d~�a
i exp

�X
b;j

~�b
j�jb

�
� : (15)

As a first example of MHV component amplitudes con-
sider the equivalent reinterpretation of the MHV ampli-
tudes (11)–(13) in the tilded superspace,

AMHV
4 ð1�g ; 2�g ; 3þg1234 ; 4þg1234Þ ¼ i

Q
4
a¼1½~qa3 ~qa4�

½12�½23�½34�½41� ; (16)

AMHV
4 ð1�g ; 2�fd ; 3þfabc ; 4þgabcdÞ

¼ i
½~q3a~q4a�½~q3b~q4b�½~q3c~q4c�½~q2d~q4d�

½12�½23�½34�½41� ; (17)

AMHV
4 ð1�fd ; 2�fc ; 3sab ; 4þgabcdÞ

¼ i
½~q3a~q4a�½~q3b~q4b�½~q2c~q4c�½~q1d~q4d�

½12�½23�½34�½41� : (18)

B. The NMHV sector

The supersymmetric BCFW recursion relations [4,7]
generate all tree-level superamplitudes in N ¼ 4 super
Yang-Mills theory in terms of nested sums of dual super-
conformal invariants [10] from just MHV and MHV am-
plitudes. The essence is to deform the on-shell superspace
by a supershift and recover the physical amplitude by
residue calculus. In this paper it suffices to examine in
detail only the next-to-MHV (NMHV) superamplitude. It
comes with the very compact result [10]

A NMHV
n ¼ AMHV

n

X
1<s<t<n

Rn;st; (19)

where, however, Rn;st are complicated dual superconfor-

mal invariants (see e.g., Ref. [9]),

Rn;st ¼ hsðs� 1Þihtðt� 1Þi	ð4Þð�n;stÞ
x2sthnjxnsxstjtihnjxnsxstjt� 1ihnjxntxtsjsihnjxntxtsjs� 1i ; (20)

depending on another intricate Grassmann valued object,
�n;st, defined by

�n;st ¼
Xn�1

i¼t

hnjxnsxstjii�ia þ
Xn�1

i¼s

hnjxntxtsjii�ia: (21)

Equipped with all necessary machinery of N ¼ 4
superamplitudes we are now ready to consider applications
in �-deformed super Yang-Mills theory.

IV. �-DEFORMED SUPER YANG-MILLS THEORY

Marginal deformations of conformally invariant super-
symmetric gauge theories were first systematically studied
by Leigh and Strassler [17], and have subsequently been
analyzed extensively both perturbatively and at strong
coupling in Refs. [18–33] just to mention a few.

Before exactly marginal deformations are treated, we
shall first pay brief attention to the Lagrangian formulation
of the undeformed N ¼ 4 super Yang-Mills theory. The
standard N ¼ 1 superspace formalism applies by con-
struction to field theories with N ¼ 1 supersymmetry.
But sinceN > 1 supersymmetric theories may be reduced
to multiple unextended supermultiplets coupled together,
theN ¼ 1 framework proves useful in a much richer class
of theories. The N ¼ 4 particle content decomposes into

one N ¼ 1 vector multiplet and three N ¼ 1 chiral
multiplets. The Lagrangian can be written [30,34]

LN¼4¼
Z
d2
d2 �
Tre�gV ��iegV�iþ 1

2g2

Z
d2
TrW�W�

þ
�
g
Z
d2
Tr�1½�2;�3�þH:c:

�
; (22)

where V is the vector superfield and�1,�2 and�3 are the
three chiral superfields. The kinetic term for the vector
superfield involves as usual the superfield strength defined

by W� ¼ i �D2ðe�gVD�e
gVÞ where D� and �D _� are super-

covariant derivatives. This Lagrangian is manifestly
N ¼ 1 supersymmetric being constructed using the
N ¼ 1 superspace prescription. Moreover, the three chi-
ral superfields enjoy manifest SUð3Þ flavor symmetry, but
the full SUð4Þ R-symmetry is obscured.
The general Leigh-Strassler theory is parametrized by

complexification of the gauge coupling g and modification
of the superpotential by the substitution

gTrð�1�2�3 ��1�3�2Þ
� �Trðq�1�2�3 � q�1�1�3�2Þ

þ �Trð�3
1 þ�3

2 þ�3
3Þ; (23)
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for complex �, � and q. The deformations break super-
symmetry to N ¼ 1. In order for the deformation to
become exactly marginal and thereby inherit finiteness at
the quantum level, the parameters must be highly con-
strained. Leigh and Strassler demonstrated the existence
of a three-complex dimensional surface in the coupling
constant space of conformally invariant theories with
N ¼ 1 supersymmetry. This surface can be defined as a
quite complicated level set �ð�; �; q; gÞ ¼ 0. The condi-
tion however has to be calculated perturbatively and
unfortunately its form is not known beyond a few loops
except for very restrictive choices of the couplings.

A. Star product induced �-deformations

The Leigh-Strassler deformed theory generated by
the superpotential substitution (23) includes as a special
case a one-parameter family of theories known as
�-deformations, which extend to quantum finiteness to
all orders in the planar limit [20]. The model follows by
tightening the assumptions on the parameters and setting
� ¼ g, � ¼ 0 and q �q ¼ 1, so that for �R real, the new
superpotential becomes

W � ¼ gTrðei��R�1�2�3 � e�i��R�1�3�2Þ; (24)

whence the undeformed theory is recovered by sending
ei��R ! 1.

It turns out that the �-deformation can be understood in
terms of a special operation between the superfields,
namely the star product, which will prove invaluable
when we evaluate deformations of scattering amplitudes
[18]. In order to define the star product it is necessary to
discuss the leftover symmetries of the �-deformed
Lagrangian. The original R-symmetry is broken from
SUð4ÞR toUð1ÞR, but it is observed that the deformed theory
in addition is invariant under a globalUð1Þ1 �Uð1Þ2 flavor
symmetry of the three chiral superfields. More specifically
the symmetries can be expressed as

Uð1Þ1: ð�1;�2;�3;VÞ� ð�1;e
i�1�2;e

�i�1�3;VÞ;
Uð1Þ2: ð�1;�2;�3;VÞ� ðe�i�2�1;e

i�2�2;�3;VÞ;
(25)

the vector superfield being neutral under these transforma-
tions. The symmetry charges are

Q½1� � ð0;þ1;�1; 0Þ; Q½2� � ð�1;þ1; 0; 0Þ: (26)

Suppose that�i and�j are chiral superfields with flavor

symmetry charges Q½1;2�
i and Q½1;2�

j , respectively. Then the

star product operation together with the �-deformed
commutator between these fields is defined by

�i ?�j � ei��RðQ½1�
i Q½2�

j �Q½2�
i Q½1�

j Þ�i�j;

½�i;�j�� � ei��ij�i�j � e�i��ij�j�i;
(27)

where �ij is the antisymmetric matrix

�ij ¼ ��ji; �12 ¼ ��13 ¼ �23 � �R: (28)

For �R real it follows that the star product is simply the
usual product adjusted by an overall flavor-dependent
phase factor. Of important properties of the star product
we mention associativity, which is a consequence of addi-
tivity of the flavor charges, and noncommutativity, the
latter being obvious from the definition (27).
Prior to implementation in the N ¼ 4 Lagrangian the

star productmust extend to the antichiral superfields ��1,
��2

and ��3. They carry opposite charges to the chiral super-

fields under the Uð1Þ1 �Uð1Þ2 symmetry so that �i
��i is

chargeless and �i ? ��i ¼ �i
��i. We therefore note

�Q½1� � ð0;�1;þ1; 0Þ ¼ �Q½1�;
�Q½2� � ðþ1;�1; 0; 0Þ ¼ �Q½2�;

(29)

whereby both antichirality and mixed-chirality star prod-
ucts become well defined.
With this operation the �-deformation can be induced in

the N ¼ 4 Lagrangian by substituting all ordinary prod-
ucts between superfields with star products, or equivalently
replacing all commutators with �-deformed brackets. In
particular, the superpotential can be written

W � ¼ gTrð�1 ?�2 ?�3 ��1 ?�3 ?�2Þ
¼ gTrðei��R�1�2�3 � e�i��R�1�3�2Þ; (30)

and hence the �-deformed Lagrangian takes the form

L� ¼
Z

d2
d2 �
Tre�gV ��iegV�i þ 1

2g2

Z
d2
TrW�W�

þ
�
g
Z

d2
Tr�1½�2;�3�� þ H:c:

�
: (31)

By consideration of the component version of the
Lagrangian for theN ¼ 4 super Yang-Mills theory rather
than its superspace representation (22) it is elementary to
derive the modified color-ordered Feynman rules. We
mention that nonconsecutive four-scalar interactions and
Yukawa vertices without particles from the vector multiplet
exhaust the �-deformed vertices (see Fig. 1), and refer the
reader to Ref. [18] for detailed calculations.

B. Phase structure and effective vertices

Scattering amplitudes inN ¼ 4 and �-deformed super
Yang-Mills theories seem closely related when comparing
their Feynman rules. Indeed, only three specific four-scalar
and Yukawa interactions are modified, and this deforma-
tion introduces nothing but prefactors to the vertex rules.
Several comments are important in this connection.
The two theories have the same particle content and it is

easy to see that many amplitudes are actually identical. For
a �-deformed amplitude to agree with the corresponding
N ¼ 4 expression, the phases of the �-dependent vertices
should cancel each other, or such vertices should simply be
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absent in the diagram. Whole classes of amplitudes are
insensitive to the phase deformation, the most obvious
being all tree-level amplitudes with external gluons and
gluinos exclusively.

In general, amplitudes in the deformed theory are
�-dependent. The modifications however turn out to be
surprisingly uncomplicated. At first we realize that the origi-
nal and deformed theories are equivalent at tree-level, up to a
multiplicative prefactor. This conclusion follows from the
simplicity of the color-ordered Feynman vertices. But it can
be shown that the product of phase factors from the individual
vertices is independent of the internal structure of the dia-
gram. Suppose the arbitrary color-ordered tree-level ampli-
tude in consideration has any combination of n external fields
and label them �1;�2; . . . ;�n. Then the �-dependence of
this amplitude is entirely captured by Tr½�1 ?�2 ? � � � ?
�n�. Actually this statement applies not only to tree-level
amplitudes, but is guaranteed to hold to all orders in pertur-
bation theory in the planar limit. The claim has profound
consequences for our applications of �-deformed super
Yang-Mills theory. A proof based on effective vertices of
only external legs was provided in Ref. [18]. Shortly we
report a similar strategy for supervertices.

We end this section by deriving an expression for the
phase factor of any given n-point amplitude in terms of
only the Uð1Þ1 �Uð1Þ2 charges of the superfields corre-
sponding to the external legs. Upon invoking the definition
of the star product (27) we deduce the generalization
to n legs,

P�Rð�1;�2; . . . ;�nÞ

� Tr½�1 ?�2 ? � � � ?�n�
Tr½�1�2 � � ��n�

¼ Yn�1

i¼1

exp

�
i��R

Xn
j¼iþ1

ðQ½1�
�i
Q½2�

�j
�Q½2�

�i
Q½1�

�j
Þ
�
; (32)

using the rather self-explanatory notation with Q1
�i

and

Q2
�i

denoting the symmetry charges of the field �i. Finally

(32) may be recast perhaps more conveniently as

P�Rð�1;�2; . . . ;�nÞ¼ exp

�
i��R

X
i<j

ðQ½1�
�i
Q½2�

�j
�Q½2�

�i
Q½1�

�j
Þ
�
:

(33)

This result is essential for the rest of the paper.

V. GENERATING FUNCTIONS FROM
BILOCAL PHASE OPERATORS

Now that we have gained confidence with the basic
structure and interactions of �-deformed super Yang-
Mills theory, it is very natural to attempt to incorporate
all scattering amplitudes sectorwise into generating func-
tions instead of relying on traditional Feynman calcula-
tions. Thereby establishedN ¼ 4 superspace applications
such as intermediate state sums by Grassmann integration
become compatible with the �-deformed amplitudes.
We first identify particles inN ¼ 4 on-shell superspace

with the components of the N ¼ 1 vector and chiral
superfields. Recall that the sixteen physical states in the
N ¼ 4 supermultiplet can be realized as two gluons gþ
and gabcd� , four fermion pairs faþ and fabc� , plus six real,
self-dual scalars sab, all completely antisymmetric in the
displayed fundamental SUð4Þ indices. The gluons of
course belong to the vector multiplet, while the remaining
fermions and scalars of the theory can be chosen such
that [22]

ffaþ; fabc� ; si4; sijg $ f�a; �abcd ��d;

i; �ijk4 �
kg; (34)

for a, b, c ¼ 1, 2, 3, 4 and i, j, k ¼ 1, 2, 3.

A. MHV generating functions

We consider the MHV sector and derive an expression
for the n-point tree-level MHV generating function. With
that result at hand the MHV superamplitude will follow
immediately from the Fourier connection. Clearly, both
expressions should reduce to the original N ¼ 4 super-
amplitudes in the limit �R ! 0.
The upshot of the preceding section was that theN ¼ 4

and �-deformed theories have identical planar sectors up
to simple phase factors, which for any given amplitude to
all orders in perturbation theory are determined by the
configuration of its external legs and their Uð1Þ1 �Uð1Þ2
symmetry charges according to (33). The logical solution
is therefore to take the N ¼ 4 superamplitude and just
attach to each component the appropriate phase factor.
We remind ourselves that the N ¼ 4 MHV super-

amplitude reads

AMHV
n ¼ i

Q
4
a¼1

P
i<jhqiaqjaiQ

n
r¼1hrðrþ 1Þi ; (35)

and therefore the task concentrates on translating the indi-
vidual Grassmann signatures to �-dependent expressions.
We circumvent this obstacle by assigning Uð1Þ1 �Uð1Þ2
charges to the fermionic coordinates of the N ¼ 4

FIG. 1 (color online). The �-deformation adds overall phase
factors to the original vertex rules of the depicted four-scalar and
Yukawa couplings. We denote the three complex scalar field
components of the chiral superfields �i by 
i, while �i label
their fermionic superpartners. Notice that the ordering of the legs
is crucial.
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on-shell superspace instead of the superfields such that the
on-shell superspace version of the star product imitates the
star product defined inN ¼ 1 superspace. This solution is
closely related to the light cone superspace star product

introduced in Ref. [22]. We apply the usual charges Q½1�

and Q½2�, with opposite signs in the Fourier transformed

superspace. More precisely �ia carries charges Q½1�
a

and Q½2�
a .

The trick is now to construct a pair of differential
operators to decode the �-patterns and thereby count sym-
metry charges. Preferably the �-strings should be eigen-
states of these operators, and the symmetry charges the
corresponding eigenvalues. In order to achieve this we
introduce the operator

Q̂½1;2�
i � X4

a¼1

Q½1;2�
a �ia@ia; (36)

with the two explicit components

Q̂½1�
i ��i2@i2��i3@i3; Q̂½2�

i ��i2@i2��i1@i1; (37)

such that Q̂½1�
i and Q̂½2�

i measure the symmetry charges

Q½1�
i andQ½2�

i , respectively for leg i, and are by construction
Grassmann even. For instance the action on the Grassmann
combination corresponding to the negative helicity fer-

mion of the chiral superfield �3 is Q̂½1�
i ð�i1�i2�i4Þ ¼

�i1�i2�i4 and Q̂½2�
i ð�i1�i2�i4Þ ¼ 0 in agreement with

(29). It is easy to see that the mechanism works in general.
The vector multiplet in particular has vanishing charges as
it should.

Substituting Q̂½1�
i and Q̂½2�

i for the constant symmetry
charges in (33) yields the operator version of the phase
factor

P̂ �R
n � exp

�
i��R

X
p<q

ðQ̂½1�
p Q̂½2�

q � Q̂½2�
p Q̂½1�

q Þ
�
; (38)

which enables us to formally write the �-deformed MHV
superamplitude as

A�R;MHV
n ¼ exp

�
i��R

X
p<q

ðQ̂½1�
p Q̂½2�

q � Q̂½2�
p Q̂½1�

q Þ
�

AMHV
n ¼ i

Yn
r¼1

hrðrþ 1Þi�1

� exp

�
i��R

X
p<q

ðQ̂½1�
p Q̂½2�

q � Q̂½2�
p Q̂½1�

q Þ
�

� Y4
‘¼1

X
i<j

hiji�i‘�j‘: (39)

The �-deformed generating function has by construction

the desired property A�R;MHV
n ! AMHV

n in the limit
�R ! 0.

In order to streamline the notation we first introduce
an alternative version of the Kronecker delta function
defined by

	ifIg ¼
(
1 if i 2 I;

0 otherwise;
(40)

where for our purposes the set I should only contain unique
elements. Let us then turn to the evaluation of the action of
the symmetry charge operators on a generic string of
Grassmann variables present in the MHV superamplitude.
The vector multiplet sector commutes right through the
differentiation, while numerous Kronecker delta functions
are produced when hitting the �-variables pertinent to the
chiral multiplets. Keeping track of all possible combina-
tions we find

ðQ̂½1�
p Q̂½2�

q � Q̂½2�
p Q̂½1�

q ÞY4
‘¼1

�i‘‘�j‘‘

¼ ½ð	pfi2;j2g � 	pfi3;j3gÞð	qfi2;j2g � 	qfi1;j1gÞ

� ðp $ qÞ�Y4
‘¼1

�i‘‘�j‘‘: (41)

It immediately follows that 	pfi2;j2g	qfi2;j2g � ðp $ qÞ ¼ 0.

The phase factor therefore reduces slightly into

P�R;MHV
i1j1;i2j2;i3j3

� exp

�
i��R

X
p<q

½	qfi1;j1gð	pfi3;j3g � 	pfi2;j2gÞ

� 	qfi2;j2g	pfi3;j3g � ðp $ qÞ�
�
; (42)

such that the �-deformed MHV superamplitude becomes

A�R;MHV
n ¼ i

Yn
r¼1

hrðrþ 1Þi�1
X

fig<fjg
P�R;MHV

i1j1;i2j2;i3j3

� Y4
‘¼1

hqi‘‘qj‘‘i; (43)

with the shorthand notationX
fig<fjg

� X
i1<j1

� � � X
i4<j4

: (44)

The form of (43) coincides with our expectations. We
see that the three spin factors corresponding to the chiral
multiplets are now correlated through a phase matrix

P�;MHV
i1j1;i2j2;i3j3

while the original fourth SUð4Þ factor identi-
fied with the vector multiplet is left unchanged and can be
separated out. Hence, N ¼ 1 supersymmetry is manifest.
The result also reflects that alternatively we could have

considered a theory of the three chiral superfields with
the appropriate phase dependent interactions and then
have coupled the corresponding superspace structure to
the bare N ¼ 1 MHV superamplitude addressed in
Refs. [1,5,6]. However, the approach presented here more
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efficiently generalizes to superamplitudes beyond the
MHV sector.

B. Cyclicity and color reflection identities

Before we continue let us pause for a second and study
the phase operator defined on on-shell superamplitudes in
phase-deformed on-shell superspace. Formally, it is given
in terms of its Taylor series in the bilocal pure phase ’̂
such that

P̂ �R ¼ exp½i��R’̂�: (45)

The phase generator comes with canonical ordering of
the external legs. However, with the ðn� 1Þ! different
configurations introduced by color decomposition in
mind, it is necessary to define the operator for an arbitrary
permutation � of ð1; 2; . . . ; nÞ, i.e.,

P̂�R
� ¼ exp

�
i��R

X
p<q

ðQ̂½1�
�ðpÞQ̂

½2�
�ðqÞ �Q̂½2�

�ðpÞQ̂
½1�
�ðqÞÞ

�
: (46)

With this formulation the phase generator can be brought
to depend only on the positions of the particles in the cyclic
chain and is thus universal.

Amplitudes should have cyclic symmetry. We prove the
crucial property of cyclicity of phase operator itself. In
general, bilocal operators such as the phase generator map
cyclic functions to noncyclic functions. However, depend-
ing on the space upon which the operators act, the non-
cyclic remainder may be brought to vanish. The most
prominent example is the level-one Yangian generators.

It is straightforward to see thatX
1�p<q�n

ðQ̂½1�
p Q̂½2�

q � Q̂½2�
p Q̂½1�

q Þ

� X
2�p<q�1

ðQ̂½1�
p Q̂½2�

q � Q̂½2�
p Q̂½1�

q Þ

¼ 2
Xn
p¼1

ðQ̂½1�
1 Q̂½2�

p � Q̂½2�
1 Q̂½1�

p Þ; (47)

where the two indicated configurations 1; 2; . . . ; n and
2; 3; . . . ; n; 1 differ by a cyclic transformation. The on-shell
amplitudes are neutral with respect to the flavor symmetry,
which means that

Xn
p¼1

Q̂½1�
p A�R

n ¼ Xn
p¼1

Q̂½2�
p A�R

n ¼ 0: (48)

Therefore the restriction of the phase factor difference (47)
to this space vanishes. Moreover, the remainder term
at arbitrary order in the deformation parameter is bound
to annihilate the amplitudes. We thus conclude that
’̂ð1; 2; . . . ; nÞ ¼ ’̂ð2; 3; . . . ; n; 1Þ and

A �R
n ð1; 2; . . . ; nÞ ¼ A�R

n ð2; 3; . . . ; n; 1Þ: (49)

Let us next consider the phase-deformed color reflection
identity. It is easy to realize that reversal of the order of the
external legs inverts the phase,

’̂ð1; 2; . . . ; nÞ ¼ �’̂ðn; n� 1; . . . ; 1Þ: (50)

Remembering that inversion of undeformed amplitudes
introduces a factor of ð�1Þn we thus realize that the
phase-deformed analogue has to be phase dressed.
Alternatively, we can compensate for the transformation
of the phase via the deformation parameter,

A�R
n ð1; 2; . . . ; nÞ ¼ ð�1ÞnAð��RÞ

n ðn; n� 1; . . . ; 1Þ: (51)

C. Components of the MHV sector

We calculate a number of phase factors using (42) to
obtain explicitly some of the components of the
�-deformed MHV generating function. Our results agree
with the phase structure obtained via the usual star product
defined for N ¼ 1 superfields. The relevant phase matrix
indices for the amplitudes written below are 24; 14; 23, 13;
12; 12, 34; 14; 13, 34; 13; 14, 16; 35; 56 and 16; 56; 35,
respectively,

A�R;MHV
4 ð1s24 ; 2s13 ; 3s34 ; 4s12Þ ¼ i

hq21q41ihq12q42ihq23q33ihq14q34iQ
4
r¼1hrðrþ 1Þi ;

A�R;MHV
4 ð1�

g1234
; 2�

f234
; 3þ

f1
; 4þg Þ ¼ i

hq11q31ihq12q22ihq13q23ihq14q24iQ
4
r¼1hrðrþ 1Þi ;

A�R;MHV
5 ð1�

f234
; 2þg ; 3�f134 ; 4s12 ; 5

þ
g Þ ¼ ieþi��R

hq31q41ihq12q42ihq13q33ihq14q34iQ
5
r¼1hrðrþ 1Þi ;

A�R;MHV
5 ð1�

f234
; 2þg ; 3�f124 ; 4s13 ; 5

þ
g Þ ¼ ie�i��R

hq31q41ihq12q32ihq13q43ihq14q34iQ5
r¼1hrðrþ 1Þi ;

A�R;MHV
6 ð1s14 ; 2þg ; 3s24 ; 4þg ; 5s23 ; 6s13Þ ¼ ieþ2i��R

hq11q61ihq32q52ihq53q63ihq14q34iQ
6
r¼1hrðrþ 1Þi ;

A�R;MHV
6 ð1s14 ; 2þg ; 3s34 ; 4þg ; 5s23 ; 6s12Þ ¼ ie�2i��R

hq11q61ihq52q62ihq33q53ihq14q34iQ
6
r¼1hrðrþ 1Þi :
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D. All googly-MHV tree amplitudes

The�-deformed MHV superamplitude allows an almost
trivial continuation to theMHV superspace. It just amounts
figuring out an expression for the phase factors. But
because the signs of all Uð1Þ1 �Uð1Þ2 charges just get
flipped, and thus cancel in (33), the phase factors of the two
sectors are identical in form,

P �R;MHV
i1j1;i2j2;i3j3

¼ P�R;MHV
i0
1
j0
1
;i0
2
j0
2
;i0
3
j0
3
: (52)

Completely analogous to (43), implementation of the

phase factor matrix P�R;MHV
i1j1;i2j2;i3j3

in the original N ¼ 4

MHV superamplitude (14) therefore yields the
�-deformed MHV generating function

A�R;MHV
n ¼ ið�1Þn Yn

r¼1

½rðrþ 1Þ��1

� X
fig<fjg

P�R;MHV
i1j1;i2j2;i3j3

Y4
‘¼1

½~q‘i‘ ~q‘j‘�; (53)

or, alternatively using the Grassmann Fourier transform, in
holomorphic superspace,

A�R;MHV
n ð�; ~�;�Þ¼ ið�1ÞnYn

r¼1

½rðrþ1Þ��1
X

fig<fjg
P�R;MHV

i1j1;i2j2;i3j3

�Y4
‘¼1

En;‘ði‘;j‘Þ½i‘j‘�; (54)

for En;‘ defined by

E n;‘ði;jÞ� 1

ðn�2Þ!
X

k1;k2;...;kn�2

�ijk1k2���kn�2�k1‘�k2‘ ����kn�2‘:

(55)

VI. VERTEX EXPANSIONS, RECURSION
RELATIONS AND ALL SECTORS

Any pattern of Grassmann superspace variables may be
mapped to a definite phase factor, allowing easy extension
to non-MHV amplitudes. Consider in full generality the
N ¼ 4 NKMHV tree-level superamplitude, denoted

ANKMHV
n as usual. In this formal development the precise

expression for this superamplitude is not important. Upon

application of the phase factor operator (38) to ANKMHV
n

the �-deformed NKMHV superamplitude can be reached
in the form

A�R;N
KMHV

n � P̂�R
n ANKMHV

n

¼ exp

�
i��R

X
p<q

ðQ̂½1�
p Q̂½2�

q � Q̂½2�
p Q̂½1�

q Þ
�

�ANKMHV
n : (56)

The NKMHV superamplitude has Grassmann degree
8þ 4K and each component thus carries a Grassmann
string with ð2þ KÞ � 4 distinct indices. The general phase
matrix therefore has ð2þ KÞ � 3 labels, but the form is
completely similar to (42). The sets associated with the
Kronecker delta functions will just have 2þ K unique
elements each.

A. The CSW superrules

To be more specific we will establish the MHV vertex
expansion of Cachazo, Svrcek and Witten (CSW). Our
proof is the generating function analogue of Ref. [18],
now formulated in terms of bilocal operators. The impor-
tant point is that neutrality of all vertices implies neutrality
of any amplitude.
Let us quickly refresh our memory of the CSW rules for

constructing theNKMHV generating tree. The procedure is
to draw all tree graphs with (K þ 1) vertices, distribute n
color-ordered legs, to each of the vertices associate a MHV
superamplitude and finally connect them by a scalar
Feynman propagator and for consistency equate the
Grassmann coordinates on both ends of the internal lines
between them. It is now rather elementary to extract all
contributions within a particular topology usingGrassmann
integration over the K internal lines. The MHV superrules
therefore translate into

ANKMHV
n ¼ iK

X
all graphs

Z �YK
i¼1

d4�i

P2
i

�

�AMHV
ð1Þ AMHV

ð2Þ � � �AMHV
ðIÞ AMHV

ðKþ1Þ; (57)

where the discrete sum over all graphs incorporates inequi-
valent topologies. Although suppressed here it is important
to realize that Pi is an off-shell momentum. However, in
order to have a well-defined product of on-shell trees, the
momenta that enters the (K þ 1) superamplitudes must be
null-projections constructed from the corresponding off-
shell momenta using an arbitrary null-reference vector.
It suffices to consider the NMHV case to exhaust the

general factorization pattern. By cyclicity of the N ¼ 4
superamplitudes we can without loss of generality arrange
their internal legs alternating first and last. Thus the lines
of the two supertrees can be labeled 1; 2; . . . ; k and
k; kþ 1; . . . ; n, respectively. The sum of the associated
phases is

’̂ð1Þþ ’̂ð2Þ ¼
Xk�1

p¼1

Xk
q¼pþ1

�
Q̂½1�

p Q̂½2�
q �Q̂½2�

p Q̂½1�
q

�

þXn�1

p¼k

Xn
q¼pþ1

�
Q̂½1�

p Q̂½2�
q �Q̂½2�

p Q̂½1�
q

�
: (58)

We relate this expression to the phase of the full tree, e.g.,
legs 1; 2; . . . ; k� 1; kþ 1; . . . ; n, and observe that
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’̂ ð1Þ þ ’̂ð2Þ ¼ ’̂ð1þ2Þ �
Xk�1

p¼1

Xn
q¼kþ1

ðQ̂½1�
p Q̂½2�

q � Q̂½2�
p Q̂½1�

q Þ:

(59)

By flavor charge conservation at each MHV supertree the
displayed double sum annihilates the expanded tree, and it
can thus be discarded,

Xk�1

p¼1

Xn
q¼kþ1

ðQ̂½1�
p Q̂½2�

q �Q̂½2�
p Q̂½1�

q ÞAMHV
ð1Þ AMHV

ð2Þ ¼0: (60)

The generalization to K > 1 is straightforward by repeti-
tion of the argument. It follows that the phase factor
respects the vertex expansion

P̂ �R ¼ Y
superverticesI

P̂�R

ðIÞ : (61)

We therefore have the �-deformed MHV vertex expansion

A�R;N
KMHV

n ¼iK
X

allgraphs

Z �YK
i¼1

d4�i

P2
i

�

�A�R;MHV
ð1Þ A�R;MHV

ð2Þ ���A�R;MHV
ðKÞ A�R;MHV

ðKþ1Þ :

(62)

Interestingly, this result allows us to circumvent any
non-MHVamplitude deformation calculation by multiply-
ing together simpler MHV phase factors. What is more, a
complete set of four distinct Grassmann variables is also
chargeless, which potentially reduces the extent of nested-
ness even further.

Moreover, as a passing remark we note that the deriva-
tions presented here also ensure validity of the phase-
dressed super BCFW on-shell recursion relations,

A �R ¼ X
Pi

Z d4�Pi

ð2�Þ4 A
�R

L ðzPi
Þ i

P2
i

A�R

R ðzPi
Þ: (63)

B. All NMHV tree amplitudes

To expose the general pattern and keep tediousness to a
minimal extent, we resort to the simplest case beyond
MHV level, namely the NMHV sector, calculate the phase
factor explicitly and construct the �-deformed generating
function. The N ¼ 4 NMHV superamplitude depends on
the Grassmann object Rn;st (20) and is given by the com-

pact expression

A NMHV
n ¼ i

Yn
r¼1

hrðrþ 1Þi�1

� Y4
a¼1

X
i<j

hiji�ia�ja

X
1<s<t<n

Rn;st: (64)

Combination of the two Grassmann sums that appear in
Rn;st using s < t yields

ANMHV
n ¼ i

Yn
r¼1

hrðrþ1Þi�1
Y4
a¼1

Xn
i<j

Xn�1

k¼s

hiji

�hnjxntxtsþ
ðt�sÞxnsxstjki�ia�ja�ka; (65)

with 
ðxÞ denoting the Heaviside step function with the
convention 
ðx ¼ 0Þ ¼ 1. In order to maintain a hygienic
labeling scheme we split each of the displayed summation
indices into four, indicated by a subscript following the
flavor andR-symmetry index. The NMHV phase factor can
now either be derived by again acting with the phase
operator, or preferably inferred from the result for the
MHV superamplitude. We immediately obtain

P�R;NMHV
i1j1k1;i2j2k2;i3j3k3

� exp

�
i��R

X
p<q

½	qfi1;j1;k1gð	pfi3;j3;k3g � 	pfi2;j2;k2gÞ

� 	qfi2;j2;k2g	pfi3;j3;k3g � ðp $ qÞ�
�
: (66)

Before the phase factor is plugged back into the ampli-
tude a slightly compressed notation is prepared. We take
Rn;st and strip off the Grassmann delta function to get

R n;st ¼ hsðs� 1Þihtðt� 1Þi
x2sthnjxnsxstjtihnjxnsxstjt� 1ihnjxntxtsjsihnjxntxtsjs� 1i ; (67)

such that Rn;st ¼ Rn;st	
ð4Þð�n;stÞ. Furthermore we introduce the chiral spinor

h�n;stj ¼ hnjxntxts þ 
ðt� sÞhnjxnsxst: (68)

Our expression for the �-deformed NMHV generating tree is thus

A �R;NMHV
n ¼ i

Yn
r¼1

hrðrþ 1Þi�1
X

1<s<t<n

Rn;st

Xn
fig<fjg

Xn�1

fkg¼s

P�R;NMHV
i1j1k1;i2j2k2;i3j3k3

Y4
‘¼1

hqi‘‘qj‘‘ih�n;stk‘i�k‘‘; (69)

where the sums expand in the obvious ways
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X
fig<fjg

� X
i1<j1

� � � X
i4<j4

;
X
fkg¼s

� X
k1¼s

� � � X
k4¼s

: (70)

This formula completes our analysis at tree level.

VII. APPLICATIONS TO MULTILOOP
UNITARITY CUTS

In the following we will look at the general structure of
supersymmetric sums in multiloop unitarity cuts, which
break up phase-deformed loop amplitudes into products of
tree amplitudes. Such cuts are optimal to work with instead
of using lower-loop amplitudes in the construction, be-
cause the fully developed tree-level formalism is recycled.

We first specialize to plain N ¼ 4 theory.
Schematically we are interested in performing the inter-
mediate state sum,

X
states

Atree
ð1Þ A

tree
ð2Þ � � �Atree

ðmÞ ; (71)

for each cut leg. Within the superspace setup this summa-
tion is rendered very elegantly using Grassmann integra-
tion over the �-variables associated with the internal lines.
Let us be a bit more specific and assume that the tree-level
amplitudes are represented by the superamplitudes Atree

ðmÞ
which are connected by k on-shell propagators. All pos-
sible internal and external particle configurations are then
encoded in the supercut

CN¼4 ¼
Z �Yk

i¼1

d4�i

�
Atree

ð1Þ A
tree
ð2Þ � � �Atree

ðmÞ : (72)

Without loss of generality the m superamplitudes can be
assumed to be either of MHV or MHV type. This is of
course trivially justified if all tree-level amplitudes in the
supercut have at most five legs. In more complicated
situations where this is not the case, the MHV vertex
expansion applies to reduce non-MHV parts to products
of MHV superamplitudes with additional propagators.
Hence, we only have to consider supercuts of the form

CN¼4 ¼
Z �Yk

i¼1

d4�i

�

�AMHV
ð1Þ � � �AMHV

ðm0Þ Â
MHV
ðm0þ1Þ � � �ÂMHV

ðnÞ ; (73)

with m0 and n�m0 MHV and MHV supertrees, respec-
tively. Here, MHV superamplitudes have been Fourier
transformed from tilded superspace to the �-coordinates.

Let us now switch on the deformation. All ingredients
are at hand. We exploit that we can attach a subphase to
each supertree I and derive the deformed supercut

C�R ¼
Z �Yk

i¼1

d4�i

��Y
I

P̂�R

ðIÞ

�

�AMHV
ð1Þ ���AMHV

ðm0Þ A
MHV
ðm0þ1Þ ���AMHV

ðnÞ

¼
Z �Yk

i¼1

d4�i

�

�A�R;MHV
ð1Þ ���A�R;MHV

ðm0Þ A�R;MHV
ðm0þ1Þ ���A�R;MHV

ðnÞ :

(74)

Of course, for planar graphs the phases combine and
reproduce the tree-level result determined by the external
legs. But the deformed supercut provides rich information
about nonplanar diagrams which will differ substantially
from the large-Nc limit. Beautiful algebraic and graphical
methods for evaluating such supersums were reported in
Ref. [1]. These techniques rely merely on the Grassmann
structure of the amplitudes and are hence directly compat-
ible with our results. The reader is encouraged to also
consult [35].

VIII. A PHASE REPRESENTATION OF THE
SUPERCONFORMAL ALGEBRA

The remarkable properties of amplitudes in conformal
deformations of N ¼ 4 super Yang-Mills theory with
minimal or no supersymmetry suggest that neither the
ordinary or dual representations of the superconformal
algebras are really natural frameworks for discussing their
symmetries. In the following we therefore propose a novel
phase representation of the psuð2; 2j4Þ algebra.1 We draw
attention to Refs. [11,36,37] for thorough treatments of
superconformal and Yangian symmetry.
Let J be any standard N ¼ 4 superconformal symme-

try generator, i.e., take

J 2 fp� _�; q�a; �q _�
A;m��; �m _� _�; r

a
b; d; s

�
a ; �s

_�a; k� _�g: (75)

We can very intuitively apply a similarity transformation to
obtain a representation that manifestly annihilates the
phase-deformed superamplitudes. Indeed, we can formally
remove the phase, apply the ordinary symmetry generator
and then reinsert the deformation. On the space of ampli-
tudes the phase generator has a perfectly well-defined and
very simple inverse given by

ðP̂�RÞ�1¼ exp

�
�i��R

X
p<q

ðQ̂½1�
p Q̂½2�

q �Q̂½2�
p Q̂½1�

q Þ
�
: (76)

Our phase representation is therefore

J �R ¼ P�RJ ðP�RÞ�1: (77)

1This section originates from enlightening discussions with
Florian Loebbert, whom it is a pleasure to thank accordingly.
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The transformed operators trivially satisfy the correct
commutator and anticommutator relations of the N ¼ 4
superconformal algebra by construction, irrespective of
½J ;P � being nonzero. Moreover, if J is a symmetry of
An, that is JAn ¼ 0, then

J �RA�R
n ¼ 0: (78)

In words, the deformed generating trees are manifestly
annihilated by all psuð2; 2j4Þ generators in this phase
representation. What is more, we can also apply the trans-
formation to level-one generators and hence lift the
psuð2; 2j4Þ symmetry algebra to a Yangian realized on
the deformed amplitudes. Our discussion thus suggests
that all intrinsic properties of planar N ¼ 4 super Yang-
Mills theory are preserved by the phase deformation.

IX. AMPLITUDES IN THE �-DEFORMATION

We emphasize that our formalism extends almost effort-
lessly to the �-deformation, of which the �-deformation
is actually a more frequently studied special case. It is
also conformally invariant at the quantum level in
the planar approximation and can be defined analo-
gously [23,29].

Indeed, the �-deformation is generated by promoting
ordinary products in the N ¼ 4 Lagrangian to star prod-
ucts adjusted with phases which now break the SUð4ÞR
R-symmetry to its Cartan subgroup, which is a Uð1Þ1 �
Uð1Þ2 �Uð1Þ3 flavor symmetry of the resulting theory.
Customarily the star product between superfields �
and �0 is

f ? g ¼ expði��i�
ijkqfj q

g
kÞ; (79)

for some basis q1, q2, q3. More practically to us though, the
phases can equivalently be parametrized by four-

component charges U½1�
a and U½2�

a subject only to trace-
lessness conditions assuming that all N ¼ 1 multiplets
are charged under the flavor symmetry. The number of
independent parameters is thus three since the charges
enter the star product antisymmetrically. On the other

hand, if the vector multiplet is neutral, U½1�
4 ¼ U½2�

4 ¼ 0,
we recover the one-parameter �-deformation.

Conservation of charge under each symmetry again
implies absence of phase contributions from internal

structure to all orders in planar perturbation theory. It is
now trivial to write down the appropriate phase generator

P̂ � � exp

�
i��R

X
p<q

ðÛ½1�
p Û½2�

q � Û½2�
p Û½1�

q Þ
�
; (80)

with charge counting operators defined in on-shell super-
space in the usual way. The extracted parameter �R is a
reminiscence of the �-deformation and should just be
considered a fixed common constant of proportionality.
We can now easily derive all tree-level amplitudes, super
vertex expansions, multiloop unitarity cuts and so forth.
In other words, everything we have said about the
�-deformation is compatible with the �-deformation.

X. SUMMARYAND OUTLOOK

In this paper we have investigated the perturbative
regime of �-deformed super Yang-Mills theory using
on-shell methods. We have explicitly written all MHV
and NMHV tree-level scattering amplitudes in terms of
new generating functions and proven generalization to
arbitrary particle and helicity configurations via the
MHV vertex expansion. Our results have been obtained
by implementation of a phase matrix in the N ¼ 4 super-
amplitudes, derived from their Grassmann structure using a
sector-independent operator. Several component ampli-
tudes were given as examples.
All generating trees are manifestly N ¼ 1 supersym-

metric and reduce to the usual maximally supersymmetric
expressions when the deformation is removed. However,
we transformed the N ¼ 4 superconformal generators in
on-shell superspace and uncovered a phase dependent
representation that annihilates the deformed amplitudes.
In this implementation, all symmetries exhibited by the
N ¼ 4 amplitudes survive the deformation.
We finally set the stage for automated computation of

intermediate state sums in connection with multiloop uni-
tarity cuts of nonplanar amplitudes in both the �- and
�-deformation. Applications of generating functions in
this direction seem especially promising for providing
further novel insight.

ACKNOWLEDGMENTS

The author is grateful to Florian Loebbert, Poul Henrik
Damgaard and Emil Bjerrum-Bohr for many helpful
discussions.

[1] Z. Bern, J. J.M. Carrasco, H. Ita, H. Johansson, and R.

Roiban, Phys. Rev. D 80, 065029 (2009).
[2] M. Bianchi, H. Elvang, and D. Z. Freedman, J. High

Energy Phys. 09 (2008), 063.

[3] H. Elvang, D. Z. Freedman, and M. Kiermaier, J. High

Energy Phys. 04 (2009), 009.
[4] N. Arkani-Hamed, F. Cachazo, and J. Kaplan, J. High

Energy Phys. 09 (2010), 016.

BILOCAL PHASE OPERATORS IN �-DEFORMED . . . PHYSICAL REVIEW D 86, 085016 (2012)

085016-11

http://dx.doi.org/10.1103/PhysRevD.80.065029
http://dx.doi.org/10.1088/1126-6708/2008/09/063
http://dx.doi.org/10.1088/1126-6708/2008/09/063
http://dx.doi.org/10.1088/1126-6708/2009/04/009
http://dx.doi.org/10.1088/1126-6708/2009/04/009
http://dx.doi.org/10.1007/JHEP09(2010)016
http://dx.doi.org/10.1007/JHEP09(2010)016


[5] H. Elvang, Y. t. Huang, C. Peng, Y. t. Huang, and C. Peng,
J. High Energy Phys. 09 (2011), 031.

[6] M. Sogaard, Phys. Rev. D 84, 065011 (2011).
[7] A. Brandhuber, P. Heslop, and G. Travaglini, Phys. Rev. D

78, 125005 (2008).
[8] J.M. Drummond, J. Henn, G. P. Korchemsky, and

E. Sokatchev, arXiv:0808.0491.
[9] J.M. Drummond, J. Henn, G. P. Korchemsky, and

E. Sokatchev, Nucl. Phys. B828, 317 (2010).
[10] J.M. Drummond and J.M. Henn, J. High Energy Phys. 04

(2009), 018.
[11] J.M. Drummond, J.M. Henn, and J. Plefka, J. High

Energy Phys. 05 (2009), 046.
[12] G. Georgiou, E.W.N. Glover, and V.V. Khoze, J. High

Energy Phys. 07 (2004), 048; Y. t. Huang, Phys. Lett. B
631, 177 (2005); H. Feng and Y. t. Huang, J. High Energy
Phys. 04 (2009), 047.

[13] H. Elvang, D. Z. Freedman, and M. Kiermaier, J. High
Energy Phys. 06 (2009), 068.

[14] R. Britto, F. Cachazo, and B. Feng, Nucl. Phys. B715, 499
(2005).

[15] R. Britto, F. Cachazo, B. Feng, and E. Witten, Phys. Rev.
Lett. 94, 181602 (2005).

[16] S. Lal and S. Raju, Phys. Rev. D 81, 105002 (2010).
[17] R. G. Leigh and M. J. Strassler, Nucl. Phys. B447, 95

(1995).
[18] V. V. Khoze, J. High Energy Phys. 02 (2006), 040.
[19] T. Mansson and K. Zoubos, J. High Energy Phys. 10

(2010), 043.
[20] A. Mauri, S. Penati, A. Santambrogio, and D. Zanon,

J. High Energy Phys. 11 (2005), 024.

[21] O. Lunin and J.M. Maldacena, J. High Energy Phys. 05
(2005), 033.

[22] S. Ananth, S. Kovacs, and H. Shimada, J. High Energy
Phys. 01 (2007), 046.

[23] S. Ananth, S. Kovacs, and H. Shimada, Nucl. Phys. B783,
227 (2007).

[24] F. Elmetti, A. Mauri, S. Penati, and A. Santambrogio,
J. High Energy Phys. 01 (2007), 026.

[25] F. Elmetti, A. Mauri, S. Penati, A. Santambrogio, and
D. Zanon, J. High Energy Phys. 10 (2007), 102.

[26] D. I. Kazakov and L.V. Bork, J. High Energy Phys. 08
(2007), 071.

[27] J. N. Ihry, J. High Energy Phys. 04 (2008), 051.
[28] L. V. Bork, D. I. Kazakov, G. S. Vartanov, and A.V.

Zhiboedov, J. High Energy Phys. 04 (2008), 003.
[29] Y. Oz, S. Theisen, and S. Yankielowicz, Phys. Lett. B 662,

297 (2008).
[30] F. Fiamberti, A. Santambrogio, and C. Sieg,

arXiv:1006.3475.
[31] K. Madhu and S. Govindarajan, J. High Energy Phys. 05

(2007), 038.
[32] M. Kulaxizi, arXiv:hep-th/0612160.
[33] D. Bundzik, J. High Energy Phys. 04 (2007), 035.
[34] S. J. Gates, M. T. Grisaru, M. Rocek, and W. Siegel, Front.

Phys. 58, 1 (1983).
[35] Q. Jin and R. Roiban, J. Phys. A 45, 295401

(2012).
[36] T. Bargheer, N. Beisert, and F. Loebbert, J. Phys. A 44,

454012 (2011).
[37] T. Bargheer, N. Beisert, W. Galleas, F. Loebbert, and

T. McLoughlin, J. High Energy Phys. 11 (2009), 056.

MADS SØGAARD PHYSICAL REVIEW D 86, 085016 (2012)

085016-12

http://dx.doi.org/10.1007/JHEP09(2011)031
http://dx.doi.org/10.1103/PhysRevD.84.065011
http://dx.doi.org/10.1103/PhysRevD.78.125005
http://dx.doi.org/10.1103/PhysRevD.78.125005
http://arXiv.org/abs/0808.0491
http://dx.doi.org/10.1016/j.nuclphysb.2009.11.022
http://dx.doi.org/10.1088/1126-6708/2009/04/018
http://dx.doi.org/10.1088/1126-6708/2009/04/018
http://dx.doi.org/10.1088/1126-6708/2009/05/046
http://dx.doi.org/10.1088/1126-6708/2009/05/046
http://dx.doi.org/10.1088/1126-6708/2004/07/048
http://dx.doi.org/10.1088/1126-6708/2004/07/048
http://dx.doi.org/10.1016/j.physletb.2005.10.012
http://dx.doi.org/10.1016/j.physletb.2005.10.012
http://dx.doi.org/10.1088/1126-6708/2009/04/047
http://dx.doi.org/10.1088/1126-6708/2009/04/047
http://dx.doi.org/10.1088/1126-6708/2009/06/068
http://dx.doi.org/10.1088/1126-6708/2009/06/068
http://dx.doi.org/10.1016/j.nuclphysb.2005.02.030
http://dx.doi.org/10.1016/j.nuclphysb.2005.02.030
http://dx.doi.org/10.1103/PhysRevLett.94.181602
http://dx.doi.org/10.1103/PhysRevLett.94.181602
http://dx.doi.org/10.1103/PhysRevD.81.105002
http://dx.doi.org/10.1016/0550-3213(95)00261-P
http://dx.doi.org/10.1016/0550-3213(95)00261-P
http://dx.doi.org/10.1088/1126-6708/2006/02/040
http://dx.doi.org/10.1007/JHEP10(2010)043
http://dx.doi.org/10.1007/JHEP10(2010)043
http://dx.doi.org/10.1088/1126-6708/2005/11/024
http://dx.doi.org/10.1088/1126-6708/2005/05/033
http://dx.doi.org/10.1088/1126-6708/2005/05/033
http://dx.doi.org/10.1088/1126-6708/2007/01/046
http://dx.doi.org/10.1088/1126-6708/2007/01/046
http://dx.doi.org/10.1016/j.nuclphysb.2007.04.005
http://dx.doi.org/10.1016/j.nuclphysb.2007.04.005
http://dx.doi.org/10.1088/1126-6708/2007/01/026
http://dx.doi.org/10.1088/1126-6708/2007/10/102
http://dx.doi.org/10.1088/1126-6708/2007/08/071
http://dx.doi.org/10.1088/1126-6708/2007/08/071
http://dx.doi.org/10.1088/1126-6708/2008/04/051
http://dx.doi.org/10.1088/1126-6708/2008/04/003
http://dx.doi.org/10.1016/j.physletb.2008.03.019
http://dx.doi.org/10.1016/j.physletb.2008.03.019
http://arXiv.org/abs/1006.3475
http://dx.doi.org/10.1088/1126-6708/2007/05/038
http://dx.doi.org/10.1088/1126-6708/2007/05/038
http://arXiv.org/abs/hep-th/0612160
http://dx.doi.org/10.1088/1126-6708/2007/04/035
http://dx.doi.org/10.1088/1751-8113/45/29/295401
http://dx.doi.org/10.1088/1751-8113/45/29/295401
http://dx.doi.org/10.1088/1751-8113/44/45/454012
http://dx.doi.org/10.1088/1751-8113/44/45/454012
http://dx.doi.org/10.1088/1126-6708/2009/11/056

