
Self-dual soliton solution in a generalized Jackiw-Pi model

Lucas Sourrouille*

Universidad Nacional Arturo Jauretche, Florencio Varela, Buenos Aires 1888, Argentina
(Received 31 July 2012; published 8 October 2012)

We consider a generalization of the Jackiw-Pi model by introducing a nonstandard kinetic term. We

present a Bogomolnyi framework for this theory and as a particular case we show that the Bogomolnyi

equations of Chern-Simons Higgs theory can be obtained. Finally, the dimensionally reduced theory is

analyzed and novel solitonic equations emerge.
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I. INTRODUCTION

The two-dimensional matter field interacting with gauge
fields whose dynamics is governed by a Chern-Simons
term support soliton solutions [1,2]. These models have
the particularity to become auto-dual when the self-
interactions are suitably chosen [3,4]. When this occurs,
the model presents particular mathematical and physics
properties, such as the supersymmetric extension of the
model [5], and the reduction of the motion equation to first
order derivative equation [6]. The Chern-Simons gauge
field inherits its dynamics from the matter fields to which
it is coupled, so it may be either relativistic [3] or non-
relativistic [4]. In addition, the soliton solutions are of
topological and nontopological nature [7].

In recent years, theories with nonstandard kinetic term,
named k-field models, have received much attention. The
k-field models are mainly in connection with effective
cosmological models [8,9] as well as the strong interaction
physics, strong gravitational waves [10] and dark matter
[11]. One interesting aspect to analyze in these models
concern its topological structure. In this context several
studies have been conducted, showing that the k-theories
can support topological soliton solutions both in models of
matter and in gauged models [12,13]. These solitons have
certain features, such as their characteristic size, which are
not necessarily those of the standard models [14]. Other
interesting aspects are that they do not interact at large
distances and they are, in general, not self-dual.

In this paper, we are interested in studying the Jackiw-Pi
model with generalized dynamics. The so call Jackiw-Pi
model is a nonrelativistic and Galilean invariant model
which is also self-dual [4]. Here, we will show that intro-
ducing nonstandard dynamics in the Jackiw-Pi Lagrangian,
via a function ! depending on the Higgs field, we can
obtain self-dual or Bogomolnyi equations by minimizing
the energy functional of the model. As a particular case, we
will show that choosing a suitable !, the Bogomolnyi
equations of Chern-Simons Higgs theory can be obtained.
Finally, we will study the dimensional reduction of the

model to (1þ 1)-dimensions and we will arrive to the
existence of interesting soliton solutions in the system.

II. THE MODEL

Let us start by considering the model proposed by
Jackiw and Pi [4]:

S ¼
Z

d3x

�
�

2
����A�@�A� þ i��D0�

� 1

2m
jDi�j2 þ �j�j4

�
: (1)

This is a nonrelativistic model where the gauge fields
dynamic is dictated by a Chern-Simons term and matter
is represented by scalar field�ðxÞ. The covariant derivative
is defined as D� ¼ @� þ ieA� (� ¼ 0, 1, 2). The metric

tensor is g�� ¼ ð1;�1;�1Þ and ���� is the totally anti-
symmetric tensor such that �012 ¼ 1.
The field equations corresponding to this action are

iD0� ¼ � 1

2m
D2

i �� 2�j�j2�

B ¼ e

�
� Ei ¼ � 1

�
�ijji; (2)

where � ¼ j�j2 and ji ¼ � i
2m ð��Di�� ðDi�Þ��Þ. The

second of these equations is the Chern-Simons Gauss law
which can be integrated, over the entire plane, to obtain the
important consequence that any object with charge Q ¼
e
R
d2x� also carries magnetic flux � ¼ R

Bd2x [15]:

� ¼ 1

�
Q: (3)

Here, we are interested in time-independent soliton so-
lutions that ensure the finiteness of the action (1). These are
the stationary points of the energy which for the static field
configuration reads

E ¼
Z

d2x

�
1

2m
jDi�j2 � �j�j4

�
: (4)

In order to find the minimum of the energy, the expression
(4) can be rewritten as*sourron@sf.uba.ar
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E ¼
Z

d3x

�
1

2m
jD��j2 þ

�
��� e2

2m�

�
j�j4

�
; (5)

where we have used the Chern-Simons Gauss law and the
identity

jDi�j2 ¼ jðD1 � iD2Þ�j2 � eBj�j2 �m�ij@iJj: (6)

Thus, with the self-dual coupling

� ¼ � e2

2m�
; (7)

and sufficiently well-behaved fields so that the integral
over all space of �ij@iJj vanishes, the energy becomes

E ¼
Z

d3x
1

2m
jD��j2: (8)

Thus, the energy is bounded below by zero, and this lower
bound is saturated by fields obeying the first order self-
duality equations

ðD1 � iD2Þ� ¼ 0 B ¼ e

�
�: (9)

Following the same idea of the works cited in Ref. [12],
we will consider here a generalization of the Jackiw-Pi
model described by the action

S ¼
Z

d3x

�
�

2
����A�@�A� þ i!ð�Þ��D0�

� 1

2m
jDi�j2 � Vð�Þ

�
; (10)

where we have replaced the usual kinetic term i��D0� by
a more generalized term i!ð�Þ��D0�. Here, !ð�Þ is, in
principle, an arbitrary function of the complex scalar
field � and Vð�Þ is the scalar field potential to be deter-
mined below.

The equations of motion for this system are given by

i

�
@!ð�Þ
@�� ��D0�þ!ð�ÞD0�

�
¼ � 1

2m
D2

i �þ @Vð�Þ
@��

B ¼ e

�
!ð�Þ� Ei ¼ � 1

�
�ijji;

(11)

where the two first equations differ from those present in
Eq. (2) by the presence of the function !ð�Þ.

The theory may be descried in terms of the Hamiltonian
formulation as

H ¼
Z

d2x

�
1

2m
jDi�j2 þ Vð�Þ

�
; (12)

which may be rewritten using the Gauss Law and the
identity (6) in the form

E ¼
Z

d3x

�
1

2m
jD��j2 � e2

2m�
!ð�Þ�2 þ Vð�Þ

�
: (13)

In order to relate the solutions in this theory with those
present in the Chern-Simons Higgs theory, we may choose,
as a particular case, the following !ð�Þ function

!ð�Þ ¼ 2m
e2

�
ð�� 1Þ: (14)

Then, the energy functional (13) is written as

E ¼
Z

d3x

�
1

2m
jD��j2 � e4

�2
�2ð�� 1Þ þ Vð�Þ

�
; (15)

and the Gauss law of the equation (11) takes the form

B ¼ 2m
e3

�2
ð�� 1Þ�: (16)

The form of the potential Vð�Þ that we choose is motivated
by the desire to find the self-dual soliton solution. Thus, if
we choose the potential as

Vð�Þ ¼ � e4

�2
�ð�� 1Þ2; (17)

and replace it in the expression (15), we arrive at the
following expression of the energy functional:

E ¼
Z

d3x

�
1

2m
jD��j2 � e

2m
B

�
; (18)

which is bounded below by a multiple of the magnitude of
the magnetic flux (for positive flux we choose the lower
signs, and for negative flux we choose the upper signs):

E � e

2m
j�j: (19)

Here, the magnetic flux is determined by the requirement
of finite energy. This implies that the covariant derivative
must vanish asymptotically, which fixes the behavior of the
gauge field Ai. Then we have

� ¼
Z

d2xB ¼
I
jxj¼1

Aidx
i ¼ 2�N; (20)

where N is a topological invariant which takes only integer
values. It is interesting to remark, here, the existence of the
topological bound which is not present in the Jackiw-Pi
model. So, this a nonrelativistic model with a topological
bound and therefore we shall expect to find topological
solitons.
This bound is saturated by fields satisfying the first-order

self-duality equations

D�� ¼ ðD1 � iD2Þ� ¼ 0; (21)

B ¼ 2m
e3

�2
ð�� 1Þ�: (22)

These equations may be compared with the self-duality
equations of the Chern-Simons Higgs theory. We can note
that if we fix m ¼ 1 and choose the plus sign in the
potential expression (17), we arrive to the Chern-Simons
Higgs self-duality equations

ðD1 þ iD2Þ� ¼ 0; (23)
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B ¼ 2m
e3

�2
ð�� 1Þ�: (24)

On the other hand, the anti-self-duality equations may be
obtained by choosing the function !ð�Þ as

!ð�Þ ¼ �2m
e2

�
ð�� 1Þ: (25)

In that case, if we desire to arrive at the expression (18), we
must choose the following potential term:

Vð�Þ ¼ � e4

�2
�ð�� 1Þ2: (26)

Then, the Bogomolnyi equations become

D�� ¼ ðD1 � iD2Þ� ¼ 0; (27)

B ¼ �2
e3

�2
ð�� 1Þ�: (28)

Choosing Vð�Þ ¼ e4

�2 �ð�� 1Þ2, we obtain the anti-self-

duality equations

D�� ¼ ðD1 � iD2Þ� ¼ 0; (29)

B ¼ �2
e3

�2
ð�� 1Þ�: (30)

Thus, we can obtain the same Bogomolnyi equations as
those present in the Chern-Simons Higgs model. The
difference lies in the fact that in our case, we are dealing
with a nonrelativistic model and we have imposed the
constraint m ¼ 1. Another interesting fact is that, here,
we expect to find both topological and nontopological
soliton solutions, just as in Chern-Simons Higgs theory.
It is also worth noting that the Bogomolnyi equations in
Chern-Simons Higgs theory are neither solvable nor inte-
grable. However, numerical solutions can be found using a
radial vortex-like ansatz [3,7].

An important comment is that the generalized Jackiw-Pi
model, studied here, is a self-dual model. This is important
because the generalized pure Chern-Simons system
previously explored are not self-dual (For instance, see
Ref. [12]).

III. DIMENSIONAL REDUCTION AND THE
SOLITONIC SOLUTION

In this section, we are interested in analyzing the dimen-
sional reduction of the model (10) as well as in studying the
soliton solution in the dimensionally reduced model. In
order to analyze the lineal problem [16,17], it is natural to
consider a dimensional reduction of the action (10) by
suppressing dependence on the second spacial coordinate,
renaming Ay as B. Then, the action (10) becomes

S ¼
Z

d2x

�
�ðA0@xBþ B@0A1Þ þ i!ð�Þ��D0�

� 1

2m
jDx�j2 � e2

2mB2�� Vð�Þ
�
: (31)

Notice that the Gauss law constraint for this action is

@xB ¼ e

�
!ð�Þ�; (32)

which can be solved as

BðxÞ ¼ e

2�

Z
dz�ðx� zÞ!ð�ðzÞÞ�ðzÞ; (33)

where �ðxÞ ¼ 	ðxÞ � 	ð�xÞ is the odd step function.
By using the Gauss law and the explicit form of B given

by Eq. (33), the action can be written simply as

S ¼
Z

d2x

� �
e

2

Z
dz�ðx� zÞ!ð�ðzÞÞ�ðzÞ

�
@0A1Þ

þ i!ð�Þ��@0�� 1

2m
jDx�j2 � e2

2m
B2�� Vð�Þ

�
:

(34)

Following Ref. [17], the gauge field Ax may be eliminated
from the action (34) by a gauge transformation. Indeed,
after transforming the matter field as

�ðxÞ ! e�i
ðxÞ�ðxÞ; (35)

with


ðxÞ ¼ e

2

Z
dz�ðx� zÞAxðzÞ; (36)

we arrive to the following action:

S¼
Z

d2x

�
i!ð�Þ��@0�� 1

2m
j@x�j2 � e2

2m
B2��Vð�Þ

�
:

(37)

Consider, now, the derivation of the Bogomolnyi equations
in the reduced model (37). As discussed in Refs. [18,19],
the field B plays an important role in the derivation of the
self-dual equations. Indeed the expression (33) of B
involves the existence of a novel soliton solution. Using
the relation

Z
d2xðjð@x þ �eBÞ�j2 þ �e@xB�Þ

¼
Z

d2xðj@x�j2 þ e2B2�Þ; (38)

we can rewrite the action (37) as

S ¼
Z

d2x

�
i!ð�Þ��@0�� 1

2m
jð@x þ �eBÞ�j2

� �e

2m
@xB�� Vð�Þ

�
: (39)
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Here, � ¼ �1. The Gauss law (32) may be used to replace
the derivative of the field B in the action. Then we have, in
the static field configuration, the Hamiltonian associated to
the action written as

H ¼
Z

dx

�
1

2m
jð@x þ �eBÞ�j2 þ e2�

2m�
!ð�Þ�2 þ Vð�Þ

�
:

(40)

As in the (2þ 1)-dimensional case, we can choose!ð�Þ ¼
2me2

� ð�� 1Þ and Vð�Þ ¼ � e4

�2 �ð�� 1Þ2 to obtain

H ¼
Z

dx

�
1

2m
jð@x þ �eBÞ�j2 þ e�

2m
@xB

�
: (41)

Since the field Bmust be zero in the boundary, the last term
in the Hamiltonian vanishes and we have

H ¼
Z

dx
1

2m
jð@x þ �eBÞ�j2: (42)

This is non-negative and therefore takes the minimum
when the � satisfies

ð@x þ �BÞ� ¼ 0: (43)

We can write this equation in a more explicit form by using
Eq. (33):

@x�ðxÞ þ �e

2�

Z
dz�ðx� zÞ!ð�ðzÞÞ�ðzÞ�ðxÞ ¼ 0: (44)

To solve (44), we can proceed as in Ref. [19]. Thus, we
assume that � may be written as � ¼ ffiffiffiffi

�
p

, which leads to

1

2
@xðlog�ðxÞÞ þ e�

2�

Z
dz�ðx� zÞ!ð�ðzÞÞ�ðzÞ ¼ 0: (45)

Differentiating the above equation with respect to x,
we arrive at the following one-dimensional Liouville type
equation:

1

2
@2xðlog�ðxÞÞ þ e�

�
!ð�ðxÞÞ�ðxÞ ¼ 0: (46)

This is the general Bogomolnyi equation corresponding to
the dimensionally reduced model. In particular, we are

analyzing the case !ð�Þ ¼ 2me2

� ð�� 1Þ, so that the pre-

vious equation becomes

1

2
@2xðlog�ðxÞÞ þ 2e3�

�2
ð�� 1Þ�ðxÞ ¼ 0: (47)

This equation presents two types of solution, one derived
from the topological solution and the other from the
nontopological solution present in the two-dimensional
Chern-Simons Higgs theory. Let us start by considering
the solution derived from the topological case. For this
case, we propose as a solution the following series:

� ¼ 1þ X1
n¼1

ansech
nðbxÞ; (48)

where an are the real coefficients of series and b is a real
constant. To check that this is really a solution, we rewrite
Eq. (47) as

�ð@x�Þ2 þ ð@2x�Þ�þ ��3ð�� 1Þ ¼ 0; (49)

with � ¼ 4e3�
�2 . Inserting the series (48) into Eq. (49), we

obtain

X1
n;m¼1

½�anammnb2 þ n2anamb
2 þ 3�anam�sechnþmðbxÞ þ X1

n;m¼1

½anamnmb2 � n2anamb
2 � nanamb

2�sechnþmþ2ðbxÞ

� X1
n¼1

ðn2 þ nÞanb2sech2þnðbxÞ þ X1
n¼1

½n2anb2 þ �an�sechnðbxÞ þ 3�
X1

n;m;i¼1

anamaisech
nþmþiðbxÞ

þ �
X1

n;m;i;j¼1

anamaiajsech
nþmþiþjðbxÞ ¼ 0; (50)

where, in this last equation, we have used the relation

tanh2ðbxÞ ¼ 1� sech2ðbxÞ: (51)

Since the expression (50) is an expansion of powers of
sechðbxÞ, each coefficient of different powers must vanish
separately. This implies that for the coefficient of sechðbxÞ,
we have following relation:

b2 ¼ ��; (52)

whereas that for the coefficients of sech2ðbxÞ and
sech3ðbxÞ, we deduce

a2 ¼ 2a21; (53)

and

a3 ¼ 13

8
a31 �

1

2
a1: (54)

This procedure may be repeated in order to determine the
successive coefficients.
There is another type of solution, which satisfies the

boundary condition � ! 0 as jxj ! 1. This case is more
complicated and we are not able to propose an analytic
expression for the solution. However, it is not difficult to
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obtain an approximate asymptotic solution for large jxj.
In this limit, the Eq. (47) may be approximated by

@2xðlog�ðxÞÞ þ �ð�� 1Þ�ðxÞ ¼ 0: (55)

As in the previous case, the solution exists for � < 0:

� ¼ asech2ðbxÞ; (56)

where the a and b are related by b2 ¼ � a�
2 . Thus if the

solution exists, it should approach to zero exponentially.

IV. CONCLUSION

We have studied a generalized Jackiw-Pi model by
introducing a nonstandard dynamic !ð�Þ in the original
Jackiw-Pi Lagrangian. It was shown that this model sup-
ports Bogomolnyi equations and soliton solutions therein,
which represent an important fact because the other soliton
solutions found in generalized pure Chern-Simons models
are not self-dual. In particular, we have shown that choos-
ing a suitable function !ð�Þ and a sixth-order self-dual
potential, the energy of the model is bounded below by a

topological number. In addition, the resulting Bogomolnyi
equations are those of the Chern-Simons Higgs theory.
The introduction of the function !ð�Þ also has conse-

quences at the quantum level. Although the model may be
viewed as the second quantized N-particle system interact-
ing with a Chern-Simons gauge field, its dynamics are
modified by !ð�Þ, and therefore differs from the dynamics
of the Jackiw-Pi model. In this case, the quantum field
equation is

i@t�ðxÞ ¼ ½�ðxÞ; H�; (57)

and the gauge field should be subject to the constraint

B ¼ e

�
!ð�Þ�: (58)

Finally, it is interesting to mention that the (1þ 1)-
dimensional model, obtained by dimensional reduction of
the generalized Jackiw-Pi, presents novel solitons solu-
tions. One type of these solitons has a topological origin
and we have been able to find the analytical expression, the
other has nontopological origin and we have found its
asymptotic behavior.
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