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We present a coherent and operational strategy to calculate in a nonperturbative way, physical

observables in light-front dynamics. This strategy is based on the decomposition of the state vector of

any compound system in Fock components, and on the covariant formulation of light-front dynamics,

together with the so-called Fock sector dependent renormalization scheme. We apply our approach to the

calculation of the electromagnetic form factors of a fermion in the Yukawa model, in the nontrivial three-

body Fock space truncation, for rather large values of the coupling constant. We find that once the

renormalization conditions are properly taken into account, the form factors do not depend—within our

numerical accuracy—on the regularization scale when the latter is much larger than the physical masses.

We then extend the Fock space by including antifermion degrees of freedom.
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I. INTRODUCTION

We have developed over the last years a general strategy
to calculate physical observables of compound systems in a
nonperturbative framework [1–6]. This strategy is based on
light-front dynamics (LFD), a relativistic Hamiltonian for-
malism advocated first by Dirac in 1949 [7]. In its original
formulation, the state vector of any compound system
evolves in the light-front time � ¼ tþ z instead of the
usual time t. Since the physical vacuum in LFD is identical
to the free vacuum (see, e.g., Ref. [8] and references
therein), it is then natural to decompose the state vector
of a compound system in Fock components since this
decomposition does not include any vacuum fluctuations
but contains physical (asymptotic) states only. The prob-
lem of finding the state vector can thus be formulated as a
N-body problem.

For obvious practical reasons, the Fock decomposition
should be truncated to a finite number of states (Fock
sectors). This truncation should be strictly controlled
in order to be able to make reliable predictions for physical
observables, order by order in the Fock expansion. This is
made possible due to two important breakthroughs:

(i) The formulation of LFD in a covariant way [9],
which enables the strict control of any violation of
rotational invariance when the Fock space is trun-
cated. This formulation, called covariant light-front
dynamics (CLFD), has proven to be very powerful in
the description of relativistic properties of few-body
systems [10].

(ii) The development of an appropriate renormalization
procedure—the so-called Fock sector dependent
renormalization scheme—which enables us to cal-
culate regularization scale invariant observables
order by order in the Fock expansion [4].

In the simplest two-body Fock space truncation, our
formalism is equivalent to summing the irreducible
block—the fermion self-energy calculated in the second
order of perturbation theory—to all orders in the chain
approximation. This equivalence is due to the fact that all
the chain-type contributions are restricted to the two-body
Fock sector. Such a result is a direct consequence of our
Fock sector dependent renormalization (FSDR) scheme
and the corresponding renormalization conditions.
The first nontrivial calculation corresponds to the three-

body Fock space truncation, which incorporates in the
Yukawa model for instance, fluctuations of the state vector
involving one fermion (f), one fermion and one boson
(fb), and one fermion and two bosons (fbb) Fock
sectors. This calculation includes overlapping-type (diver-
gent) diagrams summed to all orders in the coupling
constant.
Within the FSDR framework, the first calculation of a

physical observable—the anomalous magnetic moment
(AMM) of a fermion in the Yukawa model—has been
done in Ref. [5] using the Pauli-Villars (PV) regularization
scheme as proposed in Ref. [11]. The calculation has
shown nice convergence of the results as a function of
the regularization scale (the PV boson mass in our calcu-
lation) for values of the coupling constant � � g2=4� of
order of 0.2. For stronger coupling, �� 0:5, some depen-
dence (though rather weak) of the AMM on the PV boson
mass was detected. While this range of the coupling con-
stant values is not particularly small (as compared, for
instance, to the electromagnetic coupling constant), it
shows, however, that the truncation of the Fock expansion
was not completely under control.
We detail in the present study an extension of our

previous approach [5] in order to control, order by order
in the Fock expansion, the regularization scale invariance
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of physical observables. Our derivation is based on the full
account of the renormalization conditions using the FSDR
scheme. We shall see that in the truncated Fock space, the
bare coupling constant and counterterms are no more true
constants, but become naturally dependent on one of the
kinematical variables, as already emphasized in Ref. [12].
This dependence is determined unambiguously by the
renormalization conditions and allows to restore rotational
invariance broken by the truncation, as well as the inde-
pendence of observables on the masses of the PV particles,
when the latter ones are much larger than the physical
masses. In Ref. [5] the fact that the bare coupling constant
and counterterms are a priori functions of kinematical
variables was not taken into account in full measure. The
calculations were done for fixed values of the kinematical
variables.

The kinematical dependence of the bare coupling con-
stant and counterterms is intimately linked to the Fock
space truncation. Its explicit form is strongly affected by
the Fock space ‘‘contents.’’ Thus, in the Yukawa model
considered in the three-body (fþ fbþ fbb) approxima-
tion, this dependence is quite sizeable. It is substantially
reduced when antifermion degrees of freedom (d.o.f.),
namely, the additional three-body Fock sector ff �f are
taken into account. In leading order of perturbation theory,
we show that the inclusion of the antifermion d.o.f. results
in the independence of the bare coupling constant and
counterterms on the kinematical variables.

Our framework should be considered as a possible alter-
native to the lattice approach, which represents the main-
stream of nonperturbative field theoretical calculations. In
a more phenomenological approach, Schwinger-Dyson
equations may also shed new light on the main physical
input—like the running mass functions and the wave func-
tion renormalization taken from lattice gauge calcula-
tions—necessary to understand the baryon structure [13].
These nonperturbative quantities should be an analogue of
the many-body vertex functions introduced in Sec. II A.

The use of the explicitly covariant formulation of LFD
is up to now a unique opportunity to control, in a very
convenient and systematic way, the renormalization pro-
cedure when the Fock space is truncated. We concentrate in
this study on a simple model, the Yukawa model, in order
to exhibit the main features of our approach. The applica-
tion of our formalism to gauge theories has been addressed
in the simple two-body Fock space truncation in Ref. [2]. It
shows very similar features with the Yukawa model as far
as the solution of the eigenvalue problem is concerned. The
extension of this calculation beyond the two-body approxi-
mation remains of course to be done.

The nonperturbative results we obtained in the three-
body Fock space truncation necessitate very simple nu-
merical facilities (a laptop). First lattice calculations within
the Yukawa model have been reported in Ref. [14]. While
physical observables like the AMM were not considered,

this calculation exhibits also a critical value of the coupling
constant. We shall come back to this point in Sec. IVC.
The increase of the number of Fock states involved

rapidly increases the complexity of the numerical calcu-
lations. However, one may expect rapid convergence rela-
tive to the order of truncation even in the most unfavorable
regime. An example is given in Ref. [15] where, in spite of
massless constituents (easily created) and the large cou-
pling constant value � � 2� (strongly enhancing the par-
ticle creation), the three-body truncation gives already
about 90% of the total state vector norm.
The plan of the paper is as follows. We recall in Sec. II

the general properties of our formalism. We discuss in
Sec. III the renormalization conditions. In Sec. IV, we
obtain a system of renormalized equations for the Fock
components in the Yukawa model within the fþ fbþ
fbb Fock space truncation and calculate the fermion elec-
tromagnetic form factors. In Sec. V, we extend the Fock
space by the inclusion of the ff �f Fock sector and discuss
the role of antiparticle d.o.f. We present our conclusions
in Sec. VI. The contribution of antifermion d.o.f. to the
equations for the Fock components is given in the
Appendix.

II. GENERAL FRAMEWORK

A. Covariant formulation of light-front dynamics

In the traditional form of LFD, the state vector of a
compound system is defined on the light-front plane
tþ z ¼ 0 (with c ¼ 1) rather than on the equal-time plane
t ¼ 0. In order to recover explicitly rotational invariance,
the state vector is defined in CLFD on the light-front plane
of general orientation ! � x ¼ 0, where ! is an arbitrary
four-vector restricted by the condition !2 ¼ 0 [9,10].
The traditional form of LFD is recovered by using ! ¼
ð1; 0; 0;�1Þ.
The state vector �ðpÞ of a particle with the mass M

should satisfy the Poincaré group equations, and among
them

P̂ 2�ðpÞ ¼ M2�ðpÞ: (1)

The momentum operator P̂ is decomposed on the light
front in terms of its free and interaction parts:

P̂ � ¼ P̂ð0Þ
� þ P̂int

� ; (2)

where in terms of the interaction Hamiltonian HintðxÞ,

P̂ int
� ¼ !�

Z
HintðxÞ�ð! � xÞd4x: (3)

According to the general properties of LFD, we decom-
pose the state vector of a physical system in Fock sectors.
We have schematically
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�ðpÞ ¼ X1
n¼1

Z
d ~Dn�nðk1; . . . ; kn;pÞ

� �ð4Þðk1 þ . . .þ kn � p�!�nÞjni; (4)

where jni is the state containing n free particles with the
four-momenta k1; . . . ; kn and �n’s are relativistic n-body
wave functions: the so-called Fock components. The phase
space volume element is represented by d ~Dn. All the four-
momenta are on the corresponding mass shells: k2i ¼ m2

i ,
p2 ¼ M2, and ð!�nÞ2 ¼ 0. Note the peculiar overall four-
momentum conservation law given by the � function. It
follows from the general transformation properties of the
light-front plane ! � x ¼ 0 under four-dimensional trans-
lations [10]. The scalar quantity �n is a measure of how far
the n-body system is off the energy shell (on the energy
shell �n ¼ 0). It is completely determined by this conser-
vation law and the on-mass-shell conditions for each indi-
vidual particle momentum. We get

2! � p�n ¼ ðsn �M2Þ; with sn ¼ ðk1 þ . . .þ knÞ2:
(5)

The state jni can be written as

jni � dyðk1Þdyðk2Þ . . . dyðknÞj0i; (6)

where dy is a generic notation for the fermion and boson
creation operators. To completely determine the state
vector, we normalize it according to

�ðp0Þy�ðpÞ ¼ 2p0�
ð3Þðp0 � pÞ: (7)

With the decomposition (4), the normalization condition
(7) writes

X1
n¼1

In ¼ 1; (8)

where In is the contribution of the n-body Fock sector to
the norm. For the particular case of the Yukawa model, an
explicit formula for In can be found in Ref. [4].

We shall concentrate in the following on systems com-
posed of a spin-1=2 fermion coupled to scalar bosons. It is
convenient to introduce, instead of the wave functions �n,
the vertex functions �n (which we will also refer to as Fock
components), defined by

�uðk1Þ�nuðpÞ ¼ ðsn �M2Þ�n � 2! � p�n�n; (9)

where k1 is the four-momentum of the constituent fermion.
When the Fock space is truncated to order N [i.e., in the
sums over n in Eqs. (4) and (8) the terms with n � N only
are retained], it is necessary to keep track of the order of
truncation in the calculation of the vertex function. For this

purpose, we will denote the latter by �ðNÞ
n , but omit the

superscript (N) when it is not necessary. �ðNÞ
n is represented

graphically by the diagram shown in Fig. 1.

It is convenient to introduce the notation

G ðpÞ ¼ 2ð! � pÞ�̂�ðpÞ; (10)

where �̂ is the operator which, acting on a given component
�n of�ðpÞ, gives �n�n. GðpÞ has the Fock decomposition
which is obtained from Eq. (4) by the replacement of the
wave functions�n by the vertex functions �n. We can thus
cast the eigenstate equation in the form [1]

G ðpÞ ¼ 1

2�

Z
½� ~Hintð!�Þ� d�

�
GðpÞ; (11)

where ~Hint is the interaction Hamiltonian in momentum
space. This equation is quite general and equivalent to the
eigenstate Eq. (1). It is nonperturbative.
The graph technique rules derived in Ref. [10] for the

calculation of S-matrix elements in CLFD refer precisely
to the calculation of matrix elements of � ~Hint=ð2��Þ. A
system of coupled eigenstate equations for the Fock com-
ponents of the state vector can thus be obtained from
Eq. (11) by substituting there [via Eq. (10)] the Fock
decomposition (4) and calculating the matrix elements of
the operator � ~Hint=ð2��Þ in the Fock space.
Since our formalism is explicitly covariant, the spin

structure of the wave function �n is very simple. Indeed,
its construction is of purely kinematical nature [10]. It
should incorporate, however, !-dependent components.
The structure of the two-body components for QED and
the Yukawa model was detailed in Ref. [2], while the three-
body (fbb) component in the Yukawa model was con-
structed in Ref. [5]. For the purpose of the present study,
we recall here the spin structure of the two-body compo-
nent in the Yukawa model:

�uðk1Þ�2uðpÞ ¼ �uðk1Þ
�
b1 þ M!

! � pb2

�
uðpÞ: (12)

The coefficients b1 and b2 are scalar functions determined
by dynamics.

B. Fock sector dependent renormalization scheme

In standard renormalization theory, the bare parameters
(the whole set of bare coupling constants and counter-
terms) are determined by relating them to physically
observable quantities. To perform this strategy in practice,

FIG. 1. n-body vertex function for the Fock space truncation of
order N, for a physical fermion (double straight line) made of a
constituent fermion (single straight line) coupled to (n� 1)
bosons (wavy lines).
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two important questions should be clarified when using
CLFD.

(i) The explicit form of the relationship between the
bare and physical parameters depends on the ap-
proximation used. For instance, in perturbation the-
ory the bare parameters are polynomial functions
of the physical coupling constant. The term with the
maximal degree of the coupling constant is deter-
mined within a given order of perturbation, while
those of lower degrees are taken unchanged from
lower orders. This guarantees that calculated physi-
cal observables are regularization scale invariant in
any order of the perturbative expansion. In our non-
perturbative approach based on the truncated Fock
decomposition, an analogous requirement implies
that the bare parameters should depend a priori on
the Fock sector in which they are considered [16].

(ii) In order to express the bare parameters through the
physical ones, and vice versa, one should be able to
calculate physical observables. In LFD, these can-
not depend on the choice of the orientation of the
light-front plane. Such a situation indeed takes
place, for instance, order by order in perturbation
theory, provided the regularization of divergences in
LFD amplitudes is done in a rotationally invariant
way [3]. In nonperturbative LFD calculations,
which always imply Fock space truncation, the
dependence on the light-front plane orientation may
survive even in calculated physical amplitudes. The
identification of such amplitudes with observable
quantities becomes therefore ambiguous.

The use of our FSDR scheme in CLFD allows us to
answer both questions. In this scheme, each of the original
bare parameters has an additional index depending on the
number of particles in the Fock sector in which this bare
parameter appears. In the Yukawa model the fermion mass
counterterm �m and the bare coupling constant g0 are thus
extended each to a whole sequence:

g0 ! g0l; (13a)

�m ! �ml; (13b)

with l ¼ 1; 2; . . .N. By definition, g01 ¼ 0 and �m1 ¼ 0.
For l 	 2, the quantities g0l and �ml are calculated by
solving the systems of equations for the vertex functions in
the N ¼ 2, N ¼ 3; . . . approximations successively.

Besides that, as we shall see in the next section, new
counterterms which depend explicitly on the orientation of
the light-front plane (i.e., on !) should be introduced in
order to restore, if necessary, the rotational invariance
broken by the truncation. In this case, such counterterms
are also mandatory in order to fulfill the renormalization
condition. Similarly to the ‘‘traditional’’ counterterms,
they have Fock sector dependence. The full set of rules
for the calculation of the bare parameters can be found in
Refs. [4,6].

We emphasize that the FSDR scheme is a general
method to make nonperturbative calculations in truncated
Fock space. It can be easily applied to any physical system
admitting particle counting. The Yukawa model studied in
the present work has been chosen as an illustration of the
capabilities of our approach.

III. RENORMALIZATION CONDITIONS

Once the bare coupling constant and the mass counter-
terms have been identified, one should fix them from a set
of renormalization conditions. In perturbation theory, there
are three types of quantities to determine: the mass coun-
terterms and the bare coupling constant just mentioned,
and the field strength renormalization constants. In the
on-mass-shell renormalization scheme, the following con-
ditions are used. The mass counterterms are fixed from the
requirement that the two-point Green’s functions have a
pole at the physical masses. The field normalization con-
stants are fixed from the condition that the residues of the
two-point Green’s functions at these poles equal 1. The
bare coupling constant is determined by requiring that
the on-mass-shell three-point Green’s function is given by
the product of the physical coupling constant and the
elementary vertex.
The renormalization conditions in LFD are of slightly

different form, although they rely on the same grounds.
The mass counterterm for each physical state is fixed from
the eigenstate Eq. (1) by demanding that the massM of the
physical bound state be identical to the constituent massm.
The bare coupling constant is determined by relating the
on-energy-shell two-body vertex function �2 to the physi-
cal coupling constant g. Finally, the normalization of the
state vector is fixed from the condition (7).
In order to set up the relationship between �2 and the

physical coupling constant, one needs to discuss carefully
the renormalization factors of the external legs of the two-
body vertex function [5,17]. These renormalization factors
do also depend on the order of truncation of the Fock space.
In the Yukawa model, this relationship reads

�ðNÞ
2 ðs2 ¼ M2Þ ¼ g

ffiffiffiffiffiffiffiffiffiffiffiffiffi
IðN�1Þ
1

q ffiffiffiffiffiffi
Zb

p
: (14)

Equation (14) can be interpreted in simple physical terms.
Each leg of the two-body vertex function contributes for a

different factor
ffiffiffiffi
Z

p
to the physical coupling constant,

where Z is the field strength normalization factor. The
initial fermion state is the physical state normalized to 1,
so that Z ¼ 1 in that case. The final boson line should be
renormalized by a factor

ffiffiffiffiffiffi
Zb

p
. In the approximation where

fermion-antifermion loop contributions are not considered
(the so-called quenched approximation), we have Zb ¼ 1.
Finally, the field strength normalization factor of the con-
stituent fermion is just the weight of the one-body compo-
nent in the norm of the physical state [5], i.e., Z ¼ I1 in that
case, according to Eq. (8). Following our FSDR scheme,
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the normalization factor of the final constituent fermion
should correspond to the truncation of order N � 1 of the
Fock space since there is by construction of the two-body
vertex function, one extra boson in flight in the final state.

Under thePV regularization, PVparticles are considered—
in the interaction Hamiltonian—on equal grounds with the
physical ones. From here it follows that each constituent
particle line in the two-body vertex may correspond to
either a physical or a PV particle. Observable amplitudes
are described by diagrams with physical external legs only.
For this reason, the renormalization condition (14) should
be imposed on the two-body vertex function with constitu-
ent lines corresponding to the physical fermion and boson.

The condition (14) has an important consequence: the
two-body vertex function at s2 ¼ M2 should be indepen-
dent of the orientation ! of the light-front plane. With the
spin decomposition (12), this implies that the component
b2 at s2 ¼ M2 should be identically zero:

bðNÞ
2 ðs2 ¼ M2Þ � 0: (15)

If Eq. (15) is satisfied, Eq. (14) in the quenched approxi-
mation turns into

bðNÞ
1 ðs2 ¼ M2Þ � g

ffiffiffiffiffiffiffiffiffiffiffiffiffi
IðN�1Þ
1

q
: (16)

While the property (15) is automatically verified in the
case of the two-body Fock space truncation, provided one
uses a rotationally invariant regularization scheme [3,4],
this is not guaranteed for higher order truncations. Indeed,
nothing prevents �2 to be ! dependent since it is an off-
shell amplitude, but this dependence must completely dis-
appear on the energy shell. It would be so if no Fock space
truncation has been done. The latter results in some !
dependence of �2 even on the energy shell. This immedi-
ately makes the general renormalization condition (14)
ambiguous since its right-hand side is ! independent.

Another consequence of the truncation of the Fock space
is the fact that the components b1;2ðs2 ¼ M2Þ are not

constants. Indeed, b1;2 depend a priori on two kinematical

variables. For practical purposes, we can take the usual
longitudinal momentum fraction x and the transverse (with
respect to the three-vector !) momentum R?. They are
defined by

x ¼ ! � k2
! � p ; (17a)

R? ¼ k2? � xp?; (17b)

where k2 refers to the momentum of the boson in the two-
body Fock sector. Note that R2

? ¼ �ðk2 � xpÞ2 is a rela-
tivistic invariant. Therefore, we have b1;2 ¼ b1;2ðR?; xÞ.

We denote by mð�Þ the constituent fermion (boson)
mass. The on-shell condition

s2 �
R2
? þm2

1� x
þ R2

? þ�2

x
¼ M2; (18)

can be used to fix one of the two variables, say R?, in the
nonphysical domain (for M ¼ m):

R? ¼ R

?ðxÞ � i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2m2 þ ð1� xÞ�2

q
; (19)

so that bðNÞ
1;2 ðs2 ¼ M2Þ � bðNÞ

1;2 ðR

?ðxÞ; xÞ calculated in the

truncated Fock space depend on x [an example of a par-

ticular form of the function bðNÞ
2 ðR


?ðxÞ; xÞ for N ¼ 3 is

given in Sec. V, Eq. (58)], whereas the conditions (15) and
(16) should be valid identically, i.e., for any value of x.
In order to enforce the condition (15), we should intro-

duce an appropriate counterterm which depends explicitly
on the four-vector ! [5]. It originates from the following
additional structure in the interaction Hamiltonian:

�H int
! ¼ �Z!

�c 0 m!

i! � @ c 0’0; (20)

where Z! is just the new counterterm, c 0ð’0Þ is the fer-
mion (scalar boson) field, being a sum of the corresponding
physical and PV components, and 1=ði! � @Þ is the reversal
derivative operator. In the Yukawa model within the three-
body approximation, the contribution (20) is enough to
make all renormalization conditions self-consistent.
In the truncated Fock space, according to the FSDR

rules, Z! splits into a sequence of Fock sector dependent

contributions ZðlÞ
! analogously to the other bare parameters

[see Eq. (13)]. For the truncation of order N, it is supposed

that all ZðlÞ
! ’s with l ¼ 1; 2; . . .N � 1 have been already

known from lower order truncations, so that we have

to determine the ‘‘senior’’ counterterm ZðNÞ
! only. The

enforcement of the condition (15), for any x, by an appro-

priate choice of the counterterm ZðNÞ
! implies that the latter

should a priori depend on x, i.e., ZðNÞ
! ¼ ZðNÞ

! ðxÞ. If no Fock
space truncation occurred, we would get the exact equality
Z! ¼ const � 0, like, e.g., in perturbation theory. The
same happens for lowest order Fock space truncations

because of their triviality. Thus, Zð1Þ
! ¼ 0 by definition.

Then, in the two-body approximation, Zð2Þ
! is also zero

provided the PV regularization is used [4]. Nonzero and

x-dependent counterterms ZðNÞ
! ðxÞ appear starting from

N ¼ 3.
Following the above discussion, the enforcement of the

condition (16) induces also a unique dependence of g0N ¼
g0NðxÞ as a function of the kinematical variable x.
The crucial fact is that in order to get vertex functions

exactly satisfying the renormalization conditions, the bare
parameters must depend on the kinematical variable x.
Otherwise, one can hardly obtain physical observables
that are finite after renormalization in the truncated Fock
space. In Sec. IVC, the stability of our results relative to
the value of the regularization scale, if the latter reasonably
exceeds the physical masses, will be confirmed numeri-
cally with high precision.
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At first glance, the x dependence of the bare parameters
seems, at least, unusual. However, it is a natural conse-
quence of the truncation. Of course, the bare parameters in
the fundamental nontruncated Hamiltonian are true con-
stants. After truncation, the initial Hamiltonian is replaced
by a finite matrix which acts now in a finite Fock space. But
it turns out that the modification of the Hamiltonian is not
restricted to a simple truncation. Indeed, to preserve the
renormalization conditions, the bare parameters in this
finite matrix become x dependent. This x dependence
cannot be derived from the initial Lagrangian. It appears
only after the Fock space truncation.

Our truncated Hamiltonian with x-dependent bare
parameters is a self-consistent approximation to the initial
fundamental Hamiltonian. One expects that the approxi-
mation becomes better when the number of Fock compo-
nents increases. At the same time, the x dependence of the
bare parameters should become weaker. We will see an
indication of that behavior in Sec. VB. We emphasize that
there is no any ambiguity in finding the bare parameters, in
spite of their x dependence. They are completely fixed
from the renormalization conditions.

IV. YUKAWA MODEL IN THE f þ fbþ fbb
APPROXIMATION

We apply our general strategy to calculate some physical
observables for the Yukawa model in the truncated Fock
space including sectors with one single fermion, one fer-
mion plus one boson, and one fermion plus two bosons.
Previously, we considered the same physical system to
calculate the fermion AMM [5], but without x-dependent
bare parameters. The AMM (as well as any calculated
observable) depends on the regularization parameters
which are the two PV fermion and boson masses m1 and
�1, respectively. In case of a proper renormalization
scheme it must tend to a fixed finite value when both PV
masses become much greater than the characteristic physi-
cal mass scale. In Ref. [5] we first took the limit m1 ! 1
analytically, just on the level of the equations for the Fock
components, and then studied the dependence of the AMM
on the remaining PV mass �1 numerically. We found, at
relatively small values of the coupling constant (�� 0:2),
rather good numerical stability of the AMM as a function
of �1 when �1 � m, �.

At larger coupling constants (�� 0:5), we observed
weak but sizable growth of the AMM with the increase
of �1. A possible reason for this uncanceled �1 depen-
dence of the AMM is the fact that we used constant, i.e.,
x-independent, bare parameters. We shall show in this
study that taking into account x dependence of the bare
parameters in the truncated Fock space allows to remove
completely any dependence of observables on the regulari-
zation parameters, even for rather large values of the
coupling constant. We shall thus calculate not only the

AMM, but both electromagnetic form factors as a function
of the momentum transfer squared.

A. Equations for the Fock components

As shown in Ref. [5], the system of equations for the
three vertex functions can be reduced to a closed matrix
equation which involves the two-body vertex function �2

only. This equation is shown schematically in Fig. 2. Each
factor at the vertices is taken according to the FSDR
scheme prescriptions. The factors calculated in the three-

body approximation, namely, g03 and Zð3Þ
! , appear in the

amplitudes involving the one-body vertex function �1 only.
Each of the other boson emission and absorption vertices in
Fig. 2 brings the factor g02, since there exists one boson in
flight at the time moment corresponding to the vertex and

Zð2Þ
! ¼ 0. The mass counterterm contribution (�m2) de-

noted by the cross appears in the equation for �2 within
the two-body sector only. Analogous contributions inside
the three-body sector are absent because they correspond to
the factor �m1, which is zero.
The fermion-boson loop (see the third diagram on the

right-hand side of the graphical equation in Fig. 2) is
nothing else than the two-body fermion self-energy. In
CLFD, it can be represented as the following general
decomposition [3,5]:

�ð6kÞ ¼ g202

�
Aðk2Þ þBðk2Þ 6k

m
þ Cðk2Þ m!

! � k
�
; (21)

where A, B, and C are scalar functions given in Ref. [5].
Note that under the PV regularization scheme we have
Cðk2Þ � 0.
Since each of the two constituent lines of the two-body

vertex may correspond to either a physical or a PV particle,
we have to distinguish four types of �2 depending on its
‘‘contents’’: (i) physical fermion and physical boson;
(ii) physical fermion and PV boson; (iii) PV fermion and
physical boson; and (iv) two PV particles. It is convenient
to supply �2 by the two indices, i (for fermion) and j (for
boson), reflecting the sort of constituent. Each index may

FIG. 2. Equation for the two-body Fock component in the
fþ fbþ fbb approximation.
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take two values, 0 and 1, corresponding to a physical or a

PV particle, respectively. The substitution �2 ! �ij
2 means

the substitutions b1;2 ! bij1;2 for each of its spin compo-

nents defined by Eq. (12). The particle masses are denoted
by mi and �j with m0 � m and �0 � �, by definition.

We shall consider in this study two different orders in
taking the infinite limit for the masses of the PV particles.
One of them, already considered in Ref. [5], corresponds to
the case when the mass of the PV fermion m1 is first set to
infinity (analytically), while the PV boson mass �1 is kept
finite. In the present section, we reformulate the system of
equations for the Fock components in this limit, taking into
account the x dependence of the bare parameters. We then
study numerically the dependence of our results on �1

when the latter is much greater than the physical masses.
In addition, we discuss in Sec. IVD the opposite order of
limits when �1 is first set to infinity.
In order to take the limit m1 ! 1, it is convenient to

introduce a set of functions, hji andH
j
i , which remain finite

in this limit. They are given by [5]

bij1 ¼ mi

m
hji ; bij2 ¼ mi

m

Hj
i � ð1� xþ mi

m Þhji
2ð1� xÞ : (22)

In terms of the functions hji and Hj
i , the equation shown in

Fig. 2 corresponds to the following system of integral
equations [5]1:

hj0ðR?; xÞ ¼ g003 þ g02½Kj
1h

j
0ðR?; xÞ þ Kj

2h
j
1ðR?; xÞ� þ g02 ij0ðR?; xÞ; (23a)

hj1ðR?; xÞ ¼ g02½�Kj
3h

j
0ðR?; xÞ þ Kj

4h
j
1ðR?; xÞ� þ g02 ij1ðR?; xÞ; (23b)

Hj
0ðR?; xÞ ¼ g003½ð2� xÞ þ Z0

!ð1� xÞ� þ g02½Kj
1H

j
0ðR?; xÞ þ Kj

2H
j
1ðR?; xÞ� þ g02Ij0ðR?; xÞ; (23c)

Hj
1ðR?; xÞ ¼ g003 þ g02½�Kj

3H
j
0ðR?; xÞ þ Kj

4H
j
1ðR?; xÞ� þ g02Ij1ðR?; xÞ: (23d)

In the above equations we use the following notations. The
coefficients Kj

1�4 are defined by

Kj
1 ¼

1

m

�
Brðs1Þ � 2m2½Arðs1Þ þBrðs1Þ�

m2 � s1

�
;

Kj
2 ¼

Arðs1Þ þBrðs1Þ
m

;

Kj
3 ¼

m½Arðs1Þ þBrðs1Þ�
m2 � s1

;

Kj
4 ¼

Brðs1Þ
m

;

where the subtracted fermion self-energy functions are
Arðs1Þ ¼ Aðs1Þ �Aðm2Þ, Brðs1Þ ¼ Bðs1Þ �Bðm2Þ,
and their argument

s1 ¼ �R2
?
x

þ ð1� xÞm2 � 1� x

x
�2

j : (24)

For convenience, we introduce the quantity

g02 ¼ g2

1þ g2z0
; (25)

and redefine the bare parameters by

g003 ¼ g03�0

�
1� g2 �Ið2Þ2

1þ g2z0

�
; (26a)

Z0
! ¼ 2Zð3Þ

!

g03
� �1

�0

; (26b)

where

�I ð2Þ
2 ¼ �Bðm2Þ

m
� z0; (27)

with

z0 ¼ 2m½A0ðm2Þ þB0ðm2Þ�: (28)

The primes at A and B denote their derivatives over s1.
The quantities�0 and�1 are, respectively, the physical and
PV components of the one-body (fermion) vertex intro-
duced in Ref. [5]. We do not need to calculate them
explicitly in our study. We can therefore include them
into the definitions of g003 and Z0

!. The quantity �Ið2Þ2 multi-
plied by g2 is nothing else than the norm of the two-body
sector calculated for the two-body (fþ fb) Fock space
truncation. Transforming the equation for �2 to the system
of Eq. (23), we took into account the values of the bare
coupling constant g02 and the mass counterterm �m2 ob-
tained from the previous calculations [4] within the fþ fb
truncated Fock space2:

1In Ref. [5] we used the functions ~hji and ~Hj
i which differ from

hji and Hj
i by their normalization. The present form of the vertex

functions is more convenient for the determination of
x-dependent bare parameters.

2In Ref. [4] the quantity �Ið2Þ2 was denoted by J2. We changed
the notation here in order to avoid its confusion with the notation
of the electromagnetic current operator (see below).
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g202 ¼
g2

1� g2 �Ið2Þ2

; (29a)

�m2 ¼ g202½Aðm2Þ þBðm2Þ�: (29b)

The integral terms describing the contributions of the
three-body state to �2 are

ijnðR?; xÞ ¼
Z 1

0
R0
?dR

0
?
Z 1�x

0
dx0

� X1
i;j0¼0

ð�1Þj0 ½cnihj
0
i ðR0

?; x
0Þ þCniH

j0
i ðR0

?; x
0Þ�;

(30a)

IjnðR?; xÞ ¼
Z 1

0
R0
?dR

0
?
Z 1�x

0
dx0

� X1
i;j0¼0

ð�1Þj0 ½c0nihj
0
i ðR0

?; x
0Þ þC0

niH
j0
i ðR0

?; x
0Þ�;

(30b)

with n ¼ 0, 1. The coefficients c, C, c0, and C0, which
depend on R?, R0

?, x, x
0, j, and j0, are given in Ref. [5].

We should now use the renormalization conditions (15)
and (16) in order to determine the bare coupling constant

g003 and the counterterm Z0
!. In terms of the functions hji

and Hj
i , these conditions write

h00ðR

?; xÞ ¼ g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2 �Ið2Þ2

q
; (31a)

H0
0ðR


?; xÞ ¼ g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2 �Ið2Þ2

q
ð2� xÞ; (31b)

where R

? is defined by Eq. (19). Setting R? ¼ R


? and

j ¼ 0 in Eqs. (23a) and (23c), we demand the relations (31)
to be valid for arbitrary 0< x< 1. As explained in the
previous section, this necessitates to substitute g003 !
g003ðxÞ and Z0

!!Z0
!ðxÞ. Using that at R?¼R


? and j ¼ 0
we have s1 ¼ m2, and hence K0

1 ¼ z0 and K0
2 ¼ 0, we get

g003ðxÞ ¼ g02
2
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2 �Ið2Þ2

q
g

� i00ðR

?; xÞ

3
5; (32a)

g003ðxÞZ0
!ðxÞ ¼ g02

�ð2� xÞi00ðR

?; xÞ � I00ðR


?; xÞ
1� x

�
: (32b)

Substituting these quantities back into the system of
Eq. (23), we obtain

hj0ðR?;xÞ¼�gþg02½Kj
1h

j
0ðR?;xÞþKj

2h
j
1ðR?;xÞ�

þg02�ij0ðR?;xÞ;
hj1ðR?;xÞ¼g02½�Kj

3h
j
0ðR?;xÞþKj

4h
j
1ðR?;xÞ�

þg02 ij1ðR?;xÞ;
Hj

0ðR?;xÞ¼�gð2�xÞþg02½Kj
1H

j
0ðR?;xÞ

þKj
2H

j
1ðR?;xÞ�þg02�Ij0ðR?;xÞ;

Hj
1ðR?;xÞ¼�gþg02½�Kj

3H
j
0ðR?;xÞþKj

4H
j
1ðR?;xÞ�

þg02�Ij1ðR?;xÞ; (33)

where

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2 �Ið2Þ2

q
1þ g2z0

; (34)

and

�ij0ðR?; xÞ ¼ ij0ðR?; xÞ � i00ðR

?; xÞ; (35a)

�Ij0ðR?; xÞ ¼ Ij0ðR?; xÞ � I00ðR

?; xÞ; (35b)

�Ij1ðR?; xÞ ¼ Ij1ðR?; xÞ � i00ðR

?; xÞ: (35c)

The functions hji and Hj
i , being a solution of the inho-

mogeneous system of Eq. (33), are properly normalized.
Once we have carried out the renormalization procedure
[resulting in Eq. (32)], these equations contain only the
physical coupling constant g since g0 is expressed via g by
Eq. (25). Let us remind that in contrast to the results
reported in Ref. [5], we do not fix here any particular value
of x at which the renormalization conditions are consid-
ered. We keep the full x dependence of the bare coupling
constant and the !-dependent counterterm according to
Eq. (32).
Each index i and j can take two values so that we have to

deal with eight vertex functions. The convergence of the
integrals over dR0

? in the integral terms (30) is ensured by

the mutual cancellation of the physical and PV components
at R0

? ! 1 due to the following properties:

h0i ðR? ! 1; xÞ ¼ h1i ðR? ! 1; xÞ;
H0

i ðR? ! 1; xÞ ¼ H1
i ðR? ! 1; xÞ;

which automatically follow when R? � �1 from the
structure of Eq. (33). This is a direct consequence of the
PV regularization scheme. However, if one tries to go over
to the limit �1 ! 1 inside the integrals (i.e., before the
integration over dR0

?), some of them become divergent

unless all the functions hji and Hj
i vanish when R0

? ! 1.

But because of the nonzero free part on the right-hand side
of Eq. (33), there is no reason to expect such a behavior of

the solution. For instance, assuming that hji andH
j
i at R

0
? of

order �1 or greater have some finite values, we would
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encounter divergences like log�1. The renormalization
leading to the subtractions (35) also does not fully prevent
from �1 divergences because it ‘‘improves’’ the asymp-
totic (R0

? ! 1) behavior of the integrands only in the two

terms �i00ðR?; xÞ and �I00ðR?; xÞ (corresponding to the

components with the physical external particles) among
the eight ones. As a result, we cannot take the limit
�1 ! 1 directly in the system of Eq. (33), and the solution
essentially depends on �1.

From a practical point of view, we should solve the
equations at large but finite values of �1, express physical
amplitudes (in which, by definition, all the external lines
correspond to physical particles) through the vertex func-
tions, and calculate observables. We then repeat these
steps, gradually increasing �1. If the calculated observ-
ables, as a function of �1, tend to stable values within the
required accuracy of the numerical calculations, we shall
conclude that our renormalization scheme is successful.
Let us emphasize that the stability is analyzed with respect
to observable quantities only, while the vertex functions as
well as the Fock sector norms may strongly depend on �1,
even if it reasonably exceeds the physical masses. In the
following, we will make this procedure numerically for the
calculation of the electromagnetic form factors.

B. Calculation of the electromagnetic form factors

The general decomposition of the spin-1=2 electromag-
netic vertex (EMV) in CLFD is given by [3–5,18]

�uðp0ÞG�uðpÞ ¼ e �uðp0Þ
�
F1	

� þ iF2

2m

��q�

þ B1

�
!

! � pP� � 2	�

�

þ B2

m!�

! � pþ B3

m2!!�

ð! � pÞ2
�
uðpÞ; (36)

where P ¼ pþ p0, q¼p0 �p, 
��¼ ið	�	��	�	�Þ=2,
e is the physical charge, F1 and F2 are the physical form
factors, and B1;2;3 are nonphysical contributions. These

latter originate from possible breaking of rotational sym-
metry caused by the Fock space truncation. Under the
condition ! � q ¼ 0, all F1;2, B1;2;3 depend on Q2 � �q2

only. The physical form factors can be found according
to [18]

eF1¼
Tr½ð6p0 þmÞ!�G

�ð6pþmÞ!�
8ð! �pÞ2 ; (37a)

eF2¼ m

2ð! �pÞQ2
Tr

�
ð6p0 þmÞ!�G

�ð6pþmÞ
�
m!

! �p�1

��
:

(37b)

Explicit analytical expressions for the two form factors F1

and F2 in the Yukawa model for the case of the fþ fbþ
fbb Fock space truncation are given in Ref. [5]. For this
reason, we will not dwell on technical derivations, but

focus on how the FSDR scheme works to renormalize the
fermion EMV.
From Eq. (37) we can see that both physical form factors

are determined by the contraction of the EMV with the
four-vector ! sandwiched between the bispinors. It is thus
convenient to define the operator

eJðQÞ ¼ �uðp0Þ!�G
�uðpÞ

2ð! � pÞ : (38)

In standard LFD it is nothing else than the plus component
of the electromagnetic current. Within the FSDR scheme in
truncated Fock space, the operator (38), similarly to the
vertex functions, should be supplied with a superscript

indicating the order of truncation N. JðNÞðQÞ can be repre-

sented as a superposition of contributions JðNÞ
n ðQÞ from

Fock sectors with different numbers n of particles

eJðNÞðQÞ ¼ XN
n¼1

e0ðN�nþ1ÞJ
ðNÞ
n ðQÞ; (39)

where e0ðN�nþ1Þ is the electromagnetic bare coupling con-

stant in the n-body sector [5]. By definition, e01 ¼ e. The
standard renormalization condition for the EMV

G�jp0¼p ¼ e	�; (40)

written in terms of JðQÞ has a very simple form:

Jð0Þ ¼ 1: (41)

If the norms In of all Fock sectors are finite, the following
relation must be valid for any N:

JðNÞ
n ð0Þ ¼ IðNÞ

n : (42)

The normalization condition (8) just guarantees the prop-
erty (41). In the Yukawa model, however, the norm of each
Fock sector is infinite, and the validity of Eq. (42) depends
on the regularization scheme. In Ref. [4] it was proved that
Eq. (42) held true for any Fock sector containing one
fermion and arbitrary number of bosons, provided the PV
regularization is used, when m1 ! 1 at finite �1. Since
this is just the case we consider in the present section, we
can safely use the relation (42). A direct consequence of
the latter is the following result [4]:

e0n ¼ e; (43)

for any n; i.e., the electromagnetic coupling constant is not
renormalized at all.
In the fþ fbþ fbb approximation, the EMV is given

by a sum of contributions shown graphically in Figs. 3–5.
The diagrams in Figs. 3 and 4 correspond, respectively, to
the one- and two-body sector contributions to the EMV.
The three-body sector contribution in Fig. 5 is expressed,
for convenience, through the two-body vertex and sepa-
rated into two parts (a) and (b). We will denote these
particular contributions to the full operator JðQÞ as
J1ðQÞ, J2ðQÞ, J3aðQÞ, and J3bðQÞ. To shorten notations,
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hereafter we omit the superscript N for all quantities
related to the three-body approximation, keeping it how-
ever, if a given quantity is calculated within a truncation of
another order. From Eq. (39) we find

eJðQÞ ¼ e03I1 þ e02J2ðQÞ þ e½J3aðQÞ þ J3bðQÞ�: (44)

Due to Eqs. (41) and (43), the renormalized JðQÞ becomes

JðQÞ ¼ 1þ ½J2ðQÞ � J2ð0Þ�
þ ½J3aðQÞ þ J3bðQÞ � J3að0Þ � J3bð0Þ�: (45)

It is convenient to extract the common normalization factorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2 �Ið2Þ2

q
from the vertex functions since �Ið2Þ2 diverges

logarithmically when�1 ! 1. We thus define a new set of
functions:

�hj0;1
�Hj
0;1

 !
¼ 1

g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2 �Ið2Þ2

q hj0;1
Hj

0;1

 !
: (46)

We will supply with a bar each contribution to JðQÞ
calculated through the functions �hji and �Hj

i in the vertices.
In J3aðQÞ and J3bðQÞwe suppose that the factor g202 coming

from the internal vertices in Fig. 5 is also separated. Thus,
Eq. (45) transforms to

JðQÞ ¼ 1þ g2ð1� g2 �Ið2Þ2 Þ½ �J2ðQÞ � �J2ð0Þ�
þ g202g

2ð1� g2 �Ið2Þ2 Þ½ �J3aðQÞ þ �J3bðQÞ
� �J3að0Þ � �J3bð0Þ�: (47)

Substituting here g202 from Eq. (29a) and rearranging the

order of terms, we obtain

JðQÞ ¼ 1þ g2½ �J2ðQÞ � �J2ð0Þ� þ g4f½ �J3aðQÞ � �Ið2Þ2
�J2ðQÞ�

� ½ �J3að0Þ � �Ið2Þ2
�J2ð0Þ�g þ g4½ �J3bðQÞ � �J3bð0Þ�:

(48)

Let us emphasize that although Eq. (48) looks like a
perturbative expansion, it has no relation to perturbation
theory, since the quantities �J2, �J3a, and �J3b have rather

complicated dependence on the coupling constant g, gov-
erned by the nonperturbative equations for the vertex
functions. Nevertheless, it is rather instructive to study
how �1 divergences disappear in Eq. (48) when the vertex
functions are given by their perturbative values:

�h j
0 ¼ �Hj

1 ¼ 1; �hj1 ¼ 0; �Hj
0 ¼ 2� x:

In this case, the �1 dependence of �J2, �J3a, and �J3b comes
only from the integrals for the EMV. It is easy to show that
both �J2 and �J3b diverge, when �1 ! 1, as log�1 with a
coefficient independent of Q. Subtracting from each of
them its value at Q ¼ 0, we just cancel divergent logarith-
mic terms and the result is finite. Concerning the contri-
bution �J3a [see Fig. 5(a)], it has a nested fermion-boson
loop, which diverges after the integration over the corre-
sponding kinematical variables, as log�1. The integration
over the variables of the external loop gives one more
log�1 so that �J3a diverges like log

2�1. Its renormalization
occurs in two steps, as is seen from the expression in braces
in Eq. (48). In a first step, we form the difference

[ �J3aðQÞ � �Ið2Þ2
�J2ðQÞ] which kills log�1 coming from the

nested loop. Indeed, by definition, �Ið2Þ2 coincides up to a

factor of g2 with the two-body normalization integral,
which according to Eq. (42), is related to the two-body
contribution to the EMV by

�J ð2Þ
2 ð0Þ ¼ �Ið2Þ2 : (49)

Due to the fact that the divergent part of the nested loop

coincides with that in �Jð2Þ2 ð0Þ, it is completely canceled in

the difference [ �J3aðQÞ � �Ið2Þ2
�J2ðQÞ]. In a second step, sub-

tracting from this difference its value atQ ¼ 0, we remove
divergences coming from the integration over the external
loop variables. In standard perturbation theory, the renor-
malization is made by the same scenario. But we empha-
size that Eq. (48) naturally appears within the FSDR
scheme which is fully nonperturbative.
When the vertex functions are solutions of the system of

Eq. (33) and depend nontrivially on particle momenta and
on the coupling constant, it is much more difficult to trace
analytically the cancellation of �1 divergences in calcu-
lated observables. For this reason, we will make the cor-
responding analysis numerically.

FIG. 5. Three-body (fbb) Fock sector contributions to the
electromagnetic vertex, expressed through the two-body Fock
component, with a nested fermion-boson loop (a) and with
crossed boson loops (b).

FIG. 4. Two-body (fb) Fock sector contribution to the elec-
tromagnetic vertex.

FIG. 3. One-body (f) Fock sector contribution to the electro-
magnetic vertex.
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C. Numerical results

We solve the system of integral Eq. (33) in order to
calculate the two-body Fock component. Knowing the
latter, we are able to find the three-body component as
well (see Ref. [5] for details). After that, we calculate the
electromagnetic form factors by means of Eq. (37) with
the EMV G� given by a sum of contributions shown in
Figs. 3–5. The EMV is expressed through the quantity JðQÞ
for which we take its renormalized value (48). In all
computations, we use the physical particle masses m ¼
0:938 and � ¼ 0:138 reflecting the characteristic nuclear
physics mass scales. Each physical quantity is calculated
for three values of the physical coupling constant � ¼
g2=4� ¼ 0:5, 0.8, and 1.0.

We first compute the fermion AMM which is the value
F2ðQ2 ¼ 0Þ. It is shown in Fig. 6 as a function of the PV
boson mass �1. Each of the two- and three-body Fock
sector contributions to the AMM essentially depends on
�1, while their sum is stable as �1 becomes large enough.
Note that using x-dependent bare parameters removes �1

dependence of the AMM observed in Ref. [5] already for
�� 0:5, even for larger coupling constants.

In Figs. 7 and 8, we plot the electromagnetic form
factors F1 and F2, respectively, as a function of Q2 for
�1 ¼ 100, for the three values of the coupling constant
considered here. For this value of �1, the form factors
already reach the zone of stability: further increase of �1

does not lead to changes distinguishable in the scale of the
figures.

We finally show in Fig. 9 the contributions of the
one-, two-, and three-body sectors to the norm of the state
vector. It is interesting to note that for large enough values
of the PV boson mass �1, the norm of the one-body Fock
sector is negative, while the norm of the two-body Fock
sector is larger than 1. The sum of all contributions remains
fixed to 1 by construction. However, physical observables
are well defined and do not show any discontinuity as a
function of �1 when I1 changes the sign or I2 exceeds
unity. This is an illustration of the fact that the norms of the
Fock components in the presence of the PV sectors having
negative norms are not physical observables, and hence
they are expected to be regularization scale dependent. As
we can see in these figures, they do depend on �1, unlike
the electromagnetic form factors. The stability of the form
factors to variations of the PV masses, when the latter ones
are large compared to the physical masses, opens encour-
aging perspectives for our method of nonperturbative
renormalization.
For obvious reasons related to the finite accuracy of

numerical calculations, this domain of stability cannot be
checked up to infinite values of the PV mass �1. However,
we can check analytically that when �1 approaches some

critical mass �1c, all the functions h
j
i and Hj

i defining the

two-body Fock component become very large in a very
peculiar kinematical domain characterized by R? ! 1 or
x ! 0, making the calculation of physical observables
rather difficult. At �1 ¼ �1c these functions are un-
bounded because their asymptotic values turn into infinity.

FIG. 6. The anomalous magnetic moment in the Yukawa model as a function of the PV mass �1, for three different values of the
coupling constant, � ¼ 0:5 (upper left plot), 0.8 (upper right plot), and � ¼ 1:0 (lower plot). The dashed and long-dashed lines are,
respectively, the two- and three-body contributions, while the solid line is the total result.
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Since hji , H
j
i start growing from the characteristic values

R? ’ �1 and x ’ ðm=�1Þ2, the calculated observables are
sensitive to the variations of �1 if it is not far enough
from �1c.

The existence of a critical value for the regularization
parameter at a given value of the physical coupling con-
stant was already observed in Ref. [12], where bound states
of a system of two fermions interacting by means of scalar

FIG. 8. The same as in Fig. 7, but for the ratio F2ðQ2Þ=F2ð0Þ.

FIG. 7. Electromagnetic form factor F1ðQ2Þ in the Yukawa model, at �1 ¼ 100, for � ¼ 0:5 (upper left plot), 0.8 (upper right plot),
and � ¼ 1:0 (lower plot). The dotted, dashed, and long-dashed lines are, respectively, the one-, two-, and three-body contributions,
while the solid line is the total result.
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boson exchanges were studied within the three-body ap-
proximation. This property of the Yukawa model, referred
to as ‘‘triviality,’’ reveals itself after taking into account the
infinite chain series of self-energy blocks on external legs
of scattering amplitudes; i.e., it is fully nonperturbative. In
our case, as well as in Ref. [12], only fermion self-energy
contributions are involved. As it can be shown, �1c is
defined from the condition that the bare coupling constant
g02 [see Eq. (29a)] turns into infinity. The corresponding
analysis leads to the following relation between�1c and �,
valid at �1c � m:

�1c ¼ m exp

�
4�

�
þ C

�
; (50)

where C is a constant depending on the physical mass ratio
�=m only. The critical mass �1c has very sharp depen-
dence on the coupling constant �. For � ! 0 it goes to
infinity. As � increases, �1c falls down very rapidly. Thus,
for the physical masses we consider (m ¼ 0:938, � ¼
0:138), C ¼ �5:005 and the values of �1c, corresponding
to � ¼ 0:5, 0.8, and 1.0, are 5:17� 108, 4:17� 104, and
1:8� 103, respectively. For little bit larger �’s, �1c

becomes comparable with the physical masses. In this
domain, a reliable numerical calculation of physical ob-
servables is impossible. We can thus define a critical value
for the coupling constant above which such calculation
cannot be done. A similar situation was also observed for
the fermionic system in lattice calculation [14] with com-
parable values for the critical coupling.

So, in the Yukawa model, within the three-body trunca-
tion and using the PV regularization scheme, the typical
dependence of calculated observables on �1 looks as fol-
lows. At �1 comparable with the physical masses, observ-
ables are sensitive to the value of �1. Then, in the region
m � �1 � �1c this dependence has a plateau correspond-
ing to the zone of stability. This is just our ‘‘working’’
region, inside which we can trust the physical meaning of
our numerical results. At �1 close to �1c we cannot expect
to perform a reliable numerical calculation of physical
observables. The derivation of the formula (50), as well as
studying the properties of the system of Eq. (33) when�1 is
close to �1c, go beyond the framework of the present paper
and will be explained in detail in a future publication.
We emphasize that in spite of the ‘‘triviality’’ of the

Yukawa model, the latter is nevertheless suitable for check-
ing the validity of the FSDR scheme. As our previous
experience shows [5,6], if a renormalization procedure is
not fully self-consistent (e.g., the !-dependent counterterm
is omitted or x dependence of the bare parameters is ignored,
etc.), visible dependence of observables (say, the AMM) on
�1 takes place even at �1 � m and long before �1 ap-
proaches �1c. In other words, we would have no region of
stability at all, in contrast to our results reported above. At
the present stage, we have chosen the Yukawa model as a
background due to its relative simplicity making the expo-
sition of the FSDR principles easy to comprehend. In per-
spective, we plan to consider a more complicated model free
from the unpleasant ‘‘triviality’’ which does not allow us to
take the infinite limit of PV masses.

FIG. 9. Individual contributions of the one- (dotted line), two- (dashed line), and three-body (long-dashed line) Fock sectors to the
norm (solid line) of the state vector, as a function of the PV boson mass �1, for � ¼ 0:5 (upper left plot), 0.8 (upper right plot), and
� ¼ 1:0 (lower plot).
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D. Additional test of the renormalization scheme

The system of Eq. (33) was obtained in the limit
m1 ! 1 while �1 was fixed. We then increase �1 till the
stability of calculated observables is reached. Physical
observables, however, must be independent of the order in
which the infinite PVmass limit is taken. For this reason,we
shall make a test of the self-consistency of our renormal-
ization procedure. Namely, we perform an additional cal-
culation of the AMM, taking first the limit �1 ! 1
(analytically) and then the limit m1 ! 1 (numerically).

The corresponding system of equations for the vertex
functions in the limit�1 ! 1 can be obtained analogously
to Eq. (33) from the general equation shown graphically in
Fig. 2. Omitting here all technical details, we indicate only
the main differences of the system of equations obtained in
the limit �1 ! 1 from Eq. (33).

When �1 ! 1, the four vertex functions with j ¼ 0
form a closed subsystem of linear integral equations, while
the other four equations involving the functions with j ¼ 1
can be omitted since the latter ones do not contribute to the
AMM.

As far as the calculation of the electromagnetic form
factors is concerned, the change of the order of PV mass

limits also brings some new features to the procedure.
Equation (42), and following from it Eq. (43), are not
anymore valid. The same relates to Eq. (49) which is a
particular case of Eq. (42). As a result, we cannot rely on
the renormalized expression (48). Indeed, the norm of the

two-body sector Ið2Þ2 in the two-body approximation was

calculated in Ref. [4] [see Eq. (49) there]. Amputating
from it the factor g2, we find

�I ð2Þ
2 ¼ 1

8�2

Z 1

0
dR?R?

Z 1

0
dxx

X1
i;j¼0

ð�1Þiþj

� R2
? þ ½ð1� xÞmþmi�2

½R2
? þ ð1� xÞ�2

j þ xm2
i � xð1� xÞm2�2 :

(51)

Whereas for the electromagnetic current �Jð2Þ2 ð0Þ �
Jð2Þ2 ð0Þ=g2, where Jð2Þ2 is the two-body component of Jð2Þ
defined by Eq. (38) with the EMV G� found in the two-
body approximation, the calculation gives (the details can
be found in Ref. [5])

�J ð2Þ
2 ð0Þ ¼ 1

8�2

Z 1

0
dR?R?

Z 1

0
dxx

X1
i;i0;j¼0

ð�1Þiþi0þj

� R2
? þ ð1� xÞ2m2 þ ð1� xÞmðmi þmi0 Þ þmimi0

½R2
? þ ð1� xÞ�2

j þ xm2
i � xð1� xÞm2�½R2

? þ ð1� xÞ�2
j þ xm2

i0 � xð1� xÞm2� : (52)

Both integrals (51) (the two-body norm) and (52) (the two-
body current at zero momentum transfer) converge in the
limits m1 ! 1 for finite �1 and �1 ! 1 for finite m1. As
mentioned above, in the limit m1 ! 1 for finite �1, they
coincide with each other and satisfy the relation (49).
Taking the opposite limit �1 ! 1 for finite m1 means
retaining only the terms with j ¼ 0 (the physical boson
index) in the sums over j. One can easily check that in this
limit the difference �Jð2Þ2 ð0Þ � �Ið2Þ2 is not zero. For large
values of m1, it tends to a finite, mass independent value:

�J ð2Þ
2 ð0Þ � �Ið2Þ2 ¼ 1

16�2
þO

�
m

m1

log
m1

m

�
; (53)

while both �Jð2Þ2 ð0Þ and �Ið2Þ2 taken separately diverge as
logðm1=mÞwhenm1 ! 1. So, under the PV regularization
scheme, the contribution of a particular Fock sector to the
charge form factor at zero momentum transfer may not
coincide with the norm of this sector.

To get a renormalized expression for JðQÞ, we repeat the
same steps as in Sec. IVB, but without using Eqs. (43) and
(49). From the renormalization condition (41) considered,
by turn, in the two- and three-body truncated Fock spaces,
we determine the bare electromagnetic coupling constants

e02 and e03. Now both of them differ from the physical
charge e. Substituting them into the general formula (44),
we arrive at the result for the renormalized JðQÞ, which
differs from Eq. (48) by the substitution �Ið2Þ2 ! �Jð2Þ2 ð0Þ.
We compare in Table I the numerical results for the

AMM obtained in this way with those found in Sec. IVC
in the limitm1 ! 1. The AMM is considered as a function
of the PVmass which is kept finite (m1, if the limit�1 ! 1
has been taken, and vice versa). For convenience of the
comparison, we took the same sets of finite PVmass values.
If each of the finite PV masses is much larger than all

physical masses, the values of the AMM obtained in both
limits coincide within the computational accuracy (about
0.2%), as it should be if the renormalization procedure
works properly. We can thus choose any convenient order
of the infinite PV mass limits. Since the equations for the
Fock components are technically simpler in the limit
m1 ! 1, we continue working with the vertex functions
and the EMV taken in this limit. The independence of
physical results on the order in which the infinite PV
mass limit is taken, and hence on the way we use to get
rid of the bare parameters, is a strong evidence of the self-
consistency of our renormalization scheme.
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V. ANTIPARTICLE DEGREES OF FREEDOM

A. Contribution to the two-body vertex function

We can extend the Fock decomposition of the fermion
state vector by introducing the antifermion d.o.f. In the
lowest (also three-body) approximation this corresponds to
adding the ff �f Fock sector to those previously introduced
(f, fb, and fbb). We have already considered the role of
the three-body Fock sector with an antiparticle within the
pure scalar model (a heavy scalar boson interacting with
light scalar bosons) in Ref. [6]. We perform here a similar
study in the Yukawa model.

The antifermion d.o.f. contributions to the two-body
vertex are of the following two types:

(i) The first one corresponds to standard fermion-
antifermion polarization corrections to a boson
line, as shown in Fig. 10.

(ii) The second one corresponds to transition ampli-
tudes fb ! fb associated to the excitation of
antifermion d.o.f. from a fermion line, as shown in
Fig. 11(a).

These two contributions (i) and (ii) have different nature.
The first one is a f �f loop. The second contribution is a
fermion-boson loop. In addition, the diagram in Fig. 11(a),
by changing the order of vertices with respect to the light-
front time, evolves to the fbb Fock sector contribution, as
shown in Fig. 11(b). In this paper, we shall consider the
contributions of the second kind only, which corresponds
to the quenched approximation in LFD.

The system of equations for the Fock components can be
obtained by direct generalization of the procedure exposed
in Ref. [6] for the scalar case. We introduce one more

three-body (ff �f) Fock component, in addition to the f,
fb, and fbb ones considered in Sec. IV. In the three-body
approximation, this new Fock component is easily ex-
pressed through the two-body component, as well as the
fbb one. As a result, we obtain a closed (matrix) equation
for the two-body vertex function, as given, in the quenched
approximation, by Fig. 12. It differs from the equation in
the fþ fbþ fbb approximation shown in Fig. 2 by an
additional term on the right-hand side (the last diagram in
Fig. 12).
We should pay attention to the fact of using the same

constant g02 in the elementary vertices f $ fþ b and
b $ fþ �f. Strictly speaking, this is not mandatory from
the point of view of the general FSDR rules because
contributions from fbb and ff �f states represent different
Fock sectors. Nevertheless, we assign to these vertices the
same factor g02, which seems quite natural in this first
study of the influence of antifermion d.o.f.
Since the general structure (12) of the two-body vertex

function in the Yukawa model is universal, and since we do
not consider in this study polarization corrections to boson
lines, the renormalization condition (16) is untouched. The
second condition (15) also does not change because it is
universal. We can thus proceed further in the same way as
in Sec. IVA. The form of the system of equations for the

TABLE I. The anomalous magnetic moment calculated for
� ¼ 0:8 in the two different limits of the PV masses.

PV mass kept

finite (�1 or m1)

AMM when

m1 ! 1
AMM when

�1 ! 1
5 0.1549 0.1454

10 0.1641 0.1630

25 0.1690 0.1704

50 0.1702 0.1715

100 0.1706 0.1716

250 0.1708 0.1714

500 0.1709 0.1713

FIG. 10. Contribution of the ff �f Fock sector to the two-body
vertex: polarization correction to the boson line. The antifermion
is shown by the thick line.

FIG. 11. Contributions of the ff �f (a) and fbb (b) Fock sectors
to the two-body vertex due to the transition amplitude fb ! fb.

FIG. 12. Graphical representation of the equation for the two-

body vertex function �ð3Þ
2 including the contribution of antifer-

mion d.o.f. in the quenched approximation.
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functions hji andH
j
i remains the same as in Eq. (33), but the

integral terms ij0 and Ij0 [see Eq. (30)] obtain additive

j-independent contributions according to

ij0 ! ij0 þ �i0; Ij0 ! Ij0 þ �I0; (54)

where

�i0ðR?; xÞ ¼
Z 1

0
R0
?dR

0
?
Z 1

1�x
dx0

� X1
j0¼0

ð�1Þj0 ½ �c0hj
0
0 ðR0

?; x
0Þ þ �C0H

j0
0 ðR0

?; x
0Þ�;

(55a)

�I0ðR?; xÞ ¼
Z 1

0
R0
?dR

0
?
Z 1

1�x
dx0

� X1
j0¼0

ð�1Þj0 ½ �c00hj
0
0 ðR0

?; x
0Þ þ �C0

0H
j0
0 ðR0

?; x
0Þ�:

(55b)

The integral terms ij1 and I
j
1 do not change. The coefficients

�c0, �C0, �c
0
0, and

�C0
0 determining antifermion contributions

are given in the Appendix. Note that the limits of the
integration over dx0 in Eq. (55) differ from those in
Eq. (30).

B. Numerical results

We have solved numerically the system of Eq. (33) with
the integral terms modified according to Eq. (54), for the
same set of parameters as in Sec. IVC: m ¼ 0:938,

� ¼ 0:138, and � ¼ 0:5, 0.8, and 1.0. Along with the

functions hji and H
j
i , we calculate also the bare parameters

g003 and Z0
! defined by Eqs. (26a) and (26b), respectively. In

truncated Fock space, both of them are functions of x
according to Eq. (32), where the integral terms include
now antifermion contributions. Besides that, they depend
also on the PV mass �1.
We plot in Figs. 13 and 14 these bare parameters as a

function of x, each for � ¼ 0:5, 0.8, and 1.0, at a typical
value �1 ¼ 100. In Fig. 13 the relative value of g003 with

respect to its mean value �g003 over the interval 0 � x � 1 is
shown; i.e., we plot the quantity

�g003ðxÞ ¼ ½g003ðxÞ � �g003�= �g003;

where �g003 ¼
R
1
0 g

0
03ðxÞdx. For comparison, we show also

on these plots the same functions calculated without anti-
fermion contributions. The most interesting fact is that the
function g003ðxÞ, which exhibits strong x dependence in the

fþ fbþ fbb approximation, becomes almost a constant
if the ff �f Fock sector is included. Concerning the function
Z0
!ðxÞ, it shows a similar tendency as well, with a bit

stronger x dependency than g003ðxÞ. In addition, the magni-

tude of Z0
!ðxÞ is reasonably smaller than that calculated in

the fþ fbþ fbb truncated Fock space.
The fact that g003ðxÞ and Z0

!ðxÞ are close to constants is

not a specific property of the Yukawa model, since we
already encountered similar features in our studies of the
scalar model [6]. In contrast to the latter where we incor-
porated particle-antiparticle loop contributions as well, we
reproduced the property g003ðxÞ � const in the Yukawa

FIG. 13. x dependence of the bare coupling constant g003, calculated relatively to its mean value over the interval x 2 ½0; 1�, for
� ¼ 0:5 (upper left plot), � ¼ 0:8 (upper right plot), and � ¼ 1:0 (lower plot), calculated for �1 ¼ 100. The solid (dashed) lines
correspond to the results obtained with (without) the ff �f Fock sector contribution.
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model within the quenched approximation. From here it
follows that namely the contribution shown in Fig. 11(a) is
responsible for this property. This was the main reason of
using here the quenched approximation which allows us to
keep such an important property of the bare parameters, on
the one hand, and to retain the renormalization condition
(16) and avoid complications connected with the fermion-
antifermion loop renormalization, on the other hand.

For a deeper understanding of what happens with the
bare parameters when the antifermion d.o.f. are involved,
let us consider the following simple approximation. It is
instructive to solve the equation in Fig. 12 by iterations,
taking as the zero order approximation the value of the
two-body vertex function obtained for the fþ fb Fock
space truncation, i.e., with �2 ¼ g. We then substitute this
value on the right-hand side of this equation and calculate
the first iteration �2ðR?; xÞ in the limit m1 ! 1. We can
then calculate �2ðR


?ðxÞ; xÞ [see Eq. (19)] with both

constituent particle legs corresponding to the physical
particles (i ¼ j ¼ 0). This just determines the functions
b1;2ðR


?ðxÞ; xÞ which enter into the renormalization condi-

tions (15) and (16). Since we are interested in the x
dependence of these functions, it is enough to calculate
the contributions to the latter ones from the diagrams
shown in Fig. 11. By direct calculation, we find that the
sum of these two contributions to the function b1 (denoted
by ba1 and bb1) on the energy shell does not depend on x:

ba1ðR

?ðxÞ; xÞ þ bb1ðR


?ðxÞ; xÞ ¼ const; (56)

while the total value of b2 is zero:

ba2ðR

?ðxÞ; xÞ þ bb2ðR


?ðxÞ; xÞ ¼ 0: (57)

So, on the level of the first iteration, we can meet the
renormalization condition (16) exactly, with g003 indepen-

dent of x. The other condition (15) is satisfied automati-
cally without the need of an additional counterterm (20),
i.e., Z!ðxÞ ¼ 0. Note that the counterterm Z0

! defined by
Eq. (26b) does not turn into zero because it includes, beside
Z!, the contribution from the one-body state. We can assert
only that in the approximation discussed above it becomes
a constant.

This result has a simple explanation. The diagrams
shown in Fig. 11 with a constant internal two-body vertex
�2 ¼ g coincide with the light-front perturbative ones
taken in the order g3. Since there are no other g3-order
perturbative contributions to the two-body vertex function,
the sum of their amplitudes on the energy shell is identical
to the corresponding on-mass-shell Feynman amplitude
which is a constant and does not depend on !. Equations
(56) and (57) are direct consequences of this fact. Note that
if we assigned different vertex factors at that order of
perturbation theory to the elementary vertices f ! fþ b

and b ! fþ �f, we would not get the properties
(56) and (57).
We may continue iterating the equation in Fig. 12 and

represent each of the functions b1;2 as a series in powers of
the coupling constant. But these expansions, starting with
the order g5, differ from the perturbative ones. Indeed,
perturbative contributions involve Fock sectors with arbi-
trary number of particles (of course, only those which are
compatible with the order of perturbation), while the
nonperturbative equation for �2 contains no contributions
from higher than three-body Fock sectors. As a result,
b1;2ðR


?ðxÞ; xÞ are no more constants; i.e., they depend on

x. In order to enforce the fulfillment of the renormalization
conditions, we have to introduce x-dependent bare parame-
ters g003ðxÞ and Z0

!ðxÞ. The same happens in our nonpertur-

bative calculations where the two-body vertex function �2

is far from being a constant.
In the fþ fbþ fbb approximation, the x dependence

of b1;2ðR

?ðxÞ; xÞ is governed by the diagram in Fig. 11(b)

only. The lowest order iterative contribution of the latter
diagram to the function b2 at �1 � fm;�g has the form

bb2ðR

?ðxÞ; xÞ ¼ � g3

4�2
log

�1

�
þ f2ðxÞ; (58)

where f2ðxÞ is a function of x and it does not depend on
�1. In order to save the renormalization condition (15),
we have to add the structure (20) to the interaction
Hamiltonian, with the x-dependent counterterm Z!ðxÞ ¼
�bb2ðR


?ðxÞ; xÞ which has a constant �1-dependent part

(divergent when �1 ! 1) and a finite x-dependent part.
For higher order iterations, terms divergent when �1 ! 1
appear in the x-dependent part of the counterterm as well.
Hence, in our nonperturbative calculations within the fþ
fbþ fbb truncated space, we do expect strong x depen-
dence of the bare parameters, which is confirmed by the
results represented in Figs. 13 and 14.
We can now proceed to the calculation of the electro-

magnetic form factors. The general method is the same as
in Sec. IVB. With the antifermion d.o.f. included in the
quenched approximation, one should take into account
the additional contributions to the EMV shown in Fig. 15.
The number of computations can be reduced by exploiting
some symmetry properties of the diagrams since the two
contributions in Fig. 15(a) are exactly the same. So, we can
calculate only one of them and multiply the result by a
factor of 2.
For numerical calculations, we take the same values

of the particle masses and the coupling constant as in
Sec. IVC. Our results for the fermion AMM are shown
in Fig. 16. Although the antifermion d.o.f. have drastic
influence on the x dependence of the bare parameters,
they decrease the AMM value, as compared to that in the
fþ fbþ fbb approximation (see Fig. 6), by only �2%
for � ¼ 0:5, �4% for � ¼ 0:8, and �8% for � ¼ 1:0. So
small influence of the ff �f Fock sector on the AMM is
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caused by the smallness of the ratio �=m ¼ 0:147. At
larger � the effect of the antifermion d.o.f. reveals itself
stronger. The AMM is stable as a function of�1 if the latter
is much larger than the physical masses, but not too close to
the critical mass �1c which is the same as in the fþ fbþ
fbb approximation (see Sec. IVC). If the latter condition
is violated, we recover the AMM instability similar to the
one obtained in the fþ fbþ fbb truncation, with how-
ever, a larger amplitude. The origin of this larger amplitude
is not yet fully understood. It may be specific to the
Yukawa model or originate from the Fock space truncation.
In particular, the assumption that the bare coupling con-
stants at the vertices f ! fþ b and b ! fþ �f are iden-
tical should be checked carefully. Avisible deviation of the
AMM from the constant value is seen on the lower plot in
Fig. 16 when �1 > 200, while �1c for � ¼ 1 is about
1800 [log10ð�2

1c=�
2Þ � 8:2]. For � ¼ 0:5 and � ¼ 0:8

[log10ð�2
1c=�

2Þ � 19:1 and � 11:0, respectively] the
AMM deviations from the constant in the interval 100<
�1 < 1000 do not exceed the computational precision

level (� 0:5%). This means that with the same accuracy
we have no any sign of uncanceled divergences.

VI. CONCLUSION

The results reported in this study are a first example of a
full, nonperturbative calculation of the properties of rela-
tivistic compound systems in the FSDR framework. The
general approach is based on an expansion of the state
vector of the system considered in Fock components within
LFD. The use of CLFD, together with an appropriate
renormalization scheme in truncated Fock space, gives a
very promising opportunity to calculate properties of com-
pound systems in a regularization scale invariant way.
The full implementation of the renormalization condi-

tions, which relate the on-energy-shell two-body vertex
function to physical observables, is the last building block
in our strategy to get reliable predictions for physical
observables in the nonperturbative domain. It leads
a priori, and unambiguously, to the dependence of the

FIG. 14. x dependence of the counterterm Z0
! for � ¼ 0:5 (upper left plot), � ¼ 0:8 (upper right plot), and � ¼ 1:0 (lower plot),

calculated for �1 ¼ 100. The solid (dashed) lines correspond to the results obtained with (without) the ff �f Fock sector contribution.

FIG. 15. Antifermion contributions to the electromagnetic vertex in the quenched approximation.
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bare parameters on one of the kinematical variables of the
two-body vertex function; like for instance, the longitudi-
nal momentum fraction x. This dependence must disappear
in an exact calculation; i.e., when the Fock space is not
truncated.

We applied our strategy to the calculation of the
fermion electromagnetic form factors in the Yukawa model
in the three-body Fock space truncation. Within our nu-
merical accuracy, the form factors as a function of the
momentum transfer are independent of the regularization
scale (the PV boson mass) as soon as the latter is large
enough compared to the typical intrinsic energy/momen-
tum scales of the system, but smaller than some critical
value �1c.

We finally investigated the role of antifermion d.o.f.
We showed that in the leading order of perturbation
theory, the contributions to the state vector of the Fock
sector with an antifermion are precisely the ones which
make the renormalization conditions fully consistent. In
that case, no extra!-dependent counterterms are needed to
restore the rotational invariance of the two-body vertex
function on the energy shell, while the x dependence
of the bare parameters is canceled exactly. In our non-
perturbative calculations, these contributions considerably
improve the self-consistency of the renormalization
conditions.
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APPENDIX: THE COEFFICIENTS �c0, �C0, �c
0
0, AND

�C0
0

It is convenient to introduce the following notations:

�1 ¼ R02
? þ x02m2 þ ð1� x0Þ�2

j0 ;

�A ¼ ð1� xÞxR02
? þ ð1� x0Þx0R2

? þ xx0ð2� x� x0Þm2;

�B ¼ 2ð1� xÞð1� x0ÞR0
?R?; �D ¼ 8�2;

and

�J 0 ¼
Z 2�

0

d�0

2� �Dð �Aþ �B cos�0Þ ¼
signð �AÞ

�D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�A2 � �B2

p ;

�J1 ¼
Z 2�

0

cos�0d�0

2� �Dð �Aþ �B cos�0Þ ¼
1
�D �B

�
�A
�B
�J0:

Now the coefficients in Eq. (55) take the form

�c 0 ¼
ðx� 1ÞR0

?
R?�1

½R?R0
? �J0 þm2ðxx0 þ 2xþ 2x0 � 4Þ �J1�;

�C0 ¼ ðx� 1Þm2

R?�1

½R?ð3x0 � 2Þ �J0 � R0
?ð3x� 2Þ �J1�;

�c00 ¼
ðx� 1ÞR0

?
�1

½R0
?ð3x� 2Þ �J0 � R?ð3x0 � 2Þ �J1�;

�C0
0 ¼

ðx� 1Þ
�1

½m2ðxx0 þ 2xþ 2x0 � 4Þ �J0 þ R?R0
? �J1�:

Note that these coefficients do not depend on the index j.

FIG. 16. The same as in Fig. 6 but including the contributions from antifermion d.o.f. (dash-dotted line) shown in Fig. 15.
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