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We give a detailed analysis of the effects of scheme transformations in the vicinity of an exact or

approximate infrared fixed point in an asymptotically free gauge theory with fermions. We list necessary

conditions that such transformations must obey and show that, although these can easily be satisfied in the

vicinity of an ultraviolet fixed point, they constitute significant restrictions on scheme transformations at

an infrared fixed point. We construct acceptable scheme transformations and use these to study the

scheme-dependence of an infrared fixed point, making comparison with our previous three-loop and four-

loop calculations of the location of this point in the MS scheme. We also use an illustrative hypothetical

exact � function to investigate how accurately analyses of finite-order series expansions probe an infrared

fixed point and the effect of a scheme transformation on these. Some implications of our work are

discussed.
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I. INTRODUCTION

The evolution of an asymptotically free gauge theory
from the weakly coupled ultraviolet (UV) regime to the
infrared (1IR) regime is of fundamental interest. Here we
study this evolution for a theory with gauge group G
and a given content of massless fermions. The UV to IR
evolution is determined by the renormalization group �
function of the theory, which describes the dependence of
g � gð�Þ, the running gauge coupling, on the Euclidean
momentum scale, � [1]. If a theory is asymptotically free,
with a small gauge coupling at a high scale �, and if the �
function of this theory has a zero at a value �IR, then as the
scale � decreases from large values, the coupling evolves
toward �IR, which is thus an exact or approximate infrared
fixed point (IRFP) of the renormalization group [2]. The
approximate determination of the location of �IR from a
perturbative calculation of� is complicated by the fact that
at three-loop and higher order, the � function is dependent
upon the scheme used for the regularization and renormal-
ization of the theory. It is clearly important to assess the
effect of this scheme dependence on the determination of
�IR. This can be done by calculating � in one scheme,
performing a transformation to another scheme, and com-
paring the respective values of �IR in these schemes. In
Ref. [3] we pointed out that there is far less freedom in
choosing scheme transformations at an IR fixed point than
there is at a UV fixed point (UVFP), and we reported results
from a study of scheme dependence in the calculation of an
IR fixed point to three-loop and four-loop order. Since the
one-loop and two-loop terms in the � function are scheme-
independent, with scheme-dependence entering only at the
level of three loops and higher, one plausibly expects that if
�IR is small, reasonably well-behaved scheme transforma-
tions should not shift it very much, and our results confirm
this expectation. However, these transformations do have a

significant effect when �IR is of order unity, as is generi-
cally the case when one is investigating the boundary, as a
function of the number of fermions, between the infrared
phases with and without spontaneous chiral symmetry
breaking.
In this paper we present a detailed analysis of scheme

transformations in the vicinity of an IR fixed point. We
focus mainly on vectorial gauge theories but also remark
on chiral gauge theories. For a vectorial gauge theory, it is
straightforward to generalize our assumption of massless
fermions to the case of finite-mass fermions; essentially, by
use of the decoupling theorem [4], at a given scale �, one
includes the subset of the fermions with masses small
compared with � and integrates out those with masses
greater than �. In contrast, for a chiral gauge theory, the
gauge invariance requires massless fermions. As an input
to our present work, we use our previous calculations of IR

zeros of � to three-loop and four-loop order in the MS
scheme [5] (see also Ref. [6], the results of which agree
with Ref. [5]).
We define �¼g2=ð4�Þ, a � g2=ð16�2Þ ¼ �=ð4�Þ, and

�� � d�

dt
; (1.1)

where t ¼ ln�. This has the series expansion

�� ¼ �2�
X1
‘¼1

b‘a
‘ ¼ �2�

X1
‘¼1

�b‘�
‘; (1.2)

where �b‘ ¼ b‘=ð4�Þ‘. The coefficients b1 and b2 were
calculated in Refs. [7,8]. The b‘ for ‘ ¼ 1, 2 are indepen-
dent of the scheme used for regularization and renormal-
ization, while b‘ with ‘ � 3 are scheme-dependent [9].
One scheme involves dimensional regularization [10] and
minimal subtraction (MS) of the poles at dimension d ¼ 4
in the resultant Euler � functions [11]. The heavily used
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modified minimal subtraction (MS) scheme also subtracts
certain related constants [12]. Calculations of b3 and b4 in

the MS scheme were given in Refs. [13,14]. Just as the
calculation of b1 and demonstration that b1 > 0 was piv-
otal for the explanation of the approximate Bjorken scaling
observed in deep inelastic electron scattering at SLAC and
the development of quantum chromodynamics (QCD)
[7,15], the computation of b‘ for ‘ ¼ 2, 3, 4 has been
important for many QCD calculations and fits to experi-
mental data, including data on �sðQÞ [16]. Thus, although
the expansion (1.2) is not a Taylor-series expansion with
a finite radius of convergence, but instead is only an
asymptotic series [17] and neglects nonperturbative effects
such as instantons [18], comparisons of finite-order calcu-
lations with experimental data in QCD at momentum
scales that are large compared with the confinement scale,
�QCD ’ 300 MeV, have shown that one can reliably use

the perturbative � function in the deep Euclidean regime.
In the vicinity of the UV fixed point at � ¼ 0, one can

carry out a scheme transformation that renders three- and
higher-loop terms zero [19]. Below we will present an
explicit construction of a scheme transformation that
achieves this. Considerable work has been done on scheme
(and related scale) transformations that reduce higher-
order corrections in QCD calculations [20–24]. However,
aswe showed inRef. [3], in order to be acceptable, a scheme
transformation must satisfy a number of conditions, and
although these can easily be satisfied in the vicinity of a UV
fixed point, they are highly nontrivial, and are strong re-
strictions, in the vicinity of an IR fixed point. This is
especially true when �IR grows to a value of order unity,
so that the infrared theory is becoming strongly coupled.

II. BACKGROUND

We first recall some relevant background. As noted
above, except where otherwise indicated, we will consider
a vectorial non-Abelian gauge theory. This theory has
gauge group G and Nf massless (Dirac) fermions trans-

forming according to a representation R. For a givenG and
R, as Nf increases, b1 decreases and eventually vanishes at

[25,26]

Nf;b1z ¼ 11CA

4Tf

: (2.1)

Since we restrict our considerations to an asymptotically
free theory, we require that, with our sign conventions,
b1 > 0, which implies an upper limit on Nf, namely,

Nf < Nf;max � Nf;b1z: (2.2)

If Nf is zero or sufficiently small, then b2 has the same

positive sign as b1, so � has no (perturbative) IR zero for
� � 0 [27]. With a sufficient increase in Nf, b2 vanishes.

This occurs at

Nf;b2z ¼ 17C2
A

2Tfð5CA þ 3CfÞ : (2.3)

For Nf > Nf;b2z, b2 reverses sign, becoming negative.

Since Nf;b2z < Nf;max, it follows that in the interval I

defined by

I: Nf;b2z < Nf < Nf;max; (2.4)

the two-loop � function has an IR zero at aIR;2‘ ¼
�b1=b2, i.e.,

�IR;2‘ ¼ � 4�b1
b2

; (2.5)

which is physical for b2 < 0. Since b1 and b2 are scheme-
independent, so is �IR;2‘. In contrast, an IR zero calcu-

lated at n-loop (‘) order for n � 3 is dependent upon the
scheme S used for the calculation, so we denote it here as
�IR;n‘;S. (In Ref. [5] we denoted this simply as �IR;n‘ since

we were working there entirely in the context of the MS
scheme.) For a given gauge group G and fermion repre-
sentation R (provided that Nf 2 I, so that the two-loop �

function has an IR zero),

�IR;2‘ is a decreasing function of Nf: (2.6)

As Nf approaches Nf;max from below, b1 ! 0þ, while b2
approaches a finite negative constant, so

�IR;2‘ ! 0þ as Nf % Nf;max: (2.7)

For Nf in the range where an IR zero of � exists, it plays

an important role in the UV to IR evolution of the theory
[8,28]. If �IR;2‘ is large enough, then, as � decreases

through a scale denoted �, the gauge interaction grows
strong enough to produce a bilinear fermion condensate in
the most attractive channel, with attendant spontaneous
chiral symmetry breaking (S�SB) and dynamical genera-
tion of effective masses for the fermions involved [29].
In a one-gluon exchange approximation to the Dyson-
Schwinger equation for the fermion propagator in a vecto-
rial gauge theory, this occurs as � increases through a
value �cr given by �crCf �Oð1Þ [30,31]. Perturbative and
nonperturbative corrections to this one-gluon exchange
approximation have been discussed [32]. In a chiral gauge
theory this fermion condensation breaks the gauge sym-
metry, while in the vectorial case, the most attractive
channel for fermion condensation is the singlet channel,
which preserves the gauge symmetry [33]. Since the fer-
mions that have gained dynamical masses are integrated
out in the low-energy effective field theory below �, the �
function changes, and the theory flows away from the
original IR fixed point, which is thus only approximate.
However, if �IR;2‘ is sufficiently small, as is the case

with a large enough (AF-preserving) fermion content,
then the theory evolves from the UV to the IR without
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any spontaneous chiral symmetry breaking. In this case the
theory has an exact IR fixed point.

For a given G and Nf (massless) fermions in a repre-

sentation R, the critical value of Nf beyond which the

theory flows to the IR conformal phase is denoted Nf;cr.

As Nf increases, �IR;2‘ decreases, and Nf;cr is the value at

which �IR;2‘ decreases through �cr. The determination of

the value of Nf;cr for a given gauge group G and fermion

representation R is of basic field-theoretic interest. In
addition, this determination is important for ongoing stud-
ies of quasiconformal gauge theories. These have a gauge
coupling that gets large but runs slowly over a long interval
of � due to an approximate IR fixed point [31]. In the
region of Nf slightly less than Nf;cr, where the theory

confines but behaves in a quasiconformal manner, some
insight has been gained from continuum studies of the
changes in the spectrum of gauge-singlet hadrons as com-
pared with the spectrum in a QCD-like theory [31,34,35].
Going beyond continuum studies, there has been an inten-
sive recent program of lattice simulations to estimate Nf;cr

and study the properties of quasiconformal gauge theories.
For example, recent lattice papers on SU(3) with fermions
in the fundamental representation include [36,37], and
some general reviews are given in the conferences [38].
The UV to IR evolution of a chiral gauge theory and
associated sequential gauge symmetry breaking are also
important for dynamical approaches to fermion mass gen-
eration [39].

Since �IR;2‘ is �Oð1Þ, especially in the quasiconformal

case where Nf & Nf;cr, there are significant corrections to

the two-loop results from higher-loop terms in �. These
motivate one to calculate these corrections to three-loop

and four-loop order, and this has been done in the MS
scheme [5,6,40]. We found that, as expected if perturbative
calculations are reasonably reliable, for a given R and Nf

(provided that Nf 2 I, so that the two-loop beta function

has an IR zero), the shift in the location of the IR zero is
smaller when one goes from the three-loop to the four-loop
level than when one goes from the two-loop to the three-
loop level. The actual direction of the shift depends on the
fermion representation, R. For the fundamental (fund.)
representation, we found that, for a given N and Nf,

�IR;3‘;MS < �IR;4‘;MS < �IR;2‘ for R ¼ fund: (2.8)

These shifts as a function of loop order are larger for
smaller Nf and get smaller as Nf approaches Nf;max. For

example, for G ¼ SUð3Þ and Nf ¼ 12, we calculated

(cf., Table III of Ref. [5])

SUð3Þ; Nf ¼ 12: �IR;2‘ ¼ 0:754;

�IR;3‘;MS ¼ 0:435

�IR;4‘;MS ¼ 0:470; (2.9)

so the fractional shifts are

SUð3Þ; Nf¼12:
�IR;3‘;MS��IR;2‘

�IR;2‘

¼�0:42

�IR;4‘;MS��IR;3‘;MS

�IR;3‘;MS

¼þ0:07; (2.10)

and the resultant ratios are

SUð3Þ; Nf ¼ 12:
�IR;3‘;MS

�IR;2‘

¼ 0:58

�IR;4‘;MS

�IR;2‘

¼ 0:62

�IR;4‘;MS

�IR;3‘;MS

¼ 1:08: (2.11)

Qualitatively similar loop comparisons apply for other
values of N and Nf.

For the other (viz., adjoint and rank-2 symmetric and
antisymmetric tensor) representations that we studied in
Ref. [5], we also found that higher-loop values of the
IR zero of � were generically smaller than the two-
loop value, although not all parts of the inequality in
(2.8) necessarily held. As examples, for G ¼ SUð2Þ
and fermions in the adjoint (triplet) representation,
�IR;2‘ ¼ 0:628, �IR;3‘;MS ¼ 0:459, and �IR;2‘;MS ¼ 0:450,

while for G ¼ SUð3Þ with octet fermions, �IR;2‘ ¼ 0:419,
�IR;3‘;MS ¼ 0:306, and �IR;2‘;MS ¼ 0:308.

Clearly, it is important to assess the scheme-dependence
in these calculations of the IR zero of � at three-loop and
four-loop level. In particular, one would like to know
quantitatively how the value of the IR zero, computed at
a loop level higher than two loops, changes when one

changes the scheme from the MS scheme used in
Refs. [5,6] to another scheme. This information is also
useful for continuum studies of the boundary, as a function
of Nf (for a given N and R), between the IR phase with

chiral symmetry breaking and the chirally symmetric IR
phase. We address this question here. First, we discuss
general properties of a scheme transformation.

III. SCHEME TRANSFORMATION

A. General

A scheme transformation can be expressed as a mapping
between � and �0. It will be convenient to write this as

a ¼ a0fða0Þ: (3.1)

To keep the UV properties the same, one requires fð0Þ ¼ 1.
We consider functions fða0Þ that are analytic about
a ¼ a0 ¼ 0 and hence can be expanded in the form

fða0Þ ¼ 1þ Xsmax

s¼1

ksða0Þs ¼ 1þ Xsmax

s¼1

�ksð�0Þs; (3.2)

where the ks are constants, �ks ¼ ks=ð4�Þs, and smax may be
finite or infinite. For fða0Þ functions with infinite smax, our
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assumption of analyticity at a0 ¼ a ¼ 0 requires that the
infinite series in Eq. (3.2) converges within some nonzero
radius of convergence. Given the form (3.2), it follows that
the Jacobian

J ¼ da

da0
¼ d�

d�0 (3.3)

satisfies

J ¼ 1 at a ¼ a0 ¼ 0: (3.4)

We have

��0 � d�0

dt
¼ d�0

d�

d�

dt
¼ J�1��: (3.5)

This has the expansion

��0 ¼ �2�0 X1
‘¼1

b0‘ða0Þ‘ ¼ �2�0 X1
‘¼1

�b0‘ð�0Þ‘; (3.6)

where �b0‘ ¼ b0‘=ð4�Þ‘. Given the equality of Eqs. (3.5) and

(3.6), one can solve for the b0‘ in terms of the b‘ and ks. This
leads to the well-known important result that [9]

b0‘ ¼ b‘ for ‘ ¼ 1; 2; (3.7)

i.e., that the one- and two-loop terms in � are scheme-
independent. We note that the scheme-independence of b2
assumes that fða0Þ is gauge-invariant. This is evident from
the fact that in the momentum subtraction (MOM) scheme,
b2 is actually gauge-dependent [41] and is not equal to b2 in

the MS scheme. We restrict our analysis here to gauge-
invariant scheme transformations and to schemes, such as

MS, where b2 is gauge-invariant.
If there is an IR zero in the two-loop ��, at �IR;2‘ given

by (2.5), then there is also an IR zero in the two-loop ��0 at
the same value of �0, This is consistent with the fact that, in
general, (3.1) maps a0 ¼ �b1=b2 to a � �b1=b2, since
(3.1) is an exact result, whereas the equality of two-loop IR
zero values holds for the truncations of �� and ��0 to two-
loop order. This difference is also important to remember
in analyzing shifts of the location of the IR zero of �
function. For an illustration of this, we again take
G ¼ SUð3Þ and Nf ¼ 12. In Eqs. (2.9) we listed the values

of�IR;2‘ and, in theMS scheme, the values of the three-loop

and four-loop IR zeros, �IR;n‘;MS, n ¼ 3, 4. As an example

of an acceptable scheme transformation, we consider the
application of the scheme transformation a ¼ ð1=rÞ�
sinhðra0Þ to the � function in the MS scheme, which will
be discussed in detail in Sec. VII below. For r ¼ 6, we find

Sshr ; r ¼ 6: �0
IR;2‘;Sshr ;r¼6 ¼ �IR;2‘ ¼ 0:754

�0
IR;3‘;Sshr ;r¼6 ¼ 0:433;

�0
IR;4‘;Sshr ;r¼6 ¼ 0:467: (3.8)

Because these zeros are calculated via truncations of the��0

function to three-loop and four-loop order, respectively,
they differ slightly from the result of applying the exact
(infinite-order) scheme transformation in Eq. (2.9) to the IR
zeros in Eq. (2.9). Thus, the transformation Sshr with r ¼ 6

maps the value �IR;2‘ ¼ 0:754 to the value 0:739, and so

forth for the others in Eq. (3.8). In compact notation,

Sshr;r¼6: ð�IR;2‘ ¼ 0:754Þ ! 0:739;

ð�IR;3‘;MS ¼ 0:435Þ ! 0:432;

ð�IR;4‘;MS ¼ 0:470Þ ! 0:466: (3.9)

Similar comments apply for other values of r with this Sshr
scheme transformation, and for other scheme transforma-
tions. In general, forNf values where �IR;2‘ is not too large,

so that the perturbative estimate of the IR zero of � is
reasonably reliable, and provided that a scheme transforma-
tion is sufficiently well-behaved, the differences between
�0
IR;n‘;S calculated to n-loop order and the result of applying

the exact transformation to the initial scheme (here, theMS
scheme) are small.
For a given gauge group G and fermion representation

R, as Nf approaches Nf;max from below, since �IR;2‘ ! 0

as Nf approaches Nf;max from below [cf., Eq. (2.7)], it

follows that, insofar as higher-order perturbative calcula-
tions of � are reliable, they also yield �IR;n‘ ! 0 and, after
an acceptable scheme transformation, also

�0
IR;n‘ ! 0þ as Nf % Nf;max: (3.10)

In order to assess scheme-dependence of an IR fixed
point, we have calculated the relations between the b0‘ and
b‘ for higher ‘. For example, for ‘ ¼ 3, 4, 5 we obtain

b03 ¼ b3 þ k1b2 þ ðk21 � k2Þb1; (3.11)

b04 ¼ b4 þ 2k1b3 þ k21b2 þ ð�2k31 þ 4k1k2 � 2k3Þb1;
(3.12)

and

b05 ¼ b5 þ 3k1b4 þ ð2k21 þ k2Þb3 þ ð�k31 þ 3k1k2 � k3Þb2
þ ð4k41 � 11k21k2 þ 6k1k3 þ 4k22 � 3k4Þb1: (3.13)

We list the somewhat longer expressions for b0‘ for ‘ ¼ 6, 7,
8 in the Appendix. Since the b‘ have been calculated only up
to ‘ ¼ 4, we will only need the above results for b03 and b04
in our study of the effect of performing scheme transforma-
tions on the four-loop � functions for a non-Abelian gauge
theory. However, wewill use the b0‘ up to ‘ ¼ 8 in our study
of the effect of scheme transformations on an illustrative
hypothetical exact � function in Sec. VIII.
From the expressions for b0‘ with 3 � ‘ � 8 that we

have calculated, we can discern several general structural
properties. First, in the coefficients of the terms bn entering
in the expression for b‘, the sum of the subscripts of the kss
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is equal to ‘� n with 1 � n � ‘� 1, and the products of
the various kss correspond to certain partitions of ‘� n.
For example, in the expression for b04, the coefficient of b1
contains the term �2k31 corresponding to the partition

(1,1,1) of ‘� n ¼ 4� 1 ¼ 3, the term 4k1k2 correspond-
ing to the partition (1,2) of 3, and the term �2k3, corre-
sponding to the partition 3 of 3. However, because of
cancellations, in the expression for b0‘ for even ‘, the

coefficient of bn does not contain all of the terms corre-
sponding to the partitions of ‘� n. For example, in the
expression for b02, there is no k1b1 term; in the expression
for b04, although the partitions of 2 are fð1; 1Þ; ð2Þg, the
coefficient of b2 does not contain k2; and in the expression
for b06, although the partitions of 3 are fð1; 1; 1Þ; ð1; 2Þ; ð3Þg,
the coefficient of b3 does not contain k31 or k3. A corollary

of the structural property above is that the only kss
that appear in the formula for b0‘ are the kss with 1 � s �
‘� 1.

We note that the form for fða0Þ in Eq. (3.2) could be
generalized further so that fða0Þ could include a part that is
finite but nonanalytic at a0 ¼ 0. An example is

fða0Þ ¼
�
1þ Xsmax

s¼1

ksða0Þs
�
½1þ �e��=a0 �; (3.14)

where � and � are (real) constants and � > 0. (In this
context, we recall that expressions containing terms like
expð�8�2=g2Þ naturally arise in instanton calculations.)
Since no terms involving � occur at any finite order of a
perturbative expansion of fða0Þ in powers of a0, our results
for b0‘ in Eqs. (3.11), (3.12), and (3.13), (A1)–(A3) continue
to hold for these scheme transformations.

B. Transformation to ’t Hooft scheme at a UVFP

Given that the b‘ for ‘ � 3 are scheme-dependent, one
may ask whether it is possible to transform to a scheme in
which the b0‘ are all zero for ‘ � 3, i.e., a scheme in which

the two-loop � function is exact. Here and elsewhere, by
the term ‘‘exact two-loop � function’’ we mean exact in
the sense of Eq. (1.2), which does not include possible
nonperturbative contributions, such as could be produced
by instantons [18]. Near the UV fixed point at � ¼ 0, this
is possible, as emphasized by ’t Hooft [19]. This is com-
monly called the ’t Hooft scheme, and we denote it as SH.
For this and other schemes, we shall also use this symbol to
refer to transformation that takes one to the given target
scheme; the meaning will be clear from the context.

We next present an explicit scheme transformation
which, starting from a given scheme, transforms to the ’t
Hooft scheme. This necessarily has smax ¼ 1. Our key to
constructing this transformation is to take advantage of the
property that b0‘ for ‘ � 3 contains only a linear term in

k‘�1, so that the equation b0‘ ¼ 0 is a linear equation for

k‘�1, which can always be solved. In order to simplify the
transformation, we start by setting k1 ¼ 0. We then solve
the equation b03 ¼ 0 for k2, obtaining

k2 ¼ b3
b1

: (3.15)

We then substitute these values of k1 and k2 into the
equation b04 ¼ 0 using our expression (3.12) and solve
for k3, obtaining

k3 ¼ b4
2b1

: (3.16)

We then continue iteratively in this manner. In the next
step, we substitute these values of ks, s ¼ 1, 2, 3, into the
expression for b05 ¼ 0, using Eq. (3.13), and solve for k4,
getting

k4 ¼ b5
3b1

� b2b4
6b21

þ 5b23
3b21

: (3.17)

Proceeding in this manner, we obtain

k5 ¼ b6
4b1

� b2b5
6b21

þ 2b3b4
b21

þ b22b4
12b31

� b2b
2
3

12b31
; (3.18)

and

k6 ¼ b7
5b1

� 3b2b6
20b21

þ 8b3b5
5b21

þ 11b24
20b21

� 4b2b3b4
5b31

þ b22b5
10b31

þ 16b33
5b31

þ b22b
2
3

20b41
� b32b4

20b41
: (3.19)

One can continue this procedure iteratively to calculate ks
with arbitrarily high values in s, since the equation b‘ ¼ 0
is a linear equation for k‘�1, which always has a solution.
This yields a two-loop � function that is exact. We shall
refer to this transformation as the SH transformation.
Although we do not claim that this is the only way to
transform to the ’t Hooft scheme, it is a particularly simple
way to do so.
There are several salient structural features of these

expressions for the kss. First, ks only depends on ratios
of b‘=b1. Second, the ‘ values that occur in the ratios
b‘=b1 that enter into the expression for ks have the property
that in a term proportional toQimax

i¼2 b‘i
bj1

; (3.20)

one has

s ¼
�Ximax

i¼2

‘i

�
� j; (3.21)

where imax is determined by sþ j. As a corollary, the sets
of ‘i that enter into the numerator of Eq. (3.20) arise as
subsets of the partitions of sþ j that exclude the integer 1.
For example, in the expression for k6, Eq. (3.19), the
products of b‘i that enter in the terms proportional to b�2

1

have sets of ‘i values that are a subset of partitions of
6þ 2 ¼ 8 that exclude the value 1, including (2,6), (3,5),
and (4,4), corresponding to the products b2b6, b3b5, and
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b24. Not all of the partitions of sþ j excluding 1 are
represented; in the example given, the partitions of 8
excluding 1 also include (2,2,2,2), (2,2,4), and (2,3,3),
but the numerators of these terms proportional to b�2

1 in

k6 do not include b42, b
2
2b4, or b2b

2
3.

In this ’t Hooft scheme with a (perturbatively) exact
two-loop � function, if the resultant IR zero, �IR;2‘, is at

a sufficiently small coupling to lie in the non-Abelian
Coulomb phase so that the evolution into the infrared
does not entail any spontaneous chiral symmetry break-
ing or attendant dynamical fermion mass generation,
then this is an exact IR fixed point. In this case, one
can take advantage of the exact solution of the differen-
tial equation represented by the two-loop � function in
terms of a Lambert function [42]. In contrast, if the resultant
IR zero, �IR;2‘, is greater than the critical value, �cr for

spontaneous chiral symmetry breaking and associated bi-
linear fermion condensate formation, then, as � decreases
below a scale denoted � and � increases past �cr, this
condensate formation occurs, the fermions gain dynamical
masses, and one integrates them out of the low-energy
effective field theory applicable below this scale. Hence,
the � function changes to that of a pure gluonic theory, and
so one cannot use the solution in terms of a Lambert
function calculated for �>�, but instead must match
this onto a different solution with Nf ¼ 0 applicable for

�<�. This latter solution does not involve any perturba-
tive IR zero.

C. Necessary conditions for an acceptable
scheme transformation

In order to be physically acceptable, this transformation
must satisfy several conditions,Ci. For finite smax, Eq. (3.1)
is an algebraic equation of degree smax þ 1 for �0 in terms
of �. We require that at least one of the smax þ 1 roots must
satisfy these conditions. For smax ¼ 1 with nonzero ks for
arbitrarily large s, the equation for �0 in terms of � is
generically transcendental, and again we require that the
physically relevant solution must satisfy these conditions.
These are as follows:

(i) C1: the scheme transformation must map a real
positive � to a real positive �0, since a map taking
�> 0 to �0 ¼ 0would be singular, and a map taking
�> 0 to a negative or complex �0 would violate the
unitarity of the theory.

(ii) C2: the scheme transformation should not map a
moderate value of �, for which perturbation theory
may be reliable, to a value of �0 that is so large that
perturbation theory is unreliable.

(iii) C3: J should not vanish in the region of � and �0 of
interest, or else there would be a pole in Eq. (3.5).

(iv) C4: The existence of an IR zero of � is a scheme-
independent property of an AF theory, depending
(insofar as perturbation theory is reliable) only
on the condition that b2 < 0. Hence, a scheme

transformation must satisfy the condition that ��

has an IR zero if and only if ��0 has an IR zero.
Since one can define a transformation from � to �0 and

the inverse from �0 to �, these conditions apply going in
both directions. These four conditions can always be sat-
isfied by scheme transformations used to study the UV
fixed point and hence in applications to perturbative QCD
calculations, since the gauge coupling is small (e.g.,
�sðmZÞ ¼ 0:118), and one can choose the ks to have ap-
propriately small magnitudes. By continuity, it follows that
among the smax þ 1 roots of Eq. (3.1), there is always one
with a real (positive) �0 ’ � near the UV fixed point at
� ¼ 0. For small �, C1-C4 are then met. We note that, in
addition to these four conditions, there may also be other
related ones that must be satisfied for a given scheme
transformation to be acceptable. For example, in the S1
scheme presented in Ref. [3], it is necessary that the
expression b22 � 4b1b3 in Eq. (5.3) must be nonnegative.

IV. EXAMPLESOF SCHEMETRANSFORMATIONS
ACCEPTABLE ATA UVFP BUT NOTATAN IRFP

In Ref. [3] we pointed out that although these conditions
C1-C4 can easily be satisfied by a scheme transformation
applied in the vicinity of the UV fixed point at� ¼ �0 ¼ 0,
they are not automatically satisfied, and are a significant
constraint, on a scheme transformation that one tries to
apply in the vicinity of an IR fixed point. In Ref. [3] we
demonstrated this with two specific examples: (i) � ¼
�0 tanhð�0Þ, and (ii) a scheme transformation with
smax ¼ 2, k1 ¼ 0, and k2 ¼ b3=b1 designed to render
b03 ¼ 0. Here we elaborate on these, give a third example

of a scheme transformation that is acceptable at a UV fixed
point but not at a general IR fixed point, and discuss some
issues that arise with a fourth transformation. The two
pathological transformations presented in Ref. [3] are de-
noted, respectively, as (i) the special r ¼ 4� case of the
Sthr scheme transformation and (ii) the S2 scheme trans-

formation, discussed below in Sec. VI and IVA respec-
tively. Our two additional examples are the S3 scheme
transformation in Sec. IVB and the transformation SH to
the ’t Hooft scheme in Sec. IVC. In the following, to avoid
overly complicated notation, we will use the generic nota-
tion �0 for the result of the application of each scheme
transformation to an initial �, with it being understood that
this refers to the specific transformation under considera-
tion. Where it is necessary to clarify, we will use a sub-
script to identify the specific scheme S being discussed.

A. The S2 transformation with smax ¼ 2 to a
scheme with b03 ¼ 0

Here we elaborate on the scheme transformation dis-
cussed in Ref. [3] with smax ¼ 2 that renders b03 ¼ 0
and is acceptable at a UV fixed point, but was shown to
be unacceptable at a general IR fixed point. Because
smax ¼ 2, this scheme transformation depends on two
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parameters, ks with s ¼ 1, 2. Since b03 depends quadrati-

cally on k1 and linearly on k2, the solution of the desired
condition b03 ¼ 0 is simplest if one sets k1 ¼ 0. Then, using
Eq. (3.11) and solving this equation b03 ¼ 0 for k2, one finds

k2 ¼ b3
b1

: (4.1)

This scheme transformation, denoted S2, is then

S2: smax ¼ 2; k1 ¼ 0; k2 ¼ b3=b1; i:e:;

a ¼ a0
�
1þ b3

b1
ða0Þ2

�
: (4.2)

Applying this S2 scheme transformation to an initial
scheme, one obtains

b04 ¼ b4: (4.3)

It is straightforward to calculate the b0‘ for ‘ � 5, but we
will not need them here.

By construction, at the three-loop level, ��0 in this
scheme is the same as the (scheme-independent) two-loop
� function, so the IR zero of ��0 at the three-loop level is

�0
IR;3‘;Si

¼ �0
IR;2‘;Si

¼ �IR;2‘ ¼ � 4�b1
b2

for Si ¼ S1; S2; S3: (4.4)

(We write this in a general form, since it holds not just for
the present S2 scheme transformation, but also for the S3 and
S1 transformations to be discussed below.) At the four-loop
level in this S2 scheme, the IR zero is determined by the
physical (smallest positive) solution of the cubic equation

b1 þ b2a
0 þ b04ða0Þ3 ¼ 0: (4.5)

In order that this transformation obey condition C1, that it
maps a0 > 0 to a > 0, we require that 1þ ðb3=b1Þða0Þ2 > 0.
This inequality must be satisfied, in particular, in the vicinity
of the two-loop IR zero of �, so substituting the (scheme-
independent) aIR;2‘ ¼ a0IR;2‘ ¼ �b1=b2 from Eq. (2.5), we

obtain the inequality

1þ b1b3
b22

> 0: (4.6)

But, as noted in Ref. [3], this inequality is not, in general,
satisfied. For example, let us consider the class of theories
with G ¼ SUðNÞ and Nf fermions in the fundamental rep-

resentation. Substituting the scheme-independent expres-
sions for b1 and b2 [7,8], together with the expression for

b3 in the MS scheme [13] for this class of theories, the
inequality (4.6) becomes

104470N6 þ 3NfNð�26950N4 þ 4505N2 þ 99Þ þ N2
fð15384N4 � 4656N2 þ 270Þ þ 4N3

fNð�112N2 þ 33Þ
36½34N3 þ Nfð�13N2 þ 3Þ�2 > 0:

(4.7)

For a given value ofN, the determination of the range inNf

where this inequality is satisfied involves the calculation of
the zeros of the numerator of (4.7), which are solutions of a
cubic equation inNf. ForN ¼ 2, these zeros occur atNf ¼
4:27; 8:44; 55:90, while for N ¼ 3 they occur at Nf ¼
6:22; 12:41; 84:32. As before, we restrict our considera-
tion to the interval I given by Eq. (2.4), Nf;b2z < Nf <
Nf;max, where the two-loop � function has an IR zero. For
N ¼ 2, this interval I is 5:55<Nf < 11, and in this inter-
val the inequality is violated for 5:55<Nf < 8:44 and is
satisfied for 8:44<Nf < 11. For N ¼ 3, the interval I is
8:05<Nf < 16:5, and in this interval, the inequality is
violated for 8:05<Nf < 12:41 and is satisfied for 12:41<
Nf < 16:5. For the physical, integer values of Nf, these
statements are evident from the values of �b‘ listed in
Table III
of our Ref. [5]. For example, for N ¼ 3 and Nf ¼ 10,
where �IR;2‘ ¼ 2:21, the values of these coefficients are
�b1 ¼ 0:345, �b2 ¼ �0:156, and �b3 ¼ �0:386, so that

1þ
�b1 �b3
�b22

¼ 1þ b1b3
b22

¼ �4:47

for G ¼ SUð3Þ; Nf ¼ 10; R ¼ fund:

(4.8)

The values of 1þ ðb1b3=b22Þ for N ¼ 3 and some larger
values of Nf are as follows: �1:43 for Nf ¼ 11 and
�0:270 for Nf ¼ 12, with positive values for Nf � 13 in
the interval I, including the value þ0:293 for Nf ¼ 13.
The pathology that this S2 scheme transformation vio-

lates conditions C1 and C4 is reflected in the results that
one gets by actually applying it to the four-loop � function

in the MS scheme and solving for the IR zeros. As above,
we focus on the case of fermions in the fundamental
representation, with Nf 2 I. We list the values of

�0
IR;3‘;S2

and �0
IR;4‘;S2

in Table I. The three-loop values are

given by Eq. (4.4). As regards the four-loop values, we find
that, except for Nf value(s) near Nf;max, at the upper end of

the non-Abelian Coulomb phase, the cubic equation (4.5)
yields a negative root and a complex-conjugate pair of
roots, none of which is physically acceptable. For example,
for N ¼ 2, there is no physical root (denoted as n.p. in the
table) for Nf 2 I except for the highest value of Nf below

Nf;max, namely Nf ¼ 10. Similarly, when N ¼ 3, a physi-

cal root of the cubic equation first appears for Nf ¼ 14 and

when N ¼ 4, this happens when Nf ¼ 19.

Thus, although this S2 scheme transformation is accept-
able at the UV fixed point at � ¼ 0 and at a sufficiently
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weakly coupled IR fixed point at the upper end of the non-
Abelian Coulomb phase, it is not acceptable at a general IR
fixed point, since it fails to satisfy condition C1. The latter
pathology occurs when �IR grows to a value of order unity.
According to the results of several lattice groups [36], for
N ¼ 3, the theory with Nf ¼ 12, and hence also the

theory with Nf ¼ 13, evolve into the infrared in a confor-

mal, non-Abelian Coulomb phase (other lattice groups
differ on the Nf ¼ 12 case [37]). Provided that one accepts

that Nf ¼ 12, and hence also Nf ¼ 13, are in the non-

Abelian Coulomb phase, our results above show that a
scheme transformation may fail to be acceptable not only
at an IR fixed point in the phase with confinement and
spontaneous chiral symmetry breaking (which is approxi-
mate), but also at an exact IR fixed point in the lower part
of the chirally symmetric conformal phase.

B. The S3 transformation with smax ¼ 2 to a
scheme with b03 ¼ 0

Here we present a scheme transformation with smax ¼ 2
that is also designed to render b03 ¼ 0 and is acceptable at a
UV fixed point, but we show that it is not acceptable at a
general IR fixed point. The property that smax ¼ 2 and the
goal of rendering b03 ¼ 0 are the same as those of the

transformation given in Ref. [3] (denoted S2 here). Since
one uses a scheme transformation with smax ¼ 2 and since
b03 depends only on k1 and k2, it follows that a natural first
choice is to try k1 ¼ 0 and k2 � 0. This was the (S2)
transformation that was shown to be unacceptable at a
general IR fixed point in Ref. [3]. Another natural choice
is to set k2 ¼ k21, since this renders the coefficient of the b1
term in b03, namely ðk21 � k2Þ, equal to zero. Hence, this

choice considerably simplifies the equation b03 ¼ 0, which
is reduced to a linear equation for k1, with solution
k1¼�b3=b2. We denote this scheme transformation as S3,

S3: smax ¼ 2; k1 ¼ �b3
b2

; k2 ¼ k21 ¼
b23
b22

; (4.9)

and study it here. As before, we also use S3 to refer to the
scheme that is obtained by applying this transformation to

an initial scheme such as the MS scheme. We denote the
resultant IR zero of ��0 at the n-loop level as �0

IR;n‘;S3
.

Evaluating Eq. (3.12) for b04 in this scheme, we calculate

b04 ¼ b4 � b23
b2

� 2b1b
3
3

b32
for S3: (4.10)

The function fða0Þ takes the simple form

TABLE I. Values of the IR zeros of �� in the MS scheme and the respective ��0 functions obtained by applying the S1, S2, and S3
scheme transformations to the MS �� function. The listings are for an SUðNÞ gauge theory with Nf (massless) fermions in the

fundamental representation, for N ¼ 2, 3, 4, calculated to n-loop order and denoted as �IR;n‘;MS and �0
IR;n‘;Si

, where i ¼ 1, 2, 3,

respectively. Here, �IR;2‘;MS ¼ �0
IR;2‘;Si

is scheme-independent, so we denote it simply as �IR;2‘. Since all of these Si scheme

transformations with i ¼ 1, 2, 3 yield b03 ¼ 0, it follows that �0
IR;3‘;Si

¼ �0
IR;2‘ ¼ �IR;2‘. The notation n.p. means not physical, i.e.,

there is no physical solution for �0
IR;4‘;Si

. See text for further details.

N Nf �IR;2‘ �IR;3‘;MS �IR;4‘;MS �0
IR;4‘;S1

�0
IR;4‘;S2

�0
IR;4‘;S3

2 7 2.83 1.05 1.21 0.640 n.p. 0.488

2 8 1.26 0.688 0.760 0.405 n.p. 0.633

2 9 0.595 0.418 0.444 0.2385 n.p. 0.730

2 10 0.231 0.196 0.200 0.109 0.240 0.248

3 10 2.21 0.764 0.815 0.463 n.p. 0.316

3 11 1.23 0.578 0.626 0.344 n.p. 0.391

3 12 0.754 0.435 0.470 0.254 n.p. 0.444

3 13 0.468 0.317 0.337 0.181 n.p. 0.4385

3 14 0.278 0.215 0.224 0.121 0.321 0.358

3 15 0.143 0.123 0.126 0.068 0.148 0.152

3 16 0.042 0.040 0.040 0.0215 0.042 0.042

4 13 1.85 0.604 0.628 0.365 n.p. 0.228

4 14 1.16 0.489 0.521 0.293 n.p. 0.276

4 15 0.783 0.397 0.428 0.235 n.p. 0.311

4 16 0.546 0.320 0.345 0.187 n.p. 0.339

4 17 0.384 0.254 0.271 0.146 n.p. 0.362

4 18 0.266 0.194 0.205 0.110 n.p. n.p.

4 19 0.175 0.140 0.145 0.0785 0.193 0.208

4 20 0.105 0.091 0.092 0.050 0.108 0.111

4 21 0.047 0.044 0.044 0.023 0.048 0.048
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fða0Þ ¼ 1þ �þ �2 for S2;

where � � k1a
0 ¼ �b3a

0

b2
: (4.11)

Now 1þ �þ �2 is always positive, with no real zero in
� (and a minimum at � ¼ �1=2, where this polynomial is
equal to 3=4). The Jacobian for this transformation is

J ¼ 1þ 2�þ 3�2 for S3: (4.12)

This J is also positive, with no real zero in � (and a
minimum at � ¼ �1=3, where J ¼ 2=3). As with the S2
scheme, at the three-loop level, ��0 in this scheme is the
same as the two-loop � function, so the IR zero of ��0 at
the three-loop level satisfies Eq. (4.4). At the four-loop
level in this S3 scheme, the IR zero is determined by
the physical (smallest positive) solution of the cubic
equation (4.5) with b04 given by Eq. (4.10).

We have calculated the resultant �0
IR;n‘ � �IR;n‘;S3 in

this S3 scheme up to the ðn ¼ 4Þ-loop level. In Table I
we list values of the n-loop IR zero, �0

IR;n‘;S3
for n ¼ 2, 3, 4

for relevant Nf, with fermions in the fundamental repre-

sentation and several values of N. For comparison we also

include the values of �IR;n‘;MS for n ¼ 3, 4 in the MS

scheme from Ref. [5]. Since the two-loop value is
scheme-independent, we denote it simply as �IR;2‘. The

relation (4.4) is reflected in the entries in the table. The
four-loop zero is denoted as �0

IR;4‘;S3
. In contrast with

�IR;n‘;MS and �0
IR;n‘;S1

, which decrease monotonically as

a function of Nf for a given N, �0
IR;4‘;S3

behaves non-

monotonically as a function of Nf, first increasing and

then decreasing.
But our overriding result here is that the S3 scheme

transformation does not yield any physical value for
�0
IR;4‘;S3

in the case of SU(4) with Nf ¼ 18 in the funda-

mental representation. In this case, the above-mentioned
cubic equation has only a negative root and a complex-
conjugate pair of roots. Hence, this S3 scheme transforma-
tion fails conditions C1 and C4 and must be rejected as
unacceptable in the vicinity of a general IR fixed point.
This theory with an SU(4) gauge group and Nf ¼ 18

fermions is likely to be in a non-Abelian Coulomb phase
in the infrared. Assuming this is the case, this provides
another example of how a scheme transformation can be
pathological not just in the confined phase with spontane-
ous chiral symmetry breaking, but also in the infrared
conformal phase.

C. The SH transformation to the ’t Hooft scheme

In Sec. III B we have constructed a scheme transforma-
tion that can be applied to an arbitrary initial scheme to
shift to the ’t Hooft scheme, with b0‘ ¼ 0 for ‘ � 3 and thus
a (perturbatively) exact two-loop � function. By the gen-
eral continuity arguments that we have presented, this

scheme transformation satisfies all of the requisite condi-
tions to be an acceptable transformation in the vicinity of
the UV fixed point at � ¼ �0 ¼ 0. However, one encoun-
ters a complication with this transformation at an IR fixed
point. This can be explained as follows. For a given group
G and fermion representation R, as Nf increases toward

Nf;max, b1 ! 0, while b2 and, in the initial scheme, the b‘
with ‘ � 3, approach finite nonzero values. Hence, since
the coefficient ks is a sum of terms each of which contains
an inverse power of b1, it follows that, as Nf takes on

values close to Nf;max, these ks coefficients may have

arbitrarily large magnitudes as s ! 1. For a particular
term ksða0Þs in the sum (3.2), much of this growth is
cancelled, since, a0IR;2‘ / b1. However, since one must

use an infinite number of ks terms to render all of the b0‘
equal to zero for this SH transformation, one encounters the
issue of the convergence of the infinite series for fða0Þ in
Eq. (3.2). Note that this is not an issue of strong coupling,
as are the pathologies in the S2, S3, and Sthr scheme trans-

formations; it occurs in the weakly coupled, non-Abelian
Coulomb phase. We do not claim here that it is impossible
to construct an acceptable scheme transformation to get to
the ’t Hooft scheme in the vicinity of an IR fixed point, only
that one encounters delicate issues of convergence with the
SH scheme, since for a fixed Nf near to Nf;max, the ks may

have unbounded magnitudes as s ! 1.
As we will discuss below, the scheme transformation S1

contains a parameter (denoted k1p) that also grows large as

Nf approaches Nf;max, but, although inconvenient, this is

much less serious, since there is only a single parameter
involved, since smax ¼ 1, not an infinite number, as with
the SH transformation, and the growth of this single
parameter, restricted to integer values of Nf, is bounded.

V. THE TRANSFORMATION S1 WITH smax ¼ 1
TO A SCHEME WITH b03 ¼ 0

We next proceed to construct and study scheme trans-
formations that are acceptable at an (exact or approximate)
IR fixed point and use them to study the scheme depen-
dence of the location of this fixed point. For comparative
purposes, it is useful to begin by discussing the scheme
denoted S1 that we presented in Ref. [3], on which we will
give more details here.
The original motivation for our construction of this S1

scheme transformation was the idea of designing a trans-
formation that would render at least one of the b0‘ with

‘ � 3 equal to zero, namely b03. In turn, this was motivated

by the idea of having a scheme transformation that
achieves at least one step in the sequence of steps that
defines a transformation to the ’t Hooft scheme, where
b0‘ ¼ 0 for all ‘ � 3. The next steps in this direction would
be to design a scheme transformation that would render
both b03 ¼ 0 and b04 ¼ 0 at an IR fixed point, and then one

that would render b0‘ ¼ 0 for ‘ ¼ 3, 4, 5, and so forth, up to
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a fixed value of s. As a reasonable first exploration of such
endeavors, we opted to focus on scheme transformations
that rendered just b03 ¼ 0. We have considered three of

these, labelled Sj, j ¼ 1, 2, 3, and shown that the S2 and S3
transformations are not acceptable at a general IR fixed
point. As we will show below, the S1 scheme transforma-
tion has the inconvenient feature that the ks coefficients
grow as one approaches the upper end of the non-Abelian
Coulomb phase, producing a rather strong scheme-
dependence even at the four-loop level. This S1 scheme
transformation is, nevertheless, valuable as a lesson that
shows how large scheme-dependent effects can be. As we
will show below in Sec. (7.1), the Sshr scheme transforma-

tion in Eq. (7.1) with moderate values of r is better-behaved

and, when applied to the � function in the MS scheme,
produces smaller shifts in the location of the IR zero than
the S1 transformation.

We proceed to the details of the construction of the S1
scheme transformation presented in Ref. [3]. We assume
Nf 2 I, so a two-loop IR zero of � exists. Since smax ¼ 1,

Eq. (3.1) reads a ¼ a0ð1þ k1a
0Þ. Although this quadratic

equation has two formal solutions, only the solution

�0þ ¼ 1

2 �k1

�
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 �k1�

q �
; (5.1)

is acceptable, since only this solution has � ! �0 as
� ! 0.

This scheme transformation was designed to render
b03 ¼ 0, so the next step is to solve the equation b03 ¼ 0
using Eq. (3.11), viz.,

b3 þ k1b2 þ k21b1 ¼ 0; (5.2)

for the parameter k1. Formally, Eq. (5.2) has two solutions,

k1p; k1m ¼ 1

2b1

�
�b2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b22 � 4b1b3

q �
; (5.3)

where ðp;mÞ refer to�. We will focus onG ¼ SUðNÞwith
fermions in the fundamental and adjoint representation. Of
the two formal solutions in Eq. (5.3), only k1p is allowed.

To show this, we consider k1m. We must be able to use this
for Nf 2 I, including the lower end of this interval, where

Nf approaches Nf;b2z from above. Precisely at the lower

end, as Nf & Nf;b2z, b2 ! 0� and �IR;2‘ ! 1, so clearly

one cannot trust perturbative calculations at or near this
point. However, we will at least require that the trans-
formation should obey the conditions C1-C4 for Nf *

Nf;b2z where �IR;2‘ is not too large. As shown in Ref. [5],

in this region of Nf, b3 < 0, so that, taking into account

that both b2 and b3 are negative in this region, we can
reexpress k1m as

k1m ¼ 1

2b1

�
jb2j �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b22 þ 4b1jb3j

q �
for Nf * Nf;b2z:

(5.4)

As Nf & Nf;b2z, b2 ! 0�, so k1m ! � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijb3j=b1
p

.

Substituting this into Eq. (5.1), using �k1 ¼ k1=ð4�Þ, we
have

�0þ ¼ 1

2 �k1m

�
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 �k1m�

q �

¼ 1

2j �k1mj
�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4j �k1mj�

q �
: (5.5)

Next, substituting the value of �IR;2‘ from Eq. (2.5) as a

relevant estimate, the square root in Eq. (5.1) becomes2
41�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b1jb3j

p
jb2j

3
51=2

: (5.6)

As Nf approaches Nf;b2z from above and b2 ! 0�, the
expression in this square root becomes negative, so that the
square root itself is imaginary. Hence, if one were to try to
use k1m with this scheme transformation, then a real � ’
�IR;2‘ would get mapped via Eq. (5.1) to a complex,

unphysical �0, clearly violating conditions C1, C2, and
C4. We therefore cannot use the k1m solution in Eq. (5.3)
but must instead choose the k1p solution. We next show

that the discriminant in the expression for k1p in Eq. (5.3),

Dk ¼ b22 � 4b1b3, is nonnegative (actually positive), as it
must be. This property follows because b3 < 0 in this
interval for the representations under consideration, since
Nf;b3z < Nf;b2z (where we use the relevant solution of the

quadratic equation, labelled Nf;b3z;� in Eq. (3.16) of our

Ref. [5]). Hence, we can writeDk ¼ b22 þ 4b1jb3j> 0. We
denote the present scheme transformation with this choice
as S1:

S1: smax ¼ 1; k1 ¼ k1p; i:e:; a ¼ a0ð1þ k1pa
0Þ:
(5.7)

Physically, Nf is restricted to take on nonnegative, in-

tegral values. However, since in much of our analysis, we
do consider the formal analytic continuation of Nf from

these integral values to positive real numbers, we remark
on one effect of this continuation here. For a given gauge
group G and fermion representation R, if one carries out
this analytic continuation and considers the formal limit
Nf % Nf;max, i.e., as one approaches the upper end of the

non-Abelian Coulomb phase, as a function of Nf, since

b1 ! 0, k1p diverges because of the prefactor ð2b1Þ�1 in

Eq. (5.3). This divergence in k1p is cancelled in the actual

S1 transformation, which still maps �IR;2‘ ! 0 to �0 ! 0
as Nf % Nf;max. This can be seen by expanding Eq. (5.1):

�0þ !
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�= �k1p

q
! 0. Although one does not have to worry

about this if one restricts Nf to physical, integer values in

the asymptotically free intervalNf < Nf;max, it does lead to

significant residual scheme dependence in the comparison

between the four-loop IR zero in the MS scheme, and
the four-loop zero computed by applying this S1 scheme
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transformation to the MS scheme, even for Nf near to

Nf;max.

By construction, since b03 ¼ 0 in this scheme, the three-

loop zero of ��0 is equal to the two-loop zero, as expressed
in Eq. (4.4), and as was the case with the S2 and S3
schemes. At the four-loop level, the IR zero is given by
the physical (smallest positive) solution of the cubic equa-
tion (4.5) with b04 given by Eq. (3.12) with k1 ¼ k1p and

k2 ¼ k3 ¼ 0. We list values of �0
IR;n‘ � �0

IR;n‘;S1
in this S1

scheme, up to ðn ¼ 4Þ-loop level, as calculated in Ref. [3],
in Table I, for relevant Nf, with fermions in the fundamen-

tal representation and several values of N. For comparison
we also include the values of �IR;n‘;MS for n ¼ 3, 4 in the

MS scheme from Ref. [5].
We carried out the analogous calculations for fermions

in the adjoint representation of SU(N) in Ref. [3]. Here,
Nf;b1z ¼ 11=4 and Nf;b2z ¼ 17=16, so the only physical,

integer value of Nf 2 I is Nf ¼ 2. SU(2) models with

Nf ¼ 2 adjoint fermions have been of recent interest

[43]. For both of these cases we found that

�0
IR;3‘;S1

>�IR;3‘;MS; (5.8)

and

�0
IR;4‘;S1

<�IR;4‘;MS: (5.9)

For both of these representations, our results obey the
required behavior in Eq. (3.10), although one observes that
even for rather large Nf values that are reliably expected to

lie in the non-Abelian Coulomb phase, there is still a
significant difference between �0

IR;n‘;S1
and �IR;n‘;MS for

n ¼ 3, 4. We attribute this difference to the behavior of k1p
as a function of Nf 2 I. As we will show, this difference is

greater than the corresponding difference when one uses a
scheme transformation such as the Sshr scheme to be dis-

cussed below.

VI. THE Sthr
SCHEME TRANSFORMATION

In this section we study the scheme transformation

Sthr : a ¼ tanhðra0Þ
r

: (6.1)

Since tanhðra0Þ=r is an even function of r, we take r > 0
with no loss of generality. The transformation Sthr has the

advantage that it depends on a parameter r, which we
can vary to study the effect that it has on the location
of the IR fixed point. In particular, as r ! 0, this trans-
formation smoothly approaches the identity. The inverse of
Eq. (6.1) is

a0 ¼ 1

2r
ln

�
1þ ra

1� ra

�
; (6.2)

and the Jacobian is

J ¼ 1

cosh2ðra0Þ : (6.3)

In the notation of Eq. (3.1),

fða0Þ ¼ tanhðra0Þ
ra0

: (6.4)

This has the series expansion of the form (3.2), with

ks ¼ 0 for odd s; (6.5)

and, for even s,

k2 ¼ � r2

3
; k4 ¼ 2r4

15
; (6.6)

k6 ¼ � 17r6

315
; k8 ¼ 62r8

2835
; (6.7)

and so forth for ks with higher s.
Substituting these expressions for ks into the general

expressions for the b0‘, we obtain

b03 ¼ b3 þ r2b1
3

; (6.8)

b04 ¼ b4; (6.9)

b05 ¼ b5 � r2b3
3

þ 2r4b1
45

; (6.10)

b06 ¼ b6 � 2r2b4
3

þ r4b2
15

; (6.11)

b07 ¼ b7 � r2b5 þ r4b3
5

þ r6b1
315

; (6.12)

b08 ¼ b8 � 4r2b6
3

þ 4r4b4
9

� 4r6b2
189

; (6.13)

and so forth for the b0‘ with ‘ � 9.
We apply this Sthr scheme transformation to the �

function in the MS scheme. We will only need the b0‘
with ‘ � 4 for this purpose, since (in addition to the
scheme-independent b1 and b2) only b3 and b4 have been

calculated for the MS scheme. For Nf in the interval I

where the two-loop � function has an IR zero, we then
calculate the resultant IR zeros in ��0 at the three- and
four-loop order. We have carried out these calculations for
N ¼ 2, 3, 4, with fermions in the fundamental representa-
tion and for a range of r values, namely r ¼ 3, 6, 9, and
4� ’ 12:56. We list the results in Table II. For r ¼ 1, the

IR zeros are almost identical to those in the MS scheme
and hence are not listed. The complex entry for N ¼ 2,
Nf ¼ 7, r ¼ 4� is �0

IR;4‘;r¼4� ¼ 1:718� 0:9285i. The

presence of this complex entry is a manifestation of the
fact pointed out in Ref. [3] and discussed further below that
this scheme transformation is not acceptable in general.
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As regards the change in the location of the IR zero as a
function of the loop order, we first recall that in Ref. [5] we
showed that for a givenN andNf (withNf 2 I, so the two-

loop � function has an IR zero), as one goes from two-loop
to three-loop order, the location of this zero decreases and
then as one goes from three-loop to four-loop order, it
increases by a smaller amount, so that the four-loop value
is still smaller than the (scheme-independent) 2-loop
value. Aside from the pathological behavior that occurs
for smaller Nf values where �IR;2‘ gets sufficiently large

(e.g., for N ¼ 2, Nf ¼ 7, where �IR;2‘ ¼ 2:83 and

�0
IR;4‘;r¼4� is complex), we observe behavior similar to

that which we found in our previous higher-loop calcula-
tions for fermions in the fundamental representation in the

MS scheme. First, as is evident from Table II, for a given
N, Nf, and r,

�0
IR;3‘;Sthr

< �0
IR;4‘;Sthr

< �IR;2‘ for R ¼ fund: (6.14)

These shifts as a function of loop order are larger for
smaller Nf and get smaller as Nf approaches Nf;max.

Second, we observe that for a given N, Nf, and r,

�0
IR;n‘;Sthr

> �IR;n‘;MS; for n ¼ 3; 4; R ¼ fund:

(6.15)

For a given N and r, the values �0
IR;n‘;Sthr

approach the

corresponding �IR;n‘;MS as Nf % Nf;max. Third, for a given

N, Nf, and loop order n ¼ 3 or n ¼ 4,

�0
IR;n‘;Sthr

is an increasing function of r: (6.16)

For Nf values close to Nf;max for a given N, these differ-

ences in values are sufficiently small so that the entries may
coincide to the given number of significant figures.
The scheme transformation Sthr with r ¼ 4� can be

written equivalently as

� ¼ tanhð�0Þ: (6.17)

As we pointed out in Ref. [3], the Sthr scheme transforma-

tion with this value of r is not acceptable, because it
violates conditions C1, C2, and C4. In particular, as is
evident from the inverse of this transformation, viz.,

�0 ¼ 1

2
ln

�
1þ �

1� �

�
; (6.18)

the exact inverse transformation maps �> 1 to a complex
and hence unphysical, value of �0. At an IR fixed point, it
can easily happen that �IR;2‘ > 1, in which case this ST

yields a complex, unphysical�0. For example (see Table III
in Ref. [5]) for G ¼ SUð2Þ with Nf ¼ 8 fermions in the

fundamental representation, �IR;2‘ ¼ 1:26 and for SU(3)

with Nf ¼ 11, �IR;2‘ ¼ 1:23. More generally, as is evident

from Eq. (6.2), the inverse of the scheme transformation
Sthr with a given value of r will map a value �> 1 to a

complex, unphysical value of �0 if r�=ð4�Þ> 1. As with
the complex entries in Table II, this is another manifesta-
tion of the pathology in this scheme transformation at an IR

TABLE II. Values of the IR zeros of �� in theMS scheme and ��0 after applying the Sthr scheme transformation to theMS scheme,
for an SU(N) theory with Nf fermions in the fundamental representation, for N ¼ 2, 3, 4, calculated to n-loop order and denoted as

�IR;n‘;MS and �0
IR;n‘;Sthr

� �0
IR;n‘;r. The Sthr entries are for r ¼ 3, 6, 9, 4�. As before, since the two-loop IR zero is scheme-

independent, we denote it simply as �IR;2‘.

N Nf �IR;2‘ �IR;3‘;MS �0
IR;3‘;r¼3 �0

IR;3‘;r¼6 �0
IR;3‘;r¼9 �0

IR;3‘;r¼4� �IR;4‘;MS �0
IR;4‘;r¼3 �0

IR;4‘;r¼6 �0
IR;4‘;r¼9 �0

IR;4‘;r¼4�

2 7 2.83 1.05 1.07 1.11 1.21 1.45 1.21 1.24 1.33 1.63 complex

2 8 1.26 0.688 0.693 0.706 0.731 0.781 0.760 0.767 0.789 0.832 0.939

2 9 0.595 0.418 0.419 0.423 0.428 0.439 0.444 0.446 0.450 0.458 0.472

2 10 0.231 0.196 0.196 0.197 0.197 0.199 0.200 0.200 0.201 0.202 0.203

3 10 2.21 0.764 0.770 0.786 0.816 0.876 0.815 0.822 0.844 0.885 0.978

3 11 1.23 0.578 0.581 0.588 0.602 0.627 0.626 0.630 0.640 0.660 0.700

3 12 0.754 0.435 0.436 0.439 0.445 0.456 0.470 0.472 0.477 0.485 0.502

3 13 0.468 0.317 0.317 0.318 0.321 0.325 0.337 0.338 0.340 0.343 0.349

3 14 0.278 0.215 0.215 0.215 0.216 0.217 0.224 0.224 0.224 0.225 0.227

3 15 0.143 0.123 0.123 0.123 0.124 0.124 0.126 0.126 0.126 0.126 0.126

3 16 0.042 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040

4 13 1.85 0.604 0.606 0.614 0.627 0.653 0.628 0.631 0.640 0.656 0.688

4 14 1.16 0.489 0.491 0.495 0.502 0.516 0.521 0.523 0.528 0.539 0.557

4 15 0.783 0.397 0.398 0.401 0.405 0.412 0.428 0.429 0.433 0.439 0.450

4 16 0.546 0.320 0.321 0.322 0.324 0.328 0.345 0.346 0.348 0.351 0.357

4 17 0.384 0.254 0.254 0.255 0.256 0.258 0.271 0.271 0.272 0.274 0.277

4 18 0.266 0.194 0.194 0.195 0.195 0.196 0.205 0.205 0.205 0.206 0.207

4 19 0.175 0.140 0.140 0.141 0.141 0.141 0.145 0.145 0.146 0.146 0.146

4 20 0.105 0.091 0.091 0.091 0.091 0.091 0.092 0.092 0.092 0.092 0.093

4 21 0.047 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044
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fixed point. In order for this Sthr scheme transformation to

satisfy conditionsC1,C2, andC4, it is necessary that for the
values of � of interest,

r <
4�

�
¼ 1

a
: (6.19)

VII. THE Sshr
SCHEME TRANSFORMATION

In this section we study the scheme transformation

Ssh;r: a ¼ sinhðra0Þ
r

: (7.1)

Since sinhðra0Þ=r is an even function of r, we take r > 0
with no loss of generality. This has the inverse

a0 ¼ 1

r
ln

�
raþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðraÞ2

q �
; (7.2)

and the Jacobian

J ¼ coshðra0Þ: (7.3)

In the notation of Eq. (3.1),

fða0Þ ¼ sinhðra0Þ
ra0

: (7.4)

This has a series expansion of the form (3.2) with ks ¼ 0
for odd s, as in (6.5), and for even s,

k2 ¼ r2

6
; k4 ¼ r4

120
; (7.5)

k6 ¼ r6

5040
; k8 ¼ r8

362880
; (7.6)

and so forth for higher s.
Substituting these expressions for ks into the general

expressions for the b0‘, we obtain

b03 ¼ b3 � r2b1
6

; (7.7)

b04 ¼ b4; (7.8)

b05 ¼ b5 þ r2b3
6

þ 31r4b1
360

; (7.9)

b06 ¼ b6 þ r2b4
3

þ r4b2
15

; (7.10)

b07 ¼ b7 þ r2b5
2

þ 3r4b3
40

� 173r6b1
5040

; (7.11)

b08 ¼ b8 þ 2r2b6
3

þ r4b4
9

� 4r6b2
189

; (7.12)

and so forth for the b0‘ with ‘ � 9.

We apply this Sshr scheme transformation to the �

function in the MS scheme. For the same reason as was
given above, we will only need the b0‘ with ‘ � 4 for this

purpose. For Nf in the interval I where the two-loop �

function has an IR zero, we then calculate the resultant IR
zeros in ��0 at the three- and four-loop order. We have
carried out these calculations for N ¼ 2, 3, 4, with fermi-
ons in the fundamental representation and for a range of r
values, namely r ¼ 3, 6, 9, and 4�. We list the results in
Table III. We denote the IR zero of ��0 at the n-loop level
as�0

IR;n‘ � �0
IR;n‘;Sshr

and in the tablewe further shorten this

to �0
IR;n‘;r. As with the Sthr scheme transformation, and for

the same reason, for r ¼ 1, the IR zeros are almost identical

to those in theMS scheme and hence are not listed.
We observe the following general properties in our

calculations of �0
IR;n‘;Sshr

. First, as is evident from

Table III, for a given N, Nf, and r,

�0
IR;3‘;Sthr

< �0
IR;4‘;Sthr

< �IR;2‘ for R ¼ fund: (7.13)

As with our calculations with other scheme transforma-
tions, these shifts as a function of loop order are larger for
smaller Nf and get smaller as Nf approaches Nf;max.

Second, for a given N, Nf, and r,

�0
IR;n‘;Sshr

< �IR;n‘;MS; for n ¼ 3; 4; R ¼ fund:

(7.14)

For a given N and r, the values �0
IR;n‘;Sshr

approach the

corresponding �IR;n‘;MS as Nf % Nf;max. Third, for a given

N, Nf, and loop order n ¼ 3 or n ¼ 4,

�0
IR;n‘;Sthr

is a decreasing function of r: (7.15)

Note that the inequalities (7.14) and (7.15) are opposite to
(6.15) and (6.16) for the Sthr scheme transformation. As

was the case with the other schemes, for Nf values close to

Nf;max for a given N, these properties are sufficiently small

so that the entries may coincide to the given number of
significant figures.
In contrast with the Sthr scheme transformation, the Sshr

transformation is acceptable for r values up to the largest
that we consider, viz., r ¼ 4�, where it takes the form

� ¼ sinhð�0Þ: (7.16)

This is understandable since the inverse transformation,
(7.2), is not singular, whereas the inverse of the Sthr trans-

formation, (7.2), is singular for � ! 1 for this value of r.
As with the other scheme transformations, the three- and
four-loop values of the IR zero in the Sshr scheme approach

the corresponding values in the MS as Nf ! Nf;max, in

accord with Eq. (3.10).
Some comparative remarks are in order concerning the

S1 and Sshr scheme transformations. We find that the Sshr
scheme transformation with moderate r leads to smaller
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shifts in the location of the IR zero than was the case
with the S1 scheme transformation, when both are ap-

plied to the � function in the MS scheme. We have
explained the origin of this as resulting from a particular
feature of the parameter k1p that enters in the S1 scheme

transformation. In general, we find that even for smallerNf

values (lying above Nf;b2z) the Sshr transformation with

moderate r produces rather small shifts in the location of
the IR zero. For example (cf., Table III), for SU(3) with
Nf ¼ 10, we obtain the following fractional shifts in this

IR zero at the three-loop and four-loop level:

�0
IR;3‘;Sshr ;r¼4� � �IR;3‘;MS

�IR;3‘;MS

¼ �0:054

�0
IR;4‘;Sshr ;r¼4� � �IR;4‘;MS

�IR;4‘;MS

¼ �0:065

for SUð3Þ; Nf ¼ 10; r ¼ 4�: (7.17)

One would thus tend to prefer the Sshr scheme transforma-

tion, since it minimizes scheme dependence at higher-loop
order. However, the S1 transformation provides an example
of how there may still be significant dependence when one
uses certain scheme transformations. We will show another
example of this in the next section, using an illustrative
exact � function, for which a slight change in r in the Sshr

transformation can have a significant effect on the nature of
an IR zero at the three-loop order.

VIII. STUDY WITH AN ILLUSTRATIVE
EXACT � FUNCTION

It is instructive to study series expansions of an illustra-
tive hypothetical exact � function in order to ascertain the
accuracy and reliability of finite-order analyses and the
effects of scheme transformations. Here we shall take
one such function, which has an exactly known infrared
zero that is reached from the origin. It should be empha-
sized at the outset that, although the function that we use in
Eq. (8.4) with (8.6) below is designed to emulate some
properties of the � function of an asymptotically free non-
Abelian gauge theory with fermions, we do not mean to
imply that it is fully realistic. Instead, we use it in the spirit
of a reasonable test function which embodies some rele-
vant features and can serve as a theoretical laboratory in
which to investigate how well analyses of truncated series
expansions probe the IR zero and how this is affected by
scheme transformations.
Becausewe are interested in the evolution of an asymptoti-

cally free theory from the neighborhood of the UV fixed point
at � ¼ 0 to an IR fixed point, we require that this illustrative
� function have the property that, as� increases from zero,
it has a zero at a finite value of �, which we denote as �IR.
We also require that it be bounded in the interval

TABLE III. Values of the IR zeros of �� in theMS scheme and ��0 after applying the Sshr scheme transformation to theMS scheme,
for an SU(N) theory with Nf fermions in the fundamental representation, for N ¼ 2, 3, 4, calculated to n-loop order and denoted as

�IR;n‘;MS and �0
IR;n‘;Sshr

� �0
IR;n‘;r. The Sshr entries are for r ¼ 3, 6, 9, 4�. As before, since the two-loop IR zero is scheme-

independent, we denote it simply as �IR;2‘.

N Nf �IR;2‘ �IR;3‘;MS �0
IR;3‘;r¼3 �0

IR;3‘;r¼6 �0
IR;3‘;r¼9 �0

IR;3‘;r¼4� �IR;4‘;MS �0
IR;4‘;r¼3 �0

IR;4‘;r¼6 �0
IR;4‘;r¼9 �0

IR;4‘;r¼4�

2 7 2.83 1.05 1.05 1.03 0.998 0.953 1.21 1.20 1.16 1.11 1.04

2 8 1.26 0.688 0.686 0.680 0.670 0.654 0.760 0.757 0.747 0.732 0.7085

2 9 0.595 0.418 0.418 0.416 0.413 0.409 0.444 0.443 0.441 0.438 0.432

2 10 0.231 0.196 0.196 0.196 0.196 0.195 0.200 0.200 0.200 0.200 0.199

3 10 2.21 0.764 0.762 0.754 0.742 0.723 0.815 0.812 0.802 0.786 0.762

3 11 1.23 0.578 0.577 0.574 0.568 0.559 0.626 0.6245 0.6195 0.611 0.599

3 12 0.754 0.435 0.434 0.433 0.430 0.426 0.470 0.470 0.467 0.464 0.457

3 13 0.468 0.317 0.316 0.316 0.315 0.313 0.337 0.337 0.336 0.335 0.332

3 14 0.278 0.215 0.214 0.214 0.214 0.213 0.224 0.2235 0.223 0.223 0.222

3 15 0.143 0.123 0.123 0.123 0.123 0.123 0.126 0.126 0.126 0.126 0.125

3 16 0.042 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040

4 13 1.85 0.604 0.602 0.599 0.593 0.583 0.628 0.626 0.622 0.615 0.603

4 14 1.16 0.489 0.488 0.486 0.483 0.477 0.521 0.520 0.517 0.513 0.505

4 15 0.783 0.397 0.397 0.396 0.394 0.390 0.428 0.428 0.426 0.423 0.419

4 16 0.546 0.320 0.320 0.319 0.318 0.316 0.345 0.345 0.344 0.343 0.340

4 17 0.384 0.254 0.253 0.253 0.253 0.252 0.271 0.271 0.271 0.270 0.268

4 18 0.266 0.194 0.194 0.194 0.194 0.193 0.205 0.205 0.204 0.204 0.2035

4 19 0.175 0.140 0.140 0.140 0.140 0.140 0.145 0.145 0.145 0.145 0.145

4 20 0.105 0.091 0.091 0.091 0.091 0.091 0.092 0.092 0.092 0.092 0.092

4 21 0.047 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044
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0 � � � �IR: (8.1)

It is convenient to define a scaled quantity

~� � �

�IR

: (8.2)

Since we assume that the evolution of the theory from the
UV to the IR starts from a small value in the UV, we only
need to consider the behavior of � in this interval (8.1).
From Eq. (1.2), the � function has the form, for small � in
the deep UV,

�� ¼ �2 �b1�
2

�
1þ

�b2
�b1
�þOð�2Þ

�

¼ �2 �b1�
2

�
1� �

�IR;2‘

þOð�2Þ
�
: (8.3)

In general, we can write

�� ¼ �2 �b1�
2hð�Þ; (8.4)

where the function hð�Þ satisfies
hð0Þ ¼ 1: (8.5)

A priori, one could consider functions hð�Þ with either a
finite or an infinite series expansion. We shall consider an
illustrative example of the latter case, namely

hð�Þ ¼ sinð� ffiffiffiffi
~�

p Þ
ð� ffiffiffiffi

~�
p Þ : (8.6)

Here we use
ffiffiffiffi
~�

p
because sinðxÞ=x has only even powers in

its Taylor series expansion

sinx

x
¼ X1

n¼0

ð�1Þn x2n

ð2nþ 1Þ! ; (8.7)

but we want a � function with odd, as well as even, powers
of �, to emulate a typical � function encountered in a non-
Abelian gauge theory. (One could equally well use a
similar trigonometric function with this property (and the

property (8.5)), such as hð�Þ ¼ cos½ð�=2Þ ffiffiffiffi
~�

p �). As noted
above, the feature that (8.6) and this cosine function have
an infinite number of zeros beyond the one at ~� ¼ 1, i.e.,
� ¼ �IR, will not be of direct concern to us, since we are
only interested in their behavior in the interval (8.1).
Although the illustrative � function in Eq. (8.4) with
(8.6) has no explicit Nf-dependence, one may regard it as

implicitly incorporating this through the value of �IR.
Substituting (8.7) into (8.4), we have, for this illustrative

� function,

�� ¼ �2 �b1�
2
X1
‘¼1

ð��2�=�IRÞ‘�1

ð2‘� 1Þ! : (8.8)

Hence, in the notation of Eq. (1.2),

�b‘
�b1

¼ ð��2=�IRÞ‘�1

ð2‘� 1Þ! ; (8.9)

or equivalently,

b‘
b1

¼ ð�4�3=�IRÞ‘�1

ð2‘� 1Þ! : (8.10)

Before performing a scheme transformation, we first
analyze finite-order truncations of this � function to see
how closely the resulting determination of the IR zero
compares with the exact value, �IR. Obviously, no claim
is made that this � function actually arose from a loop
calculation, but it will be useful to employ the terminology
of loops to refer to the expansion order. To four-loop order,
‘ ¼ 4, Eq. (1.2) reads

�� ¼ �2 �b1�
2

�
1þ

�b2
�b1
�þ

�b3
�b1
�2 þ

�b4
�b1
�3 þOð�4Þ

�
:

(8.11)

Explicitly,

�� ¼ �2 �b1�
2

�
1� �2

3!
~�þ �4

5!
~�2 � �6

7!
~�3 þOð~�4Þ

�
:

(8.12)

For our further discussion, we shall define a compact
notation consistent with Eq. (8.2), namely

~� IR;n‘ � �IR;n‘

�IR

: (8.13)

At the two-loop order, the � function given in Eqs. (8.11)
and (8.12) has an IR zero at �IR;2‘ ¼ � �b1= �b2 ¼
ð6=�2Þ�IR ¼ 0:60793�IR, i.e.,

~� IR;2‘ ¼ 0:60793; (8.14)

to the indicated numerical accuracy. Evidently, this two-
loop estimate of the IR zero differs substantially from the
exact value of the IR zero, being approximately 40%
smaller than this value. Interestingly, at the three-loop
level, although �� has two zeros at nonzero values of ~�,
neither of them is a physical IR zero; instead, they form the
complex-conjugate pair

~� IR;3‘;� ¼ 2ð5� ffiffiffi
5

p
iÞ

�2
¼ 1:0132� 0:4531i: (8.15)

This is an important result, since it illustrates the basic fact
from calculus that a polynomial obtained as a truncation of
a series expansion for a given function does not necessarily
accurately reproduce the zeros of that function. In the
present case, the real part of the complex pair of zeros is
rather close to 1, but the imaginary part is not small relative
to this real part, so that in the complex plane, the distance
of each of these roots from 1, i.e., the distance of the roots
in � from �IR, is substantial. At four-loop order, the ��

function has three nonzero roots in ~�, namely a physical IR
zero close to the exact value,
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~� IR;4‘ ¼ 0:9603; (8.16)

about 4% smaller than the exact value, together with a
complex conjugate pair at ~� ¼ 1:6476� 1:6566i.

We have continued this analysis up to (n ¼ 8)-loop
order. At five-loop level, the equation �� ¼ 0 has a real
root very close to the exact value,

~� IR;5‘ ¼ 1:0045; (8.17)

together with another real root at ~� ¼ 2:4958 and a com-
plex pair, ~� ¼ 1:8974� 3:4138i. At the six-loop level, the
equation �� ¼ 0 has five nonzero solutions for ~�, namely

~� IR;6‘ ¼ 0:99972; (8.18)

and two pairs of complex-conjugate roots. At the seven-
loop level, the equation �� ¼ 0 has the root

~� IR;7‘ ¼ 1:00001346; (8.19)

together with two pairs of complex-conjugate roots and a
larger positive real root at ~� ¼ 3:621288. Finally, at the
eight-loop level, the equation �� ¼ 0 yields

~� IR;8‘ ¼ 0:999999507; (8.20)

together with two pairs of complex-conjugate roots and
two larger real roots. These values of the physical IR zero
for 4 � ‘ � 8 yield the following fractional differences
with respect to the exact value:

~� IR;4‘ � 1 � �IR;4‘ � �IR

�IR

¼ �3:97� 10�2; (8.21)

�IR;5‘ � �IR

�IR
¼ 4:52� 10�3; (8.22)

�IR;6‘ � �IR

�IR
¼ �2:83� 10�4; (8.23)

�IR;7‘ � �IR

�IR
¼ 1:35� 10�5; (8.24)

and

�IR;8‘ � �IR

�IR
¼ �0:493� 10�6: (8.25)

Thus, once one gets beyond the three-loop order, these
values converge monotonically toward the exact value
of �IR.

We next perform a scheme transformation on �� and
study the shift in the values of the IR zero of��0 , calculated
to the various orders considered here. We denote these
as �0

IR;n‘ and the ratios with respect to �IR as ~�0
IR;n‘.

For definiteness, we use the Sshr transformation given in

Eq. (7.1), i.e., � ¼ ð4�=rÞ sinhðr�0=ð4�ÞÞ, with variable r.
As noted before, without loss of generality, we may take
r > 0. Clearly, as r ! 0þ, the Sshr scheme transformation

approaches the identity map, so, by continuity, in this limit,
the resulting values of the IR zero calculated at the ‘-loop

level approach those obtained above. However, as we will
show next, the values that one gets for larger r depend
sensitively on this parameter. Of course, at the two-loop
level, since b0‘ ¼ b‘ for ‘ ¼ 1, 2, we get the zero at the

same place, but now in the �0 variable, namely,

~� 0
IR;2‘;Sshr

¼ 0:60793: (8.26)

At the three-loop level, the condition ��0 ¼ 0 yields
(aside from the double root at �0 ¼ 0 corresponding to
the UV fixed point), the quadratic equation

1� �2

6
~�0 þ

�
�4

120
� r2

96�2

�
ð~�0Þ2 ¼ 0: (8.27)

This equation obviously has a singular behavior at the
value of r that causes the coefficient of the ð~�0Þ2 term to

vanish, namely r ¼ 2�3=
ffiffiffi
5

p ¼ 27:73 . . .We assume that r
does not take on this value. The equation then has the two
formal solutions,

~�0
IR;3‘

4�
¼ 20�3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
150r2 � 20�6

p

2ð4�6 � 5r2Þ : (8.28)

We showed above that in the analysis of �� at this three-
loop level, there are no real roots. Here, in contrast, for
sufficiently large r, these roots become real. This demon-
strates how a scheme transformation can qualitatively, as
well as quantitatively, change the analysis of the IR zero of
a � function. In the present case, the roots are real if the
discriminant is nonnegative, i.e., if

r �
�
2

15

�
1=2

�3 ¼ 11:322: (8.29)

In order to get real roots at the three-loop level, we restrict
to r values that satisfy this inequality. For example, let us
take r ¼ 4�. Then from Eq. (8.28) we obtain an IR zero at

~� 0
IR;3‘;Sshr

¼ 1:000400 for r ¼ 4�; (8.30)

together with another real root ~�0 ¼ 1:54959. Although the
three-loop value in Eq. (8.28) is very close to the exact
value 1, i.e.,�0

IR;3‘;Sshr
is very close to�IR, this is fortuitous.

For example, if one increases r from 4� ¼ 12:566 slightly
to r ¼ 15, the value in Eq. (8.30) shifts to ~�IR;3‘;Sshr

¼
1:19414. If, on the other hand, one decreases r to ostensibly
reasonable values below the lower bound (8.29), then one
would revert back to the situation encountered in the
analysis of ��, namely there would not be any physical
IR zero at this three-loop level.
At the four-loop level, if one continues to use the value

r ¼ 4�, the condition ��0 ¼ 0 yields one real root, which
is the IR zero,

~� 0
IR;4‘;Sshr

¼ 0:79922 for r ¼ 4�; (8.33)

together with a pair of complex-conjugate roots. One can
carry this analysis to higher-loop level. For example, at
five-loop level, with r ¼ 4�, the condition ��0 ¼ 0 yields

THOMAS A. RYTTOVAND ROBERT SHROCK PHYSICAL REVIEW D 86, 085005 (2012)

085005-16



not real solutions for an IR zero, but instead a quartic
equation with two pairs of complex-conjugate roots.

In closing this section, we again emphasize that we have
carried out this analysis in the spirit of using a test function
with reasonable behavior in the relevant interval (8.1) to
study how well analyses of a finite series expansion probe
its IR zero, and the effect of a scheme transformation on
these. There is obviously no implication that other proper-
ties of the particular test function (8.4) with (8.6) (such as

the infinitely many zeros at
ffiffiffiffi
~�

p ¼ s with s � 2) are rele-
vant to the true � function of a non-Abelian gauge theory.

IX. ANOMALOUS DIMENSION OF
FERMION BILINEAR

The anomalous dimension 	m describes the scaling
of a fermion bilinear and the running of a dynamically
generated fermion mass in the phase with spontaneous
chiral symmetry breaking. It plays an important role in
technicolor theories, via the renormalization group factor

 ¼ exp½Rdt	mð�ðtÞÞ� that can enhance dynamically

generated Standard-Model fermion masses. In the non-
Abelian Coulomb phase (which is a conformal phase),
the IR zero of � is exact, although a calculation of it to a
finite-order in perturbation theory is only approximate, and
	m evaluated at this IR fixed point is exact. In the phase
with S�SB, where an IR fixed point, if it exists, is only
approximate, 	m is an effective quantity describing the
running of a dynamically generated fermion mass for the
evolution of the theory near this approximate IRFP. In
Ref. [5] we evaluated 	m to three- and four-loop order at
the IR zero of � calculated to the same order and showed
that these higher-loop results were somewhat smaller than
the two-loop evaluation. In both the conformal and non-
conformal phases it is important to assess the scheme-
dependence of 	m when calculated to finite order. At an
exact zero of �, the anomalous dimension 	mð�Þ calcu-
lated in a given scheme is the same as the anomalous
dimension 	0

mð�0Þ calculated in another scheme [9]. Our
results in Ref. [3] and here concerning shifts in the location
of the IR zero resulting from a scheme transformation
show that, a priori, a transformation may introduce sig-
nificant shifts in both this location and in the resultant
value of 	m, especially when the IR fixed point occurs at
moderate to strong coupling. For a given gauge group G
and fermion representation R, the value of�IR;2‘ gets larger

as Nf & Nf;b2z, and hence, understandably, the shift in

�0
IR;n‘ when calculated in a different scheme can be signifi-

cant. The same comment applies to	m, although part of this
region ofNf * Nf;b2z is in the phasewith spontaneous chiral

symmetry breaking rather than the chirally symmetric phase,
so the IRfixed point is only approximate. For awell-behaved
scheme transformation such as Sshr with moderate r, as Nf

increases throughout the non-Abelian Coulomb phase, this
scheme-dependent shift in a finite-loop-order calculation

of the IR zero and resultant shift in the value of 	m, calcu-
lated to the same finite-loop order, become small.

X. DISCUSSION AND CONCLUSIONS

In this paper, extending the work in Ref. [3], we have
given a detailed analysis of the effects of scheme trans-
formations in the vicinity of an exact or approximate infra-
red fixed point in an asymptotically free gauge theory with
fermions. We have discussed a set of necessary conditions
that such transformations must obey and have shown with
several examples that, although these can easily be satisfied
in the vicinity of an ultraviolet fixed point, they constitute
significant restrictions on scheme transformations at an
infrared fixed point. This is especially true when this fixed
point occurs at a relatively strong coupling.
We have constructed acceptable scheme transformations

and have used these to study the scheme-dependence of an
infrared fixed point, making comparison with our previous
three-loop and four-loop calculations of the location of this

point in theMS scheme in Ref. [5]. The S1 transformation,
which renders the three-loop coefficient of the��0 function
zero, provides an example of how a scheme transformation
can produce significant scheme dependence in an IR zero.
The Sshr scheme transformation with moderate r is better

behaved than the S1 transformation and introduces smaller
scheme-dependent shifts in the location of the IR zero. This
Sshr transformationwithmoderate r provides a valuable tool

to assess scheme dependence. As applied to the � function

in theMS scheme, it shows that this dependence is small in
the vicinity of both the UV fixed point at � ¼ 0 and an IR
fixed point at sufficiently small coupling. It also gives a
quantitative measure of the size of the scheme-dependence
in the calculation of this fixed point at the three-loop and
four-loop order, both at small and at larger couplings.
We have constructed an illustrative exact � function of

an asymptotically free theory with an infrared zero and
have used it as a theoretical laboratory in which to assess
the accuracy with which finite-order truncations of the
series expansion of this � function are able to determine
the IR zero. Applying the Sshr scheme transformation to the

series expansion for this illustrative � function, we have
also studied the consequences of this for the determination
of the IR zero in the �0 variable from a finite-order trunca-
tion of the series. For the illustrative � function, we find
that this scheme transformation can have a significant
effect, especially at low orders in the expansion.
We believe that the results reported here give a deeper

insight into scheme transformations of the � function
and scheme-dependence of infrared fixed points in non-
Abelian gauge theories with fermions. There is clearly
more interesting work to be done investigating this ques-
tion. The knowledge gained will be useful for a better
understanding of the UV to IR evolution of these theories,
in particular, those with fermion contents that result in
quasi-conformal behavior.
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APPENDIX

In this appendix we first give the expressions that we have calculated for b0‘ with ‘ ¼ 6, 7, 8:

b06 ¼ b6 þ 4k1b5 þ ð4k21 þ 2k2Þb4 þ 4k1k2b3 þ ð2k41 � 6k21k2 þ 4k1k3 þ 3k22 � 2k4Þb2
þ ð�8k51 þ 28k31k2 � 16k21k3 � 20k1k

2
2 þ 8k1k4 þ 12k2k3 � 4k5Þb1; (A1)

b07 ¼ b7 þ 5k1b6 þ ð7k21 þ 3k2Þb5 þ ð2k31 þ 7k1k2 þ k3Þb4 þ ðk41 � 2k21k2 þ 4k1k3 þ 3k22 � k4Þb3
þ ð�4k51 þ 15k31k2 � 9k21k3 � 12k1k

2
2 þ 9k2k3 þ 5k1k4 � 3k5Þb2 þ ð16k61 � 68k41k2 þ 40k31k3

� 21k21k4 þ 73k21k
2
2 � 58k1k2k3 þ 10k1k5 þ 16k2k4 � 12k32 þ 9k23 � 5k6Þb1; (A2)

and

b08 ¼ b8 þ 6k1b7 þ ð11k21 þ 4k2Þb6 þ ð6k31 þ 12k1k2 þ 2k3Þb5 þ ðk41 þ 4k21k2 þ 6k1k3 þ 4k22Þb4 þ ð�2k51 þ 8k31k2

� 4k21k3 � 6k1k
2
2 þ 8k2k3 þ 4k1k4 � 2k5Þb3 þ ð8k61 � 36k41k2 þ 22k31k3 � 12k21k4 þ 42k21k

2
2 � 36k1k2k3

þ 6k1k5 þ 12k2k4 � 8k32 þ 7k23 � 4k6Þb2 þ ð�32k71 þ 160k51k2 � 96k41k3 þ 52k31k4 � 230k31k
2
2 � 26k21k5

þ 208k21k2k3 þ 12k1k6 þ 84k1k
3
2 � 42k1k

2
3 � 76k1k2k4 þ 20k2k5 þ 24k3k4 � 52k22k3 � 6k7Þb1: (A3)

For reference, we list the expressions for b1 [7], b2 [8], and,
in theMS scheme, b3 [13], calculated for a vectorial gauge
theory with Nf (massless) fermions transforming accord-
ing to the representation R of the gauge group G [25]:

b1 ¼ 1

3
ð11CA � 4TfNfÞ (A4)

b2 ¼ 1

3
½34C2

A � 4ð5CA þ 3CfÞTfNf�: (A5)

b3 ¼ 2857

54
C3
A þ TfNf

�
2C2

f �
205

9
CACf � 1415

27
C2
A

�

þ ðTfNfÞ2
�
44

9
Cf þ 158

27
CA

�
: (A6)

In our calculations we have also used the MS result for b4
[14], but we do not list it here because of its length.

The interval I in which the two-loop � function has an
IR zero is given in Eq. (2.4). The lower end of this interval
is defined by the condition that b2 decreases through zero,
which occurs at the value Nf ¼ Nf;b2z given in Eq. (2.3).

Numerical values of �b‘ were presented in Ref. [5], e.g., for
the fundamental representation in Table I of that reference.
As discussed in Ref. [5], for Nf ¼ 0 and sufficiently small,

b2, b3, and b4 are all positive, and they decrease with
increasing Nf. The value of Nf at which b3 goes through

zero and becomes negative, denoted Nf;b3z, is smaller than

the value Nf;b2z, so that b3 is generically negative in the

interval I [cf., Eq. (2.4)] where the two-loop � function
has an IR zero. As is evident in Table I, the four-loop

coefficient b4 can be positive or negative in this interval
I. The upper end of the interval I occurs at Nf ¼ Nf;b1z ¼
Nf;max [26], where b1 ! 0þ. The values of b2 and b3 at

Nf ¼ Nf;max are used implicitly in the text, in particular, in

our discussion of the S1 scheme transformation, so we list
them here:

b2 ¼ �CAð7CA þ 11CfÞ at Nf ¼ Nf;max; (A7)

and

b3 ¼ �CA

24
ð1127C2

A þ 616CACf � 132C2
fÞ

at Nf ¼ Nf;max: (A8)

We denote these as ðb2ÞNf;max
and ðb3ÞNf;max

, respectively.

For the fundamental representation,

ðb2ÞNf;max;fund ¼ �
�ð5NÞ2 � 11

2

�
; (A9)

and

ðb3ÞNf;max;fund ¼ �
�
1402N4 � 242N2 � 33

24N

�
: (A10)

These are both negative for all physically relevant N.
Specifically, with Nf continued from the nonnegative in-

tegers to the nonnegative reals,

ðb2ÞNf;max;fund: < 0 for N >

ffiffiffiffiffiffi
11

p
5

¼ 0:66332; (A11)

and
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ðb3ÞNf;max;fund: < 0

for N >
½169642þ 9814

ffiffiffiffiffiffiffiffiffiffiffi
1243

p �1=2
1402

¼ 0:512186:

(A12)

For the adjoint representation,

ðb2ÞNf;max;adj ¼ �18N2; (A13)

and

ðb3ÞNf;max;fund ¼ � 537N3

8
; (A14)

which are also negative.
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