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We use a single site lattice in four dimensions to study the scaling of large N Yang-Mills field coupled

to a single massless Dirac fermion in the adjoint representation. We use the location of the strong to the

weak coupling transition defined through the eigenvalues of the folded Wilson loop operator to set a scale.

We do not observe perturbative scaling in the region studied in this paper. Instead, we observe that the

scale changes very slowly with the bare coupling. The lowest eigenvalue of the overlap Dirac operator is

another scale that shows similar behavior as a function of the lattice coupling.
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I. INTRODUCTION

Particle accelerators experiments provide strict bounds
for the beyond standard model physics. For technicolor it
means that the coupling constant has to exhibit walking
behavior. Otherwise the theory cannot simultaneously ex-
plain the mass pattern of standard model fermions and the
suppression of the flavor changing neutral currents [1–4].
Hence, lattice studies of vectorlike gauge theories with
appropriate choice of fermion matter with the aim of
understanding the conformal window has recently attracted
considerable attention (see Ref. [5] and references therein).
The gauge group is chosen to be SUðNÞ and the number
and representation of fermions is such that the theory is
expected to be conformal or near conformal [6].

Let

b ¼ 1

g2N
; (1)

define the inverse ’t Hooft coupling on the lattice. Let

t ¼ lna; (2)

define the logarithm of a lattice scalewhere aðbÞ could be the
square root of the string tension measured on the lattice at the
coupling b. The beta function of the lattice is defined as

�ðbÞ ¼ dbðtÞ
dt

: (3)

The perturbative beta function leads off as

�ðbÞ ¼ �b0 � b1
b
þ � � � : (4)

As is well known [7], only the one- and two-loop coefficients,
b0 and b1, are universal and the higher-order coefficients in a

Taylor expansion of �ðbÞ in powers of b�1 depend on the
choice of aðbÞ. In fact, one can imagine choosing an aðbÞ
such that all higher-order coefficients are zero. We will not
have such control on the choice of aðbÞ. In particular, there
is no reason to expect the location of the zero of the beta
function to be independent of the choice of aðbÞ—all we
can expect is for the zero to remain stable if it is at a
perturbatively weak coupling.
The choice of fermionic matter can be motivated by the

presence of a zero in the two-loop perturbative beta func-
tion. In order to maintain asymptotic freedom, all choices
are such that b0 > 0. The two-loop beta function has a zero
if b1 < 0. Some of the choices currently being investigated
are as follows:
(i) SU(3) gauge group with twelve Dirac flavors of

fermions in the fundamental representation [8–10].
b1 is negative if we have nine or more Dirac flavors
but the zero of the two-loop beta function occurs at
smaller coupling for larger flavors.

(ii) SU(2) gauge group with two Dirac flavors of fermi-
ons in the adjoint representation [11–14]. This is the
only choice based upon b0 and b1 since b0 < 0 if we
choose three or more Dirac flavors and b1 > 0 if
we choose one Dirac flavor.

(iii) SU(3) gauge group with two Dirac flavors in the
two-index symmetric representation [15–17]. In
this case b1 > 0 if there is only one Dirac flavor.
One can also choose three Dirac flavors and still
maintain asymptotic freedom.

The case of SUðNÞ gauge theory coupled to f flavors of
Dirac fermions in the adjoint representation is interesting
for two reasons:
(i) The first two coefficients of the beta function are

b0 ¼ 11� 4f

24�2
; b1 ¼ 17� 16f

192�4
; (5)*hietanen@cp3-origins.net
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and are independent of N [18]. The three interesting
choices for a theory with an infrared fixed point are
f ¼ 3

2 , 2,
5
2 based on the two-loop beta function.

(ii) Numerical evidence along with continuum argu-
ments [19–27] suggest that the Eguchi-Kawai re-
duction holds in the largeN limit as long as one uses
periodic boundary conditions for fermions. This is
expected to be the case for f � 1

2 [23] and for non-

zero quark masses [20].
We have the possibility to study theories with an infrared

fixed point that have only four SUðNÞ degrees of freedom
provided we consider the N ! 1 limit. For finite N, the
massless fermionic operator is a finite-dimensional opera-
tor that decouples into chiral sectors. The fermion deter-
minant is positive in each chiral sector and we can define a
theory for any real value f since we can write

ðdet 6DÞf ¼ ef lndet 6D: (6)

If 11
4 > f > 17

16 , the two-loop beta function has a zero and

the theory has an infrared fixed point.
Our aim in this paper is to use overlap fermions [28–30]

and study the f ¼ 1 theory on a single site lattice. We do
not expect the beta function to have a zero from the
perturbative viewpoint. Even if it has a zero, we expect it
to be at strong coupling. With this in mind we expect a
computation of the running coupling to agree with the
two-loop running. Contrary to this expectation, we will
show that the coupling runs much faster than what is
expected from perturbative running.

The model on the single site lattice is defined in Sec. II.
We will numerically study this model using the Hybrid
Monte Carlo (HMC) algorithm with pseudofermions as
described in Sec. III. It is numerically difficult to extract
the string tension. On the other hand there is an observable
based on the Wilson loop operator [31,32] that shows a
transition from weak to strong coupling and we will use the
location of this transition to set our scale as discussed in
Sec. IVA. We will also look at the eigenvalues closest to
zero of the overlap Dirac operator. We will compare the
behavior of the lowest positive eigenvalue as a function of
the lattice coupling and compare its behavior to the scale
set using the Wilson loop operator.

Results for the behavior of the scales set using the
Wilson loop operator and the lowest positive eigenvalue
of the massless Dirac operator are discussed in detail for
the case of theory with massless fermions in Sec. V. We
will show that both scales are monotonic in the coupling
and that they both vary very slowly with the coupling.

II. THE MODEL

The action on a single site lattice with one flavor of
adjoint Dirac overlap fermion is given by

S ¼ Sg þ Sf: (7)

The gauge action is

Sg¼�12bNP; P¼ 1

12

X4
���¼1

Tr½U�U�U
y
�U

y
� �; (8)

where the four gauge degrees of freedom,U� (�¼1, 2, 3, 4),

are SUðNÞ matrices. The lattice gauge coupling constant is
b ¼ 1

g2N
. The overlap fermion action is

Sf ¼ �f lndetHoð�Þ; (9)

where the Hermitian massive overlap Dirac operator is
defined by

Hoð�Þ ¼ 1

2
½ð1þ�Þ�5 þ ð1��Þ�ðHÞ�; (10)

with � 2 ½0; 1� being the bare mass. We note that the
eigenvalues of Hoð0Þ are in the range ½�1; 1� with exact
zero eigenvalues and exact �1 eigenvalues corresponding
to a gauge background with nonzero topology. The
Hermitian Wilson Dirac operator for adjoint fermions is
given by

H¼
4�m� 1

2

P
�
ðV�þVt

�Þ 1
2

P
�
��ðV��Vt

�Þ

�1
2

P
�
�y

�ðV��Vt
�Þ �4þmþ 1

2

P
�
ðV�þVt

�Þ

0
BB@

1
CCA

¼ð4�mÞ�5�
X
�

ðw�V�þwy
�V

t
�Þ; (11)

where

w� ¼ 1

2

1 ���

�y
� �1

 !
; (12)

and V� are the link matrices in adjoint representation. The

action of V� on � is given by

V�� ¼ U��Uy
�; Vt

�� ¼ Uy
��U�: (13)

One can verify that H is Hermitian in the usual sense:

Tr�yH� ¼ ½Tr�yH��� ¼ Tr½ðH�Þy��: (14)

Therefore �yH ¼ ðH�Þy and in addition it is also true
that TrH� ¼ 0 if Tr� ¼ 0. The same is also true for
Hoð�Þ.

III. THE NUMERICAL ALGORITHM

We used the HMC algorithm to generate U� according

to the measure

Z ¼
Z
½dU��e�S: (15)

Let us introduce a Hamiltonian

H ¼ 1

2

X4
�¼1

TrH2
� þ S; (16)
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where matrices, H�; � ¼ 1, 2, 3, 4 are elements of the

suðNÞ algebra and conjugate to U�. The HMC algorithm

involves the computation of the force, @S
@Uij

�
. The gauge part

of the force is simple to compute numerically, but the
fermionic part of the force is computationally intensive.
An exact algorithm was developed in Ref. [23] to compute
the fermionic part of the force. This algorithm scales like
N6. In addition to using this algorithm, we also developed a
pseudofermion algorithm in order to compute the fermi-
onic part of the force which scales like N4. We present the
details of the pseudofermion algorithm in this section. Both
algorithms were used to obtain the numerical data pre-
sented in this paper.

We note that

H2
o�ð�Þ ¼ 1þ�2

2
P� � 1��2

2
P��ðHÞP�;

P� ¼ 1� �5

2
; (17)

and

detHoð�Þ ¼ detH2
oþð�Þ ¼ detH2

o�ð�Þ; (18)

in the zero topological sector [33]. The overlap fermion
action can be rewritten as

Sf ¼ Tr½�y
þ½H2

oþð�Þ��1�þ�; (19)

where the pseudofermions �þ have positive chirality and
are traceless N � N complex matrices with an additional
two-component spin index.

For numerical purposes, we will represent �ðHÞ as

�ðHÞ ¼ Xn
k¼1

rkH

H2 þ pk

; 0<p1 <p2 � � �< pn; (20)

with n chosen such that the representation is accurate in the
spectral range of H2 assuming some lower bound on the
spectrum of H2.

The algorithm starts with one choice for U�. Then, we

draw H� according to a Gaussian distribution. We also

draw Dirac-indexed traceless Hermitian matrices, �
according to the Gaussian distribution, Tr�y�, and set

�þ ¼ PþHoð�Þ�: (21)

The equations of motion for U� are

dU�

d�
¼ iH�U�: (22)

Setting dH
d� ¼ 0 results in

X4
�¼1

Tr

�
H�

dH�

d�

�
þ dSg

d�
þ dSf

d�
¼ 0; (23)

and

dSg
d�

¼ X4
�¼1

Tr½H�D
g
��; dSf

d�
¼ X4

�¼1

Tr½H�D
f
��: (24)

The equation of motion for H� is given by

dH�

d�
¼ �Dg

� �Df
�: (25)

Taking the derivative of Sg in (8) with respect to � and

using (22) we arrive at

Dg
� ¼ �ibN

X4
�¼1

½U�U�U
y
�U

y
� þU�U

y
�Uy

�U�

�Uy
�U�U�U

y
� �U�U�U

y
�Uy

��: (26)

The derivative of Sf in (19) with respect to � using (17)

is

dSf
d�

¼ � 1��2

2
Tr

�
�y

þ
d�ðHÞ
d�

�þ
�
;

�þ ¼ ½H2
oþð�Þ��1�þ:

(27)

Substituting the representation (20) for �ðHÞ, we can write
dSf
d�

¼ � 1��2

2

Xn
k¼1

�
rkpk Tr

�
�y

k

dH

d�
�k

�

� rk Tr

�
�y

k

dH

d�
�k

��
; (28)

where

�k ¼ 1

H2 þ pk

�þ; �k ¼ H�k: (29)

Using (11), (13), and (22), we can show that

Tr

�
Xy dH

d�
X

�
¼ X4

�¼1

Tr½H�A�ðXÞ�; (30)

where

A�ðXÞ ¼ i
X4
i;j¼1

ðwyij
� ½Xj;U�X

y
i U

y
�� þ wij

�½Xy
i ; U�XjU

y
��Þ;

(31)

for any complex matrix X. It is clear that Ay
�ðXÞ ¼ A�ðXÞ

and that TrA�ðXÞ ¼ 0. Therefore,

Df
� ¼ � 1��2

2

Xn
k¼1

½rkpkA�ð�kÞ � rkA�ð�kÞ�: (32)

Given �þ in (21), we compute �þ in (27) with the
standard conjugate gradient algorithm. Each action of
H2

oþð�Þ that is part of the conjugate gradient algorithm
involves the action of �ðHÞ on a Dirac-indexed traceless
Hermitian matrix. We use the multiple mass conjugate
algorithm for each action of �ðHÞ represented by (20).
The core of the fermion algorithm is the action of H on a
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Dirac-indexed traceless Hermitian matrix and this opera-
tion scales like N3 [see (13)]. In addition, the computa-
tional cost depends on the gap of H and Hoþð�Þ. The
former is large and therefore does not seriously affect the
computational cost. Since we are interested in studying
chiral properties of the theory and want to work with as
small a bare mass, �, as possible the smallest eigenvalues
of Hoþð0Þ will scale like N�2 and the condition number
grows like N2.

IV. OPERATORS

Wewill focus on measuring two quantities that will help
us understand the running of the coupling with the scale
and reveal numerical evidence for a singular point. One
observable looks at the property of the gauge field and the
other looks at the property of the massless fermion.

A. Weak to strong coupling transition [32]

A folded L�L square Wilson loop operator in the���
plane is given by

WðLÞ ¼ UL
�U

L
�U

yL
� UyL

� : (33)

The eigenvalues, ei	k ; k ¼ 1; . . . ; N of this operator are
gauge invariant. Let pð	;L; bÞ be the distribution of these
eigenvalues with 	 2 ½��;�Þ. This distribution under-
goes a transition at N ! 1 as the size, L, is changed at a
fixed coupling b: the distribution has a gap at � for small
areas and it becomes gapless for areas larger than a critical
area AcðbÞ. There is a universal function describing the
distribution in terms of the scaled variables derived from
AðbÞ and 	 in the vicinity of AcðbÞ and �.

Let

ONðy;L; bÞ ¼ hdetðey
2 þ e�

y
2WðLÞÞi: (34)

The region close to y ¼ 0 probes 	 close to �. Let

ONðy;L;bÞ¼C0ðL;b;NÞþC1ðL;b;NÞy2
þC2ðL;b;NÞy4þ��� : (35)

It is useful to define a Binder cumulant type quantity

�ðL; b;NÞ ¼ C0ðL; b; NÞC2ðL; b;NÞ
C2
1ðL; b; NÞ : (36)

One can show using the universal scaling function that

�ðLcðbÞ; b;1Þ ¼ �4ð14Þ
48�2

¼ 0:364 739 936: (37)

We can define Lcðb;NÞ at a fixed N and b as the length
where

�ðLcðb;NÞ; b; NÞ ¼ 0:364 739 936; (38)

and

lim
N!1Lcðb; NÞ ¼ LcðbÞ; (39)

will be the location of the transition at infinite N.
Since we are working at a fixed but large N in this paper,

we will define our length scale as

aðbÞ ¼ 1

Lcðb;NÞ : (40)

B. Low-lying fermion eigenvalues

The eigenvalues of the massless Hermitian overlap
Dirac operator, Hoð0Þ, can be used to see how they scale
and if they show evidence for chiral symmetry breaking.
The eigenvalues come in doubly degenerate pairs and there
is also a pairing of positive and negative eigenvalues due to
exact chiral symmetry on the lattice. We computed all the
eigenvalues of the massless overlap Dirac operator.
Let 0< 
k < 1, k ¼ 1; . . . ; N2 � 1 with 
k < 
kþ1 de-

note all the positive distinct eigenvalues where each eigen-
value is doubly degenerate and each positive eigenvalue
has a negative eigenvalue pair. We can use


ðbÞ ¼ h
1i; (41)

as another choice for our length scale.
If chiral symmetry is broken, the chiral condensate sets a

scale. In particular, we expect

rk ¼
�

1


k

�
; (42)

to be independent of the coupling for a few low values of k.
AsN increases, we expect more rk to be independent of the
coupling. In addition, we expect 
ðbÞ to approach a finite
limit as N ! 1.

V. SINGLE SITE MODELWITH MASSLESS
ADJOINT FERMIONS

Our choice of b and N are based on numerical feasi-
bility. We expect the approach to the large N limit to get
slower as we increase b. Since the numerical costs in-
crease rapidly with N, we cannot make N as large as we
wish. Computational costs are manageable if we choose N
in the range of 13 to 25. Wewill restrict ourselves to a single
value of N, namely, N ¼ 18. We have chosen the couplings
in the range b 2 ½0:32; 0:70�. Our definition of the coupling
is related to the conventional lattice coupling by

� ¼ 2bN2: (43)

Our range of coupling corresponds to � 2 ½2:56; 5:6� for
SU(2) and � 2 ½5:76; 12:6� for SU(3). The choice of cou-
plings falls in the range of recent simulations with adjoint
fermions using SU(2) as the gauge group [11–13] and also in
simulations with fermions in the symmetric two-index rep-
resentation and SU(3) as the gauge group [15].
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In addition to these physical parameters, we also have to
choose the value of the Wilson mass parameter, m, in (11).
It is an irrelevant parameter but needs to be chosen in a
specific range to realize the correct continuum limit. Based
on previous studies on a single site model with adjoint
fermions [20], we set m ¼ 4 in this paper.

Table I shows the various values of couplings where
simulations were performed along with the results for the
average plaquette [cf., (8)], aðbÞ [cf., (40)], and 
ðbÞ
[cf., (41)]. A plot of the average plaquette is shown in
Fig. 1. The plaquette leads off as 1� N�1

8Nb þOðb�2Þ where
the coefficient of b�1 is not affected by fermions. A fit of
the data shows a smooth approach to unity as b ! 1. The
data also shows a measure of the fact that the eigenvalues
of Polyakov loop operators U� are uniformly distributed.

The four data points shown by different colored squares,
correspond to the average values of

P� ¼ 1

2

�
1� 1

N2
jTrU�j2

�
; (44)

for � ¼ 1; . . . ; 4 with P1 < P2 <P3 <P4 on every gauge
field configuration. An average value of 1

2 in the large N

limit shows that the ZN symmetries are not broken. Our
results are very close to 1

2 and we can assume that reduction

to a single site holds and we are simulating an infinite
volume theory.
We define

btad ¼ bhPi; (45)

as the tadpole-improved coupling and plot the running of
this coupling versus our two logarithmic scales, lnaðbÞ and
ln
ðbÞ in Figs. 2 and 3 respectively for the data points
listed in Table I. The data with error bars are shown with

TABLE I. Table showing the various values of couplings
where simulations were performed with massless fermions
with N ¼ 18. The results for the average plaquette and the
two different choices for the scales are also shown.

b hPi aðbÞ 
ðbÞ
0.32 0.6092(7) 0.4442(24) 0.9766(136)

0.35 0.6290(7) 0.4251(23) 0.9102(119)

0.40 0.6720(7) 0.3858(22) 0.7889(102)

0.45 0.7045(6) 0.3561(29) 0.6841(87)

0.50 0.7325(5) 0.3354(27) 0.5925(77)

0.53 0.7468(5) 0.3050(36) 0.5400(73)

0.55 0.7562(5) 0.2931(29) 0.5003(73)

0.57 0.7650(5) 0.2820(28) 0.4986(69)

0.60 0.7775(5) 0.2704(26) 0.4602(70)

0.65 0.7943(5) 0.2566(29) 0.4114(61)

0.70 0.8076(4) 0.2354(131) 0.3823(54)

0.3 0.4 0.5 0.6 0.7
b

0.5

0.55

0.6

0.65

0.7

0.75

0.8

<
P>

1 - 17/(144 b) -0.0178/b
2
 + 0.0049/b

3

Polyakov loop observables

FIG. 1 (color online). Average value of the plaquette along
with the average values for the four different Polyakov loop
observables for massless fermions at N ¼ 18.

-1.5 -1.4 -1.3 -1.2 -1.1 -1 -0.9 -0.8
ln(a(b))

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

b ta
d

FIG. 2 (color online). Running of the tadpole-improved cou-
pling versus the logarithmic scale lnaðbÞ for massless fermions
at N ¼ 18.

-6.6 -6.4 -6.2 -6 -5.8
ln(λ(b))

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

b ta
d

FIG. 3 (color online). Running of the tadpole-improved cou-
pling versus the logarithmic scale ln
ðbÞ for massless fermions
at N ¼ 18.
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solid circles in both figures. We chose one point in the
middle of the range as our renormalization point and
the solid curve represents the result based on two-loop
perturbation theory. Clearly, there is no agreement and
the coupling runs much faster than what is expected from
two-loop perturbation theory. This indicates that we are
working with lattice couplings that should be considered as
strong in spite of the fact that we used values that would be
considered as weak in theories that do not have additional
fixed points.

We end this section by presenting some details pertain-
ing to the two scales. We start by noting that L does not
have to be an integer in (33). We can always write

U� ¼ g�e
i��gy�; (46)

where g� is the unitary matrix that diagonalizes U� and

�� is diagonal with all entries in the range ð��;�Þ. Then,
we can write

UL
� ¼ g�e

iL��gy�; (47)

for any real value, L. Assuming that this is done on every
configuration, we can compute �ðL;N; bÞ in (36) as a
continuous function of L. Figure 4 shows such a plot at
N ¼ 18 and b ¼ 0:55. The oscillations we see in that
plot is a finite N effect. The (red) point in that figure is
an estimate of aðbÞ defined through (38) and (40) and listed
in Table I. The numbers in Table I were obtained only using
integer values of L and a linear interpolation between the
integer values.

Figure 5 is a plot of the eigenvalues of the Wilson loop
operator atN ¼ 18 andb ¼ 0:32 for three different values of
L, namely, 1

aðbÞ ,
3

aðbÞ and
1

3aðbÞ with aðbÞ set according to the

value in Table I for b ¼ 0:32. Clearly, the eigenvalues close
to � die down exponentially for the smallest loop and the
eigenvalues fill the full range for the largest loop. The critical
loop shows a distribution that just covers the entire range.

The complete spectrum of the distinct eigenvalues of the
massless adjoint overlap Dirac operator are shown in Fig. 6
for three different couplings. All three plots show the same
qualitative behavior. We see a concentration of small ei-
genvalues (less than 0.1) followed by a bulklike distribu-
tion. We think the distribution for 
 < 0:1 is due to the
would be zero modes in the gauge field background that is
diagonal. We believe that this part of the distribution will
shows signs of chiral symmetry breaking if one exists.
The plot of rk as defined in (42) versus k is shown in a

log-log plot in Fig. 7. Here again, one sees a separation
between the low eigenvalues (the would-be zero modes in a
diagonal background) and the bulk. Furthermore, the ratios
do not change much with coupling for k < 5 and we expect
this range to increase as we go to larger N. This is in
agreement with chiral symmetry being broken in this theory.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1/L

0.35

0.4

0.45

0.5

0.55

Ω
(L

,0
.5

5,
18

)

FIG. 4 (color online). Plot of the quantity, �ðL;N; bÞ, as a
function of L�1 at N ¼ 18 and b ¼ 0:55 for massless fermions.
The (red) square is the estimate listed in Table I.

0 0.2 0.4 0.6 0.8 1
θ/π

0

0.5

1

1.5

p(
θ/

π)

a(0.32)
3a(0.32)
a(0.32)/3

FIG. 5 (color online). The distribution of the eigenvalues of the
square Wilson loop operators for three different sizes at N ¼ 18
and b ¼ 0:32 with massless fermions.

0 0.2 0.4 0.6 0.8 1
λ

0

1

2

3

4

5

p(
λ)

b=0.32
b=0.55
b=0.70

FIG. 6 (color online). The full distribution of the eigenvalues
of the massless adjoint overlap Dirac operator for three different
couplings at N ¼ 18.
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VI. CONCLUSIONS

The single site model of a large N gauge theory coupled
to massless adjoint fermions was numerically studied in
this paper. We have studied this model with a single
flavor of adjoint fermion numerically using the HMC
algorithm and pseudofermions. We studied the running
coupling using two different choice of scales and did not
find agreement with two-loop perturbation theory at inter-
mediate values of the tadpole-improved coupling. The
two different choices of scales were the transition from
weak to strong coupling and the lowest eigenvalue of the

massless overlap Dirac operator. This is the main result of
our paper.
Both Figs. 2 and 3 show a mild discontinuity at a certain

value of the tadpole improved coupling that is close to 0.4.
This might be a lattice artifact but it could also signal some
nontrivial behavior in the beta function that is prohibiting
an approach to a perturbative scaling behavior at the values
of the coupling studied in this paper. The results presented
in this paper are exploratory in nature and future simula-
tions with different values of f will give a clearer physics
picture. However, the work lays the foundation for the
careful study of ultraviolet/infrared fixed points in matrix
models that mimic large N gauge theories coupled to
adjoint fermions. We have the ability to treat the number
of fermion flavors as a real number in the matrix model and
study the presence of singular behavior in the associated
beta function. It is likely that the behavior at the singular
point, results in it being an ultraviolet/infrared fixed point
for some range of fermion flavors. The numerical proce-
dure developed in this paper for the case of a single Dirac
flavor paves the way for future numerical studies of the
matrix model with varying number of flavors.
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FIG. 7 (color online). The ratios of the eigenvalues of the
massless adjoint overlap Dirac operator are shown in log-log
plot for all the data listed in Table I.
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