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We analyze the vector meson formulation of the Bogomol’nyi-Prasad-Sommerfield (BPS) Skyrme

model in (3þ 1) dimensions, where the term of sixth power in first derivatives characteristic for the

original, integrable BPS Skyrme model (the topological or baryon current squared) is replaced by a

coupling between the vector meson !� and the baryon current. We find that the model remains integrable

in the sense of generalized integrability and almost solvable (reducible to a set of two first-order ordinary

differential equations) for any value of the baryon charge. Further, we analyze the appearance of

topological solitons for two one-parameter families of one-vacuum potentials: the old Skyrme potentials

and the so-called BPS potentials. Depending on the value of the parameters, we find several qualitatively

different possibilities. In the massless case, we have a parameter region with no Skyrmions, a unique

compact Skyrmion with a discontinuous first derivative at the boundary (equivalently, with a source term

located at the boundary, which screens the topological charge), and Coulomb-like localized solitons. For

the massive vector meson, besides the no-Skyrmion region and a unique C-compact soliton, we find

exponentially as well as power-like localized Skyrmions. Further, we find (for a specific potential) BPS

solutions, i.e., Skyrmions saturating a Bogomolny bound (both for the massless and massive vector

mesons), which are unstable for higher values of the baryon charge. The properties of the model are finally

compared with its baby version in (2þ 1) dimensions and with the original BPS Skyrme model,

contributing to a better understanding of the latter.

DOI: 10.1103/PhysRevD.86.085001 PACS numbers: 11.30.Pb, 11.27.+d

I. INTRODUCTION

Among the effective field theory approaches to strong-
interaction physics at low energies, the Skyrme model [1]
plays a prominent role. The primary fields in the Skyrme
model are the pions, whereas baryons, nucleons and nuclei
are described by collective nonlinear excitations of the
fundamental degrees of freedom of the theory, that is,
topological solitons. The Skyrme model is very successful
in the qualitative description of physical properties of
nucleons and nuclei. First of all, the requirement of finite-
energy field configurations leads to an effective one-point
compactification of the (three-dimensional) base space
with the resulting topology of the three-sphere S3. Field
configurations may, therefore, be interpreted as maps from
this base space S3 to the field space [the group manifold
SU(2)], which are characterized by an integer-valued to-
pological degree or winding number. In the Skyrme model,
this winding number is identified with baryon number,
which is known to be conserved to a high precision.
Further, a collective coordinate quantization of some light
degrees of freedom (concretely, spin and isospin) about
classical soliton solutions may be performed [2], such that
baryons with odd baryon number are always quantized as
fermions with half odd-integer spin and isospin, as obvi-
ously must hold true. The resulting quantum states may be
identified with the nucleons and with both fundamental and
excited states of nuclei, where the comparison with the

experimentally measured spectra of nuclei leads to rather
satisfactory results in those cases where a detailed calcu-
lation has already been performed (see e.g., Ref. [3]). On a
more quantitative level, the Skyrme model, nevertheless,
has some known drawbacks. First and foremost, higher
soliton solutions correspond to rather strongly bound one-
soliton bound states, which is in conflict with the small
binding energies of physical nuclei. This problem is related
to the fact that, although there exists a Bogomol’nyi-
Prasad-Sommerfield (BPS) bound already for the original
Skyrme model, nontrivial soliton solutions cannot saturate
this bound. The question of how to improve the Skyrme
model towards an (almost) BPS theory is, therefore, an
important issue. There exist two main known possibilities
to improve this situation. One may modify the Lagrangian
without altering its field contents, or one may introduce
additional fields. The original Skyrme Lagrangian consists
of two terms [the subindices refer to powers of first deriva-
tives, and U is a SU(2) matrix],

L ¼ L2 þL4; (1)

the so-called nonlinear sigma model term

L 2 ¼ � f2�
4

TrðUy@�UUy@�UÞ (2)

and the quartic Skyrme term,
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L 4 ¼ � 1

32e2
Trð½Uy@�U;Uy@�U�2Þ; (3)

which is required to circumvent the standard Derrick argu-
ment for the nonexistence of static solutions. A first ob-
vious generalization is the inclusion of a potential term

L 0 ¼ ��2VðU;UyÞ; (4)

which is usually introduced to provide a mass term for the
pions. Secondly, if a proper Hamiltonian formulation is
required (i.e., no higher than second powers in time de-
rivatives), then the only possible further generalization is
provided by the following sextic term (the baryon number
current squared)

L 6 ¼ �2�4B�B
�; (5)

where B� is the topological (or baryon number) current

B� ¼ 1

24�2
Trð�����Uy@�UUy@�UUy@�UÞ: (6)

We remark that from the point of view of the Derrick
scaling argument, the sextic term is as good as the quartic
Skyrme term. The generalized model consisting of all four
terms has been studied and applied to the phenomenology
of nucleons and nuclei, too, although the resulting numeri-
cal calculations are quite involved [4–6]. Recently, it has
been found that the restricted model consisting only of the
potential and sextic terms (the so-called BPS Skyrme
model) has a BPS bound and exact soliton solution satu-
rating this bound [7,8]. These classical solutions, therefore,
correspond to nuclei without binding energies and realistic,
small binding energies may be introduced both by quantum
corrections and by small contributions of additional terms
[9]. The BPS Skyrme model has further intriguing mathe-
matical properties like, e.g., infinitely many symmetries
and conservation laws as a consequence of its generalized
integrability [10]. These symmetries contain the symme-
tries of an incompressible ideal liquid and allow us, there-
fore, to reproduce some features of the liquid drop model
of nuclear matter.

Another possibility to overcome the shortcomings of the
Skyrme model consists of the inclusion of further (e.g.,
vector) fields. Firstly, one may couple the Skyrme fields to
the electromagnetic field. The correct electromagnetic cou-
pling of the Skyrme model was first derived in Ref. [11],
and soliton solutions of the resulting Maxwell-Skyrme
system have been studied in Refs. [12,13] (the equivalent
problem for the baby Skyrme model in one dimension
lower has been studied in Refs. [14,15], and, for the BPS
baby Skyrme model, in Ref. [16]). Secondly, one may
couple the Skyrme fields to vector mesons. In a recent
investigation, a Skyrme theory coupled to an infinite tower
of vector mesons was derived from an instanton holonomy
in one dimension higher, where the exact BPS property of
the resulting Skyrme theory may be traced back to the

self-duality of the instantons [17]. The infinite tower of
Kaluza-Klein vector modes induces a flow to a conformal
BPS theory which is a Minkowski space version of the
Sakai-Sugimoto model (for further developments and ap-
plications to baryonic physics see, e.g., Ref. [18]). So one
main difference between the BPS Skyrme proposals of
Refs. [7,17] resides in the different symmetries that are
associated with the BPS property (conformal symmetry in
the former case, volume-preserving diffeomorphisms in
the latter case). Also, it is not obvious how to include a
potential term into the conformal setting of Ref. [17], and
this issue has not yet been completely resolved, to the best
of our knowledge. Any truncation to a finite number of
vector mesons of the theory of Ref. [17] leads to a theory
that is no longer exactly BPS but has rather small binding
energies.
Among all the vector meson couplings to the Skyrme

model, there is one that results in a Lagrangian that is
rather similar to the sextic term (the baryon current
squared) above, namely the so-called omega meson !�.

Indeed, the omega meson couples to the topological cur-
rent, L�!�B

�, and upon integrating out the omega

meson, the sextic term is recovered in the limit of infinite
vector meson mass. The importance of the omega meson is
also related to the fact that it transfers the physical effects
of the chiral anomaly to baryonic matter and prevents the
solitons from shrinking due to the appearance of a short-
range repulsion in nuclear interactions [19]. Moreover, it
blocks the flow to a conformal theory.
We remark that the omega meson may be integrated out

also for finite or zero meson mass, resulting in a nonlocal
effective self-interaction of the topological current with an
integral kernel K�� of the Yukawa or Coulomb type,

Leff ¼
Z

d3yB�ðxÞK��ðx� yÞB�ðyÞ;

although we shall not pursue this approach in the present
paper (i.e., we will always maintain the omega meson
explicitly). The same nonlocal interaction induced by a
Yukawa or Coulomb integral kernel has been investigated
for the nonlinear Schroedinger equation in lower dimen-
sions in Ref. [20]. The scaling behavior of the vector
meson terms (the coupling term and the standard kinetic
term) is, in fact, such that it stabilizes the solitons without
the need for a Skyrme term [21–23], and the resulting
theory consisting of L0 and L2 coupled to the omega
meson has been studied recently in Ref. [24], where it was
found that the soliton solutions are quite similar to the
solitons of the Skyrme model.
It is the purpose of the present paper to study in detail the

vector meson version of the BPS Skyrme model, which is
obtained from the vector model described in the preceding
paragraph by suppressing the sigma model term L2, and
to compare its properties to the standard BPS Skyrme
model. First of all, we shall find that the infinitely many
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symmetries of the BPS Skyrme model carry over almost
unaltered to the vector BPS Skyrme model and, conse-
quently, we will be able to perform most of the calculations
analytically, like in the BPS Skyrme model case.
Concerning soliton solutions, we shall find that the solitons
of the vector BPS Skyrme model are rather different from
the ones of the standard BPS Skyrme model, at variance
with the results of Ref. [24] for the full Skyrme model and
its vector version. This different result is, in some sense,
expected, at least for certain potentials. The reason is that
for potentials which include a pion mass term, the suppres-
sion of the termL2 corresponds to the limit of infinite pion
mass in the sense that linear fluctuations of the pion field
are completely suppressed. On the other hand, physically
the pions are the lightest effective particles. Hence, the
inclusion of vector mesons with a finite mass and a stan-
dard kinetic term in the BPS Skyrme model, in some sense,
reverses the typical mass hierarchy of low-energy QCD. It
would, therefore, be surprising and cast some doubt on the
viability of the BPS Skyrme model as an effective theory
for strong interaction physics, if it leads to qualitatively
similar solitons as in the vector model with its inverted
mass hierarchy. We remark that the vector versions of the
baby Skyrme model and its BPS restriction have been
investigated in Ref. [25] and in Ref. [26], respectively.
These results are extended and generalized to the 3þ 1
dimensional situation in the present paper (for the BPS
case), and in Ref. [24] (for the full Skyrme model case).

II. THE !-VECTOR MODEL

The vector version of the BPS Skyrme model is given by
the following Lagrange density

L ¼ ��2VðU;UyÞ � 1

4
ð@�!� � @�!�Þ2

þ 1

2
M2!2

� þ �0!�B
�; (7)

where B� is the baryon current.

We use the standard parametrization of the SUð2Þ chiral
field

U ¼ ei� ~n� ~� ¼ cos�þ i sin� ~n � ~�; ~n2 ¼ 1;

where ~	 are the Pauli matrices, � is a real field and ~n is
a unit-three component vector field, which is further re-
lated to a complex field u by means of the stereographic
projection

~n ¼ 1

1þ juj2 ðuþ �u;�iðu� �uÞ; 1� juj2Þ:

Then,

L ¼ ��2VðU;UyÞ � 1

4
ð@�!� � @�!�Þ2 þ 1

2
M2!2

�

þ i�sin2�

ð1þ juj2Þ2 !��
��
���u
 �u�; (8)

where � is a new constant related to �0. The potential term
is assumed to depend only on TrU i.e., on the scalar field �.
Concretely, we are going to analyze in detail a family of
potentials that provides a generalization of the usual
Skyrme potential

V ¼
�
1� TrU

2

�

 ¼ ð1� cos�Þ
: (9)

Soliton solutions of the Skyrme model with the old poten-
tial (
 ¼ 1) have been studied, e.g., in Refs. [27,28],
whereas generalized potentials were investigated, e.g., in
Refs. [29,30]. The pertinent field equations take the form

@�F
�� þM2!� þ i�sin2�

ð1þ juj2Þ2 �
�
���
u� �u� ¼ 0 (10)

i��
���@�!
�� �u� ¼ 0 (11)

i�sin2�

ð1þ juj2Þ2 �

���@�!
u� �u� þ�2V� ¼ 0: (12)

We assume the natural static ansatz

!0 � ! ¼ !ðrÞ; � ¼ �ðrÞ; u ¼ vð
Þein� (13)

and the other !i ¼ 0. Then, their static versions are

r2
r!�M2! ¼ i�

sin2�

ð1þ juj2Þ2 rr�ðr
ur� �u�r
 �ur�uÞ
(14)

i�sin2�

ð1þ juj2Þ2 rr!ðr
ur� �u�r
 �ur�uÞ þ�2V� ¼ 0:

(15)

Observe that one of the equations of motion i.e., (11), is
obeyed identically by the ansatz without any restrictions on
the form of the ansatz functions. However, the ansatz is
compatible with the remaining two equations only for a
very restricted form of the complex field. Namely, we need
that

r
ur� �u�r
 �ur�u

ð1þ juj2Þ2 (16)

is a function of r only and does not depend on the angular
variables. Then, the remaining equations (14) and (15)
become ordinary differential equations (ODEs) depending
entirely on r. So, for our ansatz

r
ur� �u�r
 �ur�u

ð1þ juj2Þ2 ¼ � 2in

r2 sin


vv


ð1þ v2Þ2 ; (17)
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where the function v must obey the appropriate boundary
conditions such that u covers the target space two-sphere at
least once. The well-known solution which covers the
target space latitude exactly once is

vð
Þ ¼ tan



2
) r
ur� �u�r
 �ur�u

ð1þ juj2Þ2 ¼ � in

2r2
: (18)

Inserting this result into the static equations, we get

r2
r!�M2! ¼ n�

sin2�

2r2
rr� (19)

n�sin2�

2r2
rr!þ�2V� ¼ 0: (20)

Further, we may use the last formula to eliminate the
derivatives of the vector fields from the first equation.
Then, we arrive at a set of two first-order ODEs of the
gradient-flow type

1

r2
@r

�
r4
2�2

n�

V�

sin2�
þ n�

4
ð�� sin� cos�Þ

�
¼ �M2!

(21)

!r ¼ �r2
2�2

n�

V�

sin2�
: (22)

The fact that the static equations of motion can be reduced
to a set of two first-order ODEs (solvability) is probably
related to the existence of infinitely many conserved
charges (integrability). This set of equations must be
equipped with the proper boundary conditions to guarantee
nontrivial topology,

�ðr ¼ 0Þ ¼ �; �ðr ¼ R0Þ ¼ 0; (23)

where R0 can be finite (compactons) or infinite for usual
solitons. Further, the boundary conditions for the vector
meson field are

!rðr ¼ 0Þ ¼ 0; !ðr ¼ R0Þ ¼ 0: (24)

Notice that the last formula leads to the following condi-
tion for the behavior of the profile function at the origin

lim
r!0

�
r2

V�

sin2�ðrÞ
�
¼ 0: (25)

A. Massless case

For the massless vector meson field, one may integrate
the first equation of motion completely

r4
2�2

n�

V�

sin2�
þ n�

4
ð�� sin� cos�Þ ¼ C: (26)

The integration constant C can be easily determined using
the assumed boundary conditions and (25)

C ¼ �n�

4
: (27)

Thus, for the massless case we have obtained exact solu-
tions [although usually it is not possible to write them in a
closed form, i.e., as � ¼ �ðrÞ] for any value of n. The
questions of whether these configurations correspond to a
nontrivial topology and how the solutions are localized are
determined by the particular form of the potential.

1. No solutions—� 2 ½1; 32Þ
For the most interesting case of the old potential, the

profile equation reads

r4
2�2

n�

1

sin�
þ n�

4
ð�� sin� cos�Þ ¼ �n�

4
: (28)

However, the profile function defined by this equation
cannot reach the vacuum � ¼ 0 for any value of r � 0.
Indeed, the left-hand side is singular at such a point, while
the right- hand side is obviously finite. Thus, there are no
topologically nontrivial configurations for the old poten-
tial. This can be generalized to all potentials with 
< 3

2 .

Then, the left-hand side of the profile equation still is
singular at the vacuum � ¼ 0,

r4
2�2

n�
2
�2 1

cos�2

�
sin

�

2

�
2
�3 þ n�

4
ð�� sin� cos�Þ

¼ �n�

4
: (29)

2. Compacton—� ¼ 3
2

In this case we get

r4
ffiffiffi
2

p
�2

n�

1

cos�2
þ n�

4
ð�� sin� cos�Þ ¼ �n�

4
; (30)

which at the vacuum value of the profile function takes the
form

R4
0

ffiffiffi
2

p
�2

n�
¼ �n�

4
: (31)

Obviously, we find a compact Skyrmion for which the
vacuum value must be reached at the finite radius

R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�n2�2

4
ffiffiffi
2

p
�2

4

vuut : (32)

As in the case of the vector BPS baby Skyrme model [26],
any compacton solution is, in fact, a solution in the spaceC
of continuous functions but not in the space C1 of continu-
ous functions with a continuous first derivative, because
the derivative is discontinuous at the compacton boundary.
Equivalently, any compacton is a solution of the field
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equations with a Dirac delta source located at the boundary
of the compacton, which screens the topological charge
generated in the interior of the Skyrmion,

1

r2
@r

�
r2!r þ n�

4
ð�� sin� cos�Þ

�
¼ ��n�

4
�ðR� rÞ:

(33)

Hence, the total charge of this configuration is zero.

3. Coulomb-like localized solutions—�> 3
2

Now, we find a powerlike tail for the profile function of
the Skyrmion, where the power depends only on the po-
tential but not on the topological charge

� ¼
�

�n2�2


2
þ1�2

� 1
2
�3 1

r
4

2
�3

þ . . . ; (34)

while the vector meson field is universally of the Coulomb
type

!r ¼ ��n�

4r2
þ . . . : (35)

The corresponding energy reads

E ¼ 4�
Z 1

0
r2dr

�
�2Vð�Þ � 1

2
!2

r � �n

2r2
!sin2��r

�
(36)

¼ 4�
Z 1

0
r2dr

�
�2Vð�Þ þ 1

2
!2

r

�
� 4�

Z 1

0

d

dr
ðr2!!rÞ

(37)

¼ 4�
Z 1

0
r2dr

�
�2Vð�Þ þ 1

2
!2

r

�
; (38)

where, using the equations of motion, we have combined
the second and third term into a total derivative plus an
additional term. Since the total derivative term is zero, due
to the boundary condition and the asymptotical form of the
solution, we arrive at a positive definite expression for the
total energy. Obviously, the second term is localized like a
Coulomb electric field. On the other hand, the potential
term converges in a way that depends on 
. Indeed, for
� ! 0

r2Vð�Þjonshell ¼ r2ð1� cos�Þ
jonshell
� r2�2
jonshell � r2

�
1

r

� 8

2
�3

¼
�
1

r

�
22
þ3
2
�3

:

It approaches the Coulomb-like localization for 
 ! 1,
while for any other 
> 3=2 we get a stronger
convergence.

B. Massive case

In the massive case, the field equation for the vector
meson can be rewritten as

@x

�
ð3xÞ4=3 2�

2


n�

ð1� cos�Þ
�1

sin�
þ n�

4
ð�� sin� cos�Þ

�
¼ �M2!; (39)

where, for simplicity, we introduced a new variable x ¼
r3=3. Then, knowing that

!x ¼ � 2�2


n�

ð1� cos�Þ
�1

sin�
(40)

and acting with @x on (39), we arrive at

@2x

�
ð3xÞ4=3 ð1� cos�Þ
�1

sin�
þ n2�2

8�2

ð�� sin� cos�Þ

�

¼ M2 ð1� cos�Þ
�1

sin�
: (41)

In order to classify Skyrmion solutions from the point of
view of their asymptotic behavior, it is enough to analyze
this equation in the vicinity of the vacuum value � ¼ 0.
Then we get

@2x

�
ð3xÞ4=3�2
�3 þ n2�2

�2


2
�3

3
�3

�
¼ M2�2
�3: (42)

Performing the series expansion, we find three types of
possible solutions: a compacton and exponentially as well
as powerlike localized Skyrmions that are analyzed in the
further part of this section. Finally, let us notice that using
the field equations, the total energy may be rewritten in the
following form

E ¼ 4�
Z 1

0
r2dr

�
�2ð1� cos�Þ
 þ 1

2
!2

r þ 1

2
M2!2

�

¼ 4�
Z 1

0
r2dr

�
�2ð2hÞ
 þ 1

2
!2

r þ 1

2
M2!2

�
; (43)

where

hðrÞ ¼ 1

2
ð1� cos�Þ: (44)

1. No solutions—�< 3
2

For � close to the vacuum we get

@2x½ð3xÞ4=3�2
�3� ¼ M2�2
�3; (45)

where both the left- and the right-hand side diverge. Then,
the asymptotic solution (x ! 1) is

�2
�3 � eþ
ffiffi
33

p
M

ffiffi
x3

p

x4=3
; (46)

which means that � is exponentially localized. However, it
leads to an exponentially divergent vector meson (40) and,
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therefore, to infinite energy. Hence, there is no Skyrmion in
this parameter range.

2. Compacton—� ¼ 3
2

In this case one can find a compact solution

fðrÞ ¼
�
~fðxÞ x � X
0 x > X

(47)

!ðxÞ ¼
�
~!ðxÞ x � X
0 x > X

; (48)

where X is the (third power of the) radius of the compacton

at which ~f and ~! i.e., the solutions of (39) and (40), are
joined with the vacuum configuration. However, !x has a

jump at the boundary as ~!xðXÞ ¼ �3�2=n�
ffiffiffi
2

p
. Hence,

the derivative of it produces a deltalike term located at the
boundary. More precisely, this boundary source term can-
cels the topological charge inside the compacton leading to
a zero total charge configuration, exactly as in the massless
case.

3. Exponentially localized Skyrmions—� 2 ð32 ; 3�
Assuming 
 � 3, one gets that �2
�3 � �3 for small �.

Then, the first term in (42) becomes the leading term under
the additional condition (which must be verified at the end)
that � goes to 0 sufficiently fast. Hence, we find

@2x½ð3xÞ4=3�2
�3� ¼ M2�2
�3; (49)

which is a linear equation for �2
�3. It possesses an
exponential solution

�2
�3 � e�
ffiffi
33

p
M

ffiffi
x3

p

x4=3
: (50)

Further, the meson field and the energy density are expo-
nentially localized.

An example of a solution of this type has been calculated
numerically for 
 ¼ 2. Then, performing the expansion
around the center for the equations, we find (we use again
the field variable h instead of �)

hðrÞ � 1þ f2r
2 �M2�2f2 � 5�2f22 þ n2�2f42

5ð�2 þ n2�2f22Þ
r4 þ . . .

(51)

!ðrÞ � v0 þ 2�2
ffiffiffiffiffiffiffiffiffi�f2

p
n�f2

r2

� �2

10n�
ffiffiffiffiffiffiffiffiffi�f2

p M2�2 þ 6n2�2f32
�2 þ n2�2f22

r4 þ . . . ; (52)

where f2 and v0 are the free parameters we can vary in
order to find a numerical Skyrmion solution with the
correct asymptotic behavior for large x (exponentially

decreasing) via a shooting from the center. For � ¼ � ¼
M ¼ 1 and the simplest charge-one Skyrmion, they take
the following values

f2 ¼ �1:8384364; v0 ¼ 1:14; (53)

and we find the solutions presented in Fig. 1. The static
energy corresponding to the energy density of Fig. 1 is
E ¼ 5:73645.

4. Powerlike localized Skyrmions—�> 3

For 
> 3, the second term in (42) is dominating which
leads to a different type of vacuum approach. Now we have

n2�2

�2M2


2
�3

3
@2x�

3 ¼ �2
�3; (54)

which gives a powerlike localization

FIG. 1 (color online). Solutions with their derivatives and the
energy density for the 
 ¼ 2 massive case with the constants
� ¼ M ¼ � ¼ n ¼ 1.
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��
�
1

r

� 1

�3

: (55)

This behavior is reproduced by numerics. For example, for

 ¼ 4 after expanding around the center we find

hðrÞ � 1þ f2r
2

� 8M2�2 � 200�2f2 þ n2�2f32
5ð8�2 þ n2�2f22Þ

f2r
4 þ . . . ; (56)

!ðrÞ � v0 � 16�2

n�
ffiffiffiffiffiffiffiffiffi�f2

p r2

� 8

5
ffiffiffiffiffiffiffiffiffi�f2

p 8M2�4 þ 13n2�2�2f32
8n��2 þ n3�3f22

r4 þ . . . : (57)

The free parameters are now fixed as

f2 ¼ �4:98624; v0 ¼ 1:64; (58)

which leads to the solution presented in Fig. 2 with the
static energy E ¼ 7:53696.

C. BPS case

Interestingly, there is a potential for which the energy
density can be written as a total derivative. This potential
possesses only one vacuum, where it looks similar to the
previously considered case 
 ¼ 4. Globally, however, it
has the following form

VBPS ¼ 1

4
ð�� cos� sin�Þ2: (59)

It has the nice property that it allows us to simplify one of
the field equations

n�

2r2
sin2�!r ¼ ��2ð�� cos� sin�Þsin2� ) n�

2r2
!r

¼ ��2ð�� cos� sin�Þ (60)

or, using the variable x ¼ r3=3 introduced in Sec. II B,

n�

2
!x ¼ ��2ð�� cos� sin�Þ: (61)

Now, using the equation for the meson field, one can
compute the total energy

E ¼ 4�
Z 1

0
r2dr

�
�2VBPSð�Þ � 1

2
!2

r � 1

2
M2!2

� �n

2r2
!sin2��r

�
(62)

¼ 4�
Z 1

0
r2dr

�
�2VBPSð�Þ � �n

4r2
!sin2��r

�
(63)

¼ 4�
Z 1

0
dx

�
�2VBPSð�Þ � �n

4
!sin2��x

�
(64)

¼ 4�
Z 1

0
dx

�
�2

�
n�

4�2

�
2
!2

x þ n2�2

16�2
!!xx

�
; (65)

where the last step follows from the derivative of (61), i.e.,

n�

2
!xx ¼ �2�2sin2��x: (66)

Then, combining the two terms into a total derivative, we
arrive at

FIG. 2 (color online). Solutions with derivatives and the
energy density for the 
 ¼ 4 massive case with the constants
� ¼ M ¼ � ¼ n ¼ 1.
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E ¼ �
n2�2

4�2

Z 1

0
dx½!2

x þ!!xx�

¼ �
n2�2

4�2

Z 1

0
dx

d

dx
ð!!xÞ ¼ ��

n2�2

4�2
!ð0Þ!xð0Þ;

(67)

where the asymptotical vanishing of the meson field has
been used. Further, the value of !x at the origin is fixed by
Eq. (61) and the boundary condition for the profile function
�ð0Þ ¼ �

!xð0Þ ¼ � 2��2

n�
: (68)

Hence, finally

E ¼ �2n�

2
!ð0Þ: (69)

Observe that this formula is valid for both the massless
and the massive case, because the vector meson field is
sufficiently localized also in its massless version. In the
massless case, it is possible to find the value of the meson
field at the origin analytically. The massless ! meson
equation (26) has the solution

�� cos� sin� ¼ �

1þ 8�2

n2�2 r
4
: (70)

Thus,

n�

2
!r ¼ � ��2r2

1þ 8�2

n2�2 r
4
; (71)

which may be integrated to the exact expression

!ðrÞ ¼ �2��2

n�

1

4
ffiffiffi
2

p
�

n�

2
ffiffiffi
2

p
�

�
3=2

�
ln

�
ar2 � ffiffiffiffiffiffi

2a
p

rþ 1

ar2 þ ffiffiffiffiffiffi
2a

p
rþ 1

�

� 2 arctanð1� ffiffiffiffiffiffi
2a

p
rÞ

þ 2 arctanð1þ ffiffiffiffiffiffi
2a

p
rÞ � 2�

�
; (72)

where a ¼ 2
ffiffiffi
2

p
�=n�. Hence, its value at the origin is

!ð0Þ ¼ �2

4

�
n�

2
ffiffiffi
2

p
�

�
1=2

: (73)

Finally, the energy

EM¼0 ¼ �4

8
ffiffiffiffiffiffiffiffiffi
2

ffiffiffi
2

pp �

ffiffiffiffi
�

�

s
� n3

2: (74)

Obviously, a sum of n charge-one solutions is lighter than
the charge-n soliton. Therefore, higher charge Skyrmions
are unstable, although they saturate the BPS bound.

Whether this is a consequence of the assumed spherical
symmetry or a general property of this BPS model remains
to be checked.
In order to (almost) analytically find the value of the

meson field at the origin for the massive case, we use its
field equation

1

r2
@r

��
r4

2�2

n�
þ n�

4

�
ð�� sin� cos�Þ

�
¼ �M2!: (75)

Then, we switch to the coordinate x and differentiate the
resulting equation by @x. Using (61) we arrive at

@2x

��
ð3xÞ4=3 2�

2

n�
þ n�

4

�
ð�� sin� cos�Þ

�

¼ 2M2�2

n�
ð�� sin� cos�Þ; (76)

which is a second order but linear differential equation for
h ¼ �� sin� cos�

@2x

��
ð3xÞ4=3 þ n2�2

8�2

�
hðxÞ

�
¼ M2hðxÞ: (77)

The value of the vector meson field at the origin may be
related to the derivative of h by using formula (75)

!ð0Þ ¼ � n�

4M2
hxð0Þ: (78)

Unfortunately, the equation for h can be solved only nu-
merically, despite its linear character. We solved it by
shooting from the center. We assume the standard values
for the constants � ¼ M ¼ � ¼ 1. The range for the nu-
merical solutions has been chosen as R ¼ 100. Moreover,
it has been checked that the BPS energy (computed for
each Skyrmion with Q 2 ½1; 10�) gives exactly the same
value like the one we get from the usual expression

0 2 4 6 8 10

2

4

6

8E n

n

FIG. 3 (color online). Total energy over the topological charge
as function of n.
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E ¼ 4�
Z 1

0
dx

�
�2

�
h

2

�
2 þ 1

2
ð3xÞ4=3!2

x þ 1

2
M2!2

�
:

(79)

It is clearly visible in Fig. 3 that the higher charge
Skyrmions are unstable, although they saturate the
Bogomolny bound. Again, we observe a faster than linear
growth of the energy with the topological charge. In fact,
one can fit a curve E ¼ a � jQjb and get a ¼ 5:13� 0:07
and b ¼ 1:196� 0:007. Although we do not have any
analytical argument, the power parameter b is equal
(within the error) to 6

5 . In any case, this dependence is

slightly weaker than in the massless case. An example of
solutions with Q ¼ 1 is presented in Fig. 4. Taking the
large x limit, one can find that the solution possesses an
exponential tail. Configurations for other topological
charges look very similar.

Let us remark that for the family of potentials

V ¼ ðVBPSÞ� (80)

built on the BPS potential (59), we observe the same
pattern of solutions as in the previously analyzed case
(the family of powers of the old potential). In the massless
version, there are three possibilities: no Skyrmions for
�< 1

2 , a compacton with a screening source at the bound-

ary for � ¼ 1
2 , and Coulomb-type solutions for �> 1

2 . In

the massive version, we found four cases: no Skyrmions for
�< 1

2 , a compacton (which again requires a screening

source) for � ¼ 1
2 , and two infinitely extended types of

solutions—exponentially (� 2 ð12 ; 1�) or powerlike local-

ized (�> 1). In fact, this behavior repeats for any one-
vacuum potential with the powerlike approach to the
vacuum at � ¼ 0

V � �a:

Here, a ¼ 2
 for the old Skyrme potentials family or
a ¼ 6� for the BPS family.
All these results should be compared with the qualitative

properties of Skyrmions in the BPS Skyrme model for the
potentials considered above. This is analyzed in the next
section.

III. SKYRMIONS IN THE BPS SKYRME MODEL

The BPS Skyrme model is [7]

L BPS ¼ �2�4B2
� ��2VðU;UyÞ; (81)

which, using the field decomposition introduced previ-
ously, reads

L BPS ¼ � �2sin4�

ð1þ juj2Þ4 ð�
������u� �u�Þ2 ��2Vð�Þ: (82)

Assuming exactly the same ansatz for the Skyrme field, we
arrive at a differential equation for the profile function �

n2�2sin2�

2r2
@r

�
sin2��r

r2

�
��2V� ¼ 0: (83)

This equation can be simplified by introducing the new
variable z (up to a numerical factor, it is our previously
defined x)

z ¼
ffiffiffi
2

p
�r3

3jnj� : (84)

Then,

sin 2�@zðsin2��zÞ � V� ¼ 0; (85)

and it may be integrated to

1

2
sin4��2

z ¼ Vð�Þ: (86)

FIG. 4 (color online). Solutions and energy density for the
BPS potential with the constants � ¼ M ¼ � ¼ 1 and winding
number n ¼ 1.
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A. The old Skyrme potentials

For the old Skyrme potentials it gives

� 1ffiffiffi
2

p sin2��z ¼ ð1� cos�Þ
=2: (87)

In the generic situation, this equation is solved by a combi-
nation of hypergeometric functions, which is not quite
illuminating. However, some general observations can be
easily made. First of all, performing an expansion in the
vicinity of the vacuum value, one can identify for which
potential compact Skyrmions occur. Namely, if we assume
that � 	 0, then the BPS equation at the leading order
reads

� �z ¼ 2
1�

2 �
�2; (88)

which possesses the obvious solution

��

8>>><
>>>:
ðz� z0Þ 1

3�
 
 2 ½1; 3Þ
e�1

2z 
 ¼ 3�
1
z

� 1

�3 
> 3:

(89)

Thus, for
< 3 the resulting Skyrmions are of the compact
type. This means that the vacuum value is reached at
a finite distance, the radius of the compacton. It is in
agreement with the result for the old Skyrme potential
(i.e., 
 ¼ 1), for which compact configurations have
been found previously. For 
 ¼ 3, we have a usual expo-
nentially localized solution, while for 
> 3 a powerlike
approach to the vacuum is observed. One can find exact
solutions that confirm this result.

(i) 
 ¼ 2 The pertinent solution reads

�þ sin� ¼ � ffiffiffi
2

p �
z� �ffiffiffi

2
p

�
z 2

�
0;

�ffiffiffi
2

p
�

� ¼ 0 z � �ffiffiffi
2

p :

As expected, we get a compact configuration. This

solution has a jump of derivatives at z ¼ �=
ffiffiffi
2

p
. In

this case, the jump is finite, and, as in the case of the
standard Skyrme potential, this jump is immaterial
for physical quantities like the energy density or the
topological charge density.

(ii) 
 ¼ 3 The solution is given by the following
expression,

cos
�

2
þ lntan

�

4
¼ � z

2
:

Notice that this profile function is not of compact
nature but is nonzero for all z. The vacuum value is
approached asymptotically at infinity. Moreover,
this solution and its energy density are exponen-
tially localized.

(iii) 
 ¼ 4 Now, the solution fulfilling the assumed
topological boundary condition is

�þ 2 cot
�

2
¼ ffiffiffi

2
p �

zþ �ffiffiffi
2

p
�
:

This solution is nonzero for all z and �0
zðzÞ ! 0, if

z ! 1. It is localized like a polynomial in inverse
powers of r.

(iv) 
 ¼ 6 For this value, we derive again a solution
that is nonzero for all z,

�ðzÞ ¼ 2 arc cot

ffiffiffiffiffiffiffiffiffiffiffi
3

ffiffiffi
2

p
z

3

q
:

It is easy to see that this configuration as well as the
corresponding energy density are polynomially lo-
calized in inverse powers of r, as for the 
 ¼ 4
solution. Indeed,

"ðzÞ ¼ 16
ffiffiffi
2

p
���n

1

1þ ð3 ffiffiffi
2

p
zÞ23 :

(v) Finally, we can compute the total energy of these
solitonic configurations for any 
 value using
the BPS property of the solutions. Then, in the z
variable

E ¼ 4�jnj��
Z

dz�zsin
2�

ffiffiffiffi
V

p

¼ 4�jnj��
Z �

0
d�sin2�ð1� cos�Þ
2 (90)

¼ 4�3=221þ

2

�ð32 þ 

2Þ

�ð3þ 

2Þ
jnj��: (91)

The existence of compact, exponential and power-
like Skyrmions in the BPS Skyrme models is an
expected phenomenon as it has its counterpart for
a lower-dimensional version of the model—the so-
called BPS baby Skyrme model.

B. The family of BPS potentials

Now we consider the family of potentials constructed
from the previously introduced BPS potential

V ¼ ðVBPSÞ� ¼
�
1

4
ð�� cos� sin�Þ2

�
�
: (92)

Locally near the vacuum, the family of BPS potentials
looks exactly as the family of the old Skyrme potentials
with the identification 
 ¼ 3�. So, the approach to the
vacuum is the same. On the other hand, the behavior at the
origin where � ¼ � is different. However, this fact only
weakly (quantitatively) influences the solutions. Hence, we
may consider this family of potentials as an approximation
of the more standard ones which allows for exact solutions
for all values of the parameter �. Now the BPS equation
reads
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� 1ffiffiffi
2

p sin2��z ¼
�
1

2
ð�� cos� sin�Þ

�
�
: (93)

It can be further simplified if we define a new target space
variable

� ¼ 1

2
ð�� cos� sin�Þ; (94)

which interpolates between �ð0Þ ¼ �
2 and 0. Observe that

using this variable V ¼ �2� and the profile equation takes
a very simple form

� 1ffiffiffi
2

p �z ¼ ��: (95)

It can be easily solved leading again to three types of
Skyrmions. For � 2 ð0; 1Þ we find compact Skyrmions

� ¼
� ð ffiffiffi

2
p ð1� �Þðz0 � zÞÞ 1

1�� z 2 ½0; z0�
0 z � z0:

(96)

For � ¼ 1 we have a unique exponentially localized
solution

� ¼ �

2
e�

ffiffi
2

p
z: (97)

For �> 1 we find powerlike localized Skyrmions

� ¼
�

1ffiffiffi
2

p ð�� 1Þðzþ z0Þ
� 1
��1

: (98)

Here,

z0 ¼ 1ffiffiffi
2

p j�� 1j
�
�

2

�
1��

:

Finally, the corresponding energy is

E ¼ 4�
jnj��
1þ �

�
�

2

�
1þ�

: (99)

IV. INTEGRABILITYAND CONSERVATION LAWS

As one might expect, the vector BPS Skyrme model is
integrable in the sense of generalized integrability. In
particular, there is an infinite family of conserved currents

jG� ¼ �G

� �u
�K� � �G

�u
K�; (100)

where

K � ¼ �
���!
��u�;
�K� ¼ �
���!
�� �u�

(101)

and G ¼ Gðu; �u; �Þ is an arbitrary function of the target
space coordinates. Then,

@�JG�¼G �u �u �u�
�K�þG �uuu�

�K�þG �u@�
�K�

�Gu �u �u�K��Guuu�K��Gu@�K� (102)

þG �u���
�K� �Gu���K� ¼ 0; (103)

where one has to use identities obeyed by K�

u�K� ¼ ��K� ¼ 0; �u�K� ¼ u�
�K� (104)

as well as the field equation

@�K� ¼ 0: (105)

Observe that this is exactly the same family of conserved
quantities as for the original BPS Skyrme model. The
interaction with the vector mesons does not spoil the
generalized integrability property, which may perhaps be
responsible for the solvability of our model. The set of
conserved currents is even bigger if one considers the
massless version of the model. Now, we can construct the
additional family of currents

jH� ¼ Hðu �uÞF��ð �uu� þ u �u�Þ ¼ Hðu �uÞF��@
�ð �uuÞ;

(106)

where H depends now on the modulus of the complex
scalar. Then,

@�jH� ¼ HF��@
�@�ð �uuÞ þH0F��@

�ð �uuÞ@�ð �uuÞ
þHð@�F��Þ@�ð �uuÞ: (107)

The first two terms vanish due to the contraction of the
antisymmetric tensor F�� with two symmetric ones. Using

the field equation for the mesons we get

@�jH� ¼ �i�H��
�
u
 �u�

ð1þ juj2Þ2 ð �uu
� þ u �u�Þ ¼ 0: (108)

This family of conserved currents is identical to the one
found in the baby version of the model [26].

V. SUMMARYAND CONCLUSIONS

In the present paper we investigated the vector BPS
Skyrme model and its soliton solutions. In this model,
the sextic term of the BPS Skyrme model is replaced by
a coupling of the baryon current to a (massive or massless)
vector field (the omega meson). First of all, we found that
the resulting model is still integrable in the sense of gen-
eralized integrability [10] and possesses infinitely many
symmetries and conservation laws, which are, in fact,
identical to the ones of the original BPS Skyrme model.
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Further, we found that, for a spherically symmetric
ansatz, the static field equations may be brought to a
first-order form of the evolutionary (or gradient-flow)
type, where this fact is probably related to the integrability
properties of the model. For a massless vector meson, the
resulting equations can even be integrated completely,
although the solution can usually be given only in an
implicit form.

The soliton solutions of the vector BPS Skyrme model
are quite different from the corresponding solutions of the
original BPS Skyrme model. For the standard pion mass
potential, for which the BPS Skyrme model has a compac-
ton solution, the vector model has no soliton solution at all,
because any local solution cannot be extended to a global
one with the correct boundary conditions for a topological
soliton (i.e., all formal solutions have infinite energy). As
explained already in the introduction, this difference has to
be expected, because the vector BPS Skyrme model with a
pion mass term corresponds to a situation where the mass
hierarchy is reversed with respect to the case of low-energy
QCD. This seems to imply that if one wants to include
omega mesons in a physically reasonable way into the BPS
Skyrme model (i.e., without altering the physical mass
hierarchy), then the limiting case of infinite meson mass
should be considered. But this brings us back exactly to the
original BPS Skyrme model, up to a redefinition of its
coupling constants. The BPS Skyrme model itself may,
therefore, be interpreted as a vector meson Skyrme model
in a certain limit, which might explain its BPS property
from a slightly different perspective.

For other types of potentials, with a faster than quadratic
approach to the vacuum, soliton solutions of the vector
model may exist, but their behavior is quite different from
the normal BPS Skyrme model case. Genuine compacton
solutions, which are quite typical for the BPS Skyrme
model, do not exist in the vector version. They only exist
(for potentials with a cubic approach to the vacuum) for a
modified field equation where an inhomogeneous delta-
function source term effectively screening the topological
charge is introduced at the compacton boundary. In other
words, the vector model has compacton solutions only in
the spaceC of continuous functions but not in the spaceC1

of continuous functions with a continuous first derivative.
For potentials with an even faster (than cubic) approach to
the vacuum, solitons with a powerlike or exponential decay
at spatial infinity can be found. Concretely, for a massless
vector meson we find that the vector meson term in the
energy density always localizes like a Coulomb term,
whereas the (powerlike) localization properties of the
Skyrme field depend on the potential. In the massive vector
meson case, depending on the vacuum approach of the
potential, both terms may decay either exponentially or
in a powerlike fashion, as summarized in Fig. 5.

Next, we considered the case of a specific potential (the
BPS potential of Sec. II C), where the energy density for

spherically symmetric solutions may be written as a total
derivative, such that these solutions saturate a BPS bound.
It turns out that the energy of the BPS bound grows faster
than linear in the topological charge and, therefore, higher
charge solitons are unstable with respect to decay into
smaller ones. At the moment it is not known whether this
is just a property of the sector of spherically symmetric
solitons or whether this instability (and maybe even the
BPS bound) continues to hold for the full model. Probably
a full three-dimensional numerical simulation would be
necessary to clarify this issue. In any case, this behavior is,
again, completely different from the case of the BPS
Skyrme model, where already the spherically symmetric
solitons saturate a BPS bound linear in the topological
charge. This linear behavior is, in fact, quite important
for its applications to low-energy QCD and nuclear phys-
ics. For further recent results on nontrivial BPS bounds, we
refer, e.g., to Refs. [16,26,31].
If we compare our findings with the analogous results for

the vector BPS baby Skyrme model in one dimension lower
[26], then most of our results are quite similar. One minor
difference is that in the baby case, the compacton solution
with the effectively screened topological charge appears
already for potentials with a quadratic approach to the
vacuum (i.e., with a mass term). In both cases, genuine
compactons do not exist for the vector models. This absence
of compactons is probably related to the presence of a
Coulombic (or Yukawa-like) term in the action of the vector
models, which implies long-range interactions. Only if the
topological charge (which plays a role analogous to the

FIG. 5. Comparison of types of solutions in the BPS Skyrme
mode (the old Skyrme potentials) with its massless and massive
vector counterparts. For the family of the BPS potentials, the
picture is exactly the same provided a substitution 
 ! 3� has
been made.
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electric charge due to its coupling to the vector meson) is
effectively zero because it is screened by a source term,
these Coulomb or Yukawa long-range interactions may be
absent. It is interesting to observe that when the electro-
magnetic field is coupled to the baby Skyrme field in the
standard, minimal way, then the resulting gauged BPS baby
Skyrme model allows for compacton solutions [16] without
problems. In this case, however, the electric field (and,
therefore, the electric charge density) must be zero for
finite-energy configurations, and only magnetic fields are
allowed. There is, therefore, no Coulomb term that would
give rise to a long-range interaction.
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