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In this paper we constructed a semirealistic cosmological model in a dynamic domain wall framework.
Our universe is considered to be a (3 + 1) dimensional dynamic domain wall in a higher dimensional
Einstein-Maxwell-Born-Infeld background. One of our interesting outcomes from the effective Hubble
equation for the domain wall dynamics is that it contains an additional component of ‘‘dark matter”” which
is induced from the charge of the bulk Born-Infeld gauge field. In this background spacetime we have
studied the cosmological dynamics of the domain wall. In addition to the Born-Infeld gauge field if we
consider additional pure gauge field, a nonsingular bounce happens at the early stage with a smooth
transition between the contracting and the expanding phase.
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I. INTRODUCTION

The standard model of cosmology has already been
proved to be one of the most successful models in physics.
In spite of its success in accounting various cosmological
as well astrophysical observations, the model is plagued
with some basic fundamental problems. One of those is the
famous big-bang singularity problem. In the standard big-
bang model if one goes backward in time, it hits the
singularity at finite time. Many different approaches have
been proposed over the years to avoid this problem. One of
the approaches that has gained considerable interest is in
the framework of braneworld. In this approach our universe
is identified with a four dimensional hypersurface [1-9]
moving in the extra dimensional spacetime. A codimension
one hypersurface is technically called domain wall.
Throughout our paper we will consider the dynamics of a
domain wall. In this framework it has been shown that
dynamics of a domain wall in the extra dimension mimics
the usual Hubble equation of standard cosmology with the
additional components of induced invisible energy. This
gives us a possibility of studying the cosmology in a new
perspective [10,11]. One of the important aspects of this
framework is that the Hubble equation of motion for the
domain wall emerges from the boundary condition across
its position in the extra dimension which is known as the
Israel junction condition [12]. Furthermore different pa-
rameters of the bulk spacetime solution effectively act as a
source of invisible energy density with different equations
of state on the domain wall. By tuning those parameters in
a model under consideration, one can in principle construct
viable cosmologies with a bounce which avoids the usual
big-bang singularity. Furthermore, it is an interesting point
to note that by tuning those bulk parameters one can also
construct a model universe with an induced ‘“‘dark radia-
tion” and ‘““dark matter” component in addition to the
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bounce with a transition from the contracting phase fol-
lowed by the standard expanding phase of the universe
[13,14]. Motivated by our previous study, in this paper we
constructed such a semirealistic bouncing domain wall
cosmological model without introducing a standard dark
matter component on the domain wall [15].

As a follow-up of our previous study we will construct a
simple cosmological model of dynamic domain walls in
the background of Maxwell and Born-Infeld gauge fields
along the line of Ref. [16]. Let us mention at this point that
we consider two types of gauge fields. One corresponds to
the standard Maxwell field A, and other one is Born-
Infeld gauge field By. The purpose of taking those two
different types of gauge fields will be apparent as we
proceed. Motivation to consider both kinds of gauge fields
could be coming from string theory. The Born-Infeld—
type higher derivative action naturally arises in string
theories in their low-energy effective action. In addition
to the the gauge field the effective action also contains an
infinite series of higher curvature terms in the gravity
sector. For our present purpose in this paper, we will ignore
those higher spacetime curvature terms. For simplicity, in
this paper we consider the gauge field higher derivative
terms like Born-Infeld gauge field. We have solved analyti-
cally the equations of motion with the appropriate junction
condition at the position of the domain wall. There exists
three different types of solutions depending upon the
choice of parameters. We have already discussed in detail
about part of those solutions in our previous works [15].
For the present purpose, we have chosen the simplest but
phenomenologically appealing solution which we find has
interesting cosmological implications with regard to our
aforementioned motivation to construct a domain wall
cosmology.

We structured this report as follows: In Sec. II, we will
start with a generic action corresponding to a domain wall
moving in the Maxwell-Born-Infeld-dilaton background.
In order for our paper to be self-contained, we will give the
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general analysis with the dilaton field in this section. In the
subsequent Sec. III as we mentioned before we will con-
sider a particular bulk background with a trivial dilaton
configuration. We take the static bulk metric ansatz and
study the dynamics of the domain wall in this static back-
ground. We get semirealistic bouncing domain wall cos-
mology with dark radiation and dark matter like energy
components induced from the bulk black hole charges. In
Sec. IV, we consider a more realistic case where we have
matter field localized on the brane. This has changed the
effective Hubble equation significantly. We find the corre-
sponding constraints on the bulk spacetime parameters
so that we have a nonsingular bouncing cosmology even
with the standard matter field. We also discussed the
possible constraints on the parameters of our solution
from the cosmological observations. In Sec. V we will
discuss the perturbation equations across the domain
wall. Finally, in Sec. VI, we do some concluding remarks
and describe some future directions for our work.

II. EINSTEIN EQUATIONS AND BOUNDARY
CONDITIONS

We start with a general action of the Einstein-Maxwell-
Born-Infeld-dilaton system in an arbitrary spacetime
dimension n. The action takes the form

5 — [d"x\/—_g(%R ~ Siabit — V()
- %e*szABFAB + L(G, ¢)) + Spw, (1)
where action for the domain wall is
Sow = = [ d VTR + V(o)

The expression for L(G, ¢) is

—47¢GABG
L(G, ¢) = 412274 (1 — \/1 & an e ) 2)

where A is a constant parameter with the dimension of
mass. Gup = 9,Bp — 9B, is the Born-Infeld field
strength and Fzp = dg Ap — dp Ap is the field strength
of the Maxwell field Ap. h is the determinant of the
induced metric &4 on the domain wall. K is the trace of
the extrinsic curvature K,;, of the domain wall.
Corresponding Einstein equations turn out to be

Ruy =T + TA + T3, (3)
a(¢) oL
Ded€p — ——+ 8A2 27‘1’{2 — - }
c0“ ¢ 96 Aye yay y
1
+ Ege*Z{d)GABGAB = O, (4)
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where various energy momentum tensor components are
¢ A 2 .
Typ=0,00"¢ + mv(d’)gms
1 _ 1
T/ﬂ; = 5‘3 24 (ZGAch - 2GCDGCDgAB)’
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D, is a covariant derivative with respect to the bulk metric
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y}gAB —8e 27¢@FACFg'

3
TA B

—4yh AB .. .
and Y = % In addition to the above equation we
need to satisfy the following Israel junction conditions:

K = =5 V), ™)
n
{nMaMd)} = 8‘;5;’)) (8)

where n is the unit normal to the domain wall. R is the
curvature scalar.

In the subsequent analysis we will consider our model
enjoying reflection symmetry (Z,) across the domain wall.
Considering a static spherically symmetric bulk metric

ds* = —N(r)dr* + ELEPR R(r)?dQ:, (9

N(r)
with dQ2 being a metric on a (n — 2) dimensional space
with a constant curvature R;; = k(n —3)g;; with k €
{—1, 0, 1}, we are interested to study induced cosmological
dynamics on the domain wall with a Friedmann-

Robertson-Walker metric

ds? = —dr* + R(1)2dQ2. (10)

wall —

7 is the domain wall proper time. As one can clearly see
from the above construction, the radial direction along the
extra dimension plays the role of the scale factor of our
domain wall universe.

By considering the unit normal to be pointing towards
the r < r(f) region, one can find the following equations
consistent with the dynamic domain wall in the extra
dimension:

R' = CV(g). (11
Using the above equation in the boundary condition for the
scalar field one gets
ap _ n—21 av
aR R Vg
In the above derivation we have used the expression for
Kij and KOO'

So, one can solve the above equation for ¢ as a function
of scale factor R without referring to the bulk scalar field

(12)
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potential. This is inconsistent with the dynamic domain
wall coupled with a bulk scalar field we mentioned before.
Now we will solve the full equation of motion to be
consistent with the above equations.

III. BULK SOLUTIONS AND DOMAIN
WALL COSMOLOGY

In our previous papers [15] we have already solved for
the Born-Infeld and the Maxwell field coupled with dilaton
separately. In this paper, we will solve them together and
then try to study their cosmologies.

We consider a class of solutions for both the Born-Infeld
and the Maxwell fields where all the components of FA8
and G are zero except the F'* and G’' components. The
solution looks like
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where Q and Q' are the integration constants and related to
the Born-Infeld and electromagnetic charge, respectively.
Born-Infeld and electromagnetic charges can be expressed
as follows:

1 Q(U -1
_ —2'y¢*G — n .
17 4m 47 14
gt = 1 f o U = QTwn—l,
47 Js,, 4
where *Fup = \/_ gABCD pCD and *Gup =
2\/%_8 ABCDGED |3, is a hypersurface at R — 0. w,,_ is

volume of unity n sphere.

2016279 Ot 20 Using the solution for the Born-Infeld and Maxwell field
G" = ; " — (13)  and the ansatz for the metric Eq. (9), the remaining equa-
VAQ> + AP R 2R tions of motion turn out to be
|
RII n
i 1
R p— ", (15a)
oy k1 =3)(n = 2) or
R 2{N(R Y - R —V—TxnR Q) - Wezm, (15b)
n—2 . (n 3)QT2
4R"2 (N'R"™2) = =V — TOO(R, Q)+ W ?, (15¢)
av(g) ’fz
|
where an —2)
b= o — Ph—+1 log(r), (19a)
T 5(R, Q) =4A2Y?E(R, Q); _— 1
R(r) = CV,e%%o paZa-2+1 19b
s ae[ERO) | GRQ) (r) = CVoettor (195)
T oo(R, Q) =4(n —2)\2e* + . (16) , _
n—>2 2 where ¢ and C are integration constants. Now, what we
need to check is how the above solutions for the scalar field
and and the scale factor are constraining our solution for the
bulk spacetime. For this we further specify our bulk po-
£(R. Q) = VAQ* + PR 1 tential for the scalar field as
’ AR" 2 ’
402 1 V(g) = Vye'?, (20)
GR Q) =~ (17)

4Q2 + )\2R2n4 /\R”_z'

T oo and T 5, are tt and xx components of the energy-
momentum tensor for the Born-Infeld Lagrangian,
respectively.

In order to solve, we choose the following Liouville-type
brane potential:

V(g) = Voe?,
which provides a straightforward solution for the scalar
field ¢ and the scale factor R without any specific form of
the the bulk potential:

(18)

where V|, is constant. By using Eq. (19) for R and ¢ as
solutions of the ansatz and the bulk potential for the scalar
field, one obtains different types of solutions [15] which
are characterized by the bulk parameters and suitable
boundary conditions. We will study those solutions and
their cosmological implication in detail elsewhere. In this
paper we will take one particularly simple solution and
study its cosmological behavior. The solution we are con-
sidering is for a simple choice of parameters ¢, y, 6 and
setting to zero. We, therefore, do not have any nontrivial
dilaton field in our background. We are also interested in
the domain wall universe with a spatially flat i.e k =0
section. In our framework, therefore, a spatially flat
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domain wall is moving in a black brane background. One
also notes that for the aforementioned value of the parame-
ters the bulk and brane potential turn into simple cosmo-
logical constant and brane tension, respectively.

Our bulk solution looks like

e o 2Vy X
N()=—2Mr=™ <<n—2><n—1> (n—2)(n—1>)’2
Q‘r 2-3) SAr—(n—4)

R T CESNCED)

—  4(n—2)Q} D
><<—V4Q2-i-/\2r2 4 =3 D(”,Q))
XR(r)=r; ¢=d,, (21)

where M and ¢ are integration constants and

n=3 13n=7 40Q* 9
2n—4'2"2n—4 A2
The solution itself is complicated. For simplicity we study
our solution in various limits along the radial coordinate

and study its behavior. If we expand our solution in large r,
the expression for the above solution becomes

D(r,Q)= 2F1[ ] (22)

— 2Vo 2 _ —(n=3)
N(r)lr—wo (n—2)(n— 1)7" 2Mr
2Q2 —(2n—6) 10—4n
+—(n—3)(n—2)r + O(r ),
(23)
where 0% = 80% + BQ1? and, for the small r limit,
N()—o = 0% 2Mr=
T (n=3)n-2)
_ 16/\Q —(n—4) 2
(n—l)(n—Z)r + O(r?),
where
Mo 160°T[ 270574 (4_Q2)—;'1
Ja(n — 1)(n — 3) '
(24)
(}’L _2)1" 3n—7 T ;_l
o of

- 2n-5
(n 3)F[2n 4]F[2374]
It is, therefore, clear from the above limits that the full
complicated solution for the bulk metric can be cast into
the following simple form:

or

N(r) = Tr

—2Mr 2 — 4/\3Q’ -l

H(r) —
(25)

where FH (r) is some complicated function of radial dis-
tance r. But it is important to note that in both limits of
the function is regular, i.e.,
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HOZ0w);  Ho ==L oo
In the above expressions we considered the number of
spacetime dimension to be n = 5 which is of our particular
interest. As one can imagine the expression for @ depends
upon the sign of Q but originally the metric always de-
pends on Q2. So, for the subsequent discussions, we will
take Q to be positive. The limiting expressions for J (r)
give us the total charge density related to O and mass
density M of the black hole. The solution has a timelike
singularity at r = 0.

So far we have discussed the analytic solution and its
various limiting properties of our bulk spacetime. In what
follows we will study the dynamics of a domain wall in that
background. As is well known [16], dynamics of a domain
wall satisfies a Hubble like equation of motion,

R2+ F(R) =0, (27)

where the “overdot” is the derivative with respect to the
domain wall proper time 7. For the simple solution we
considered, the expression for F(R) turns out to be

Vi R
36
The form of the potential looks like the asymptotic modi-
fication of the metric function N(R).

The Hubble equation of motion turns out to be

Q6 R0+ 2MR~ 4+4’\Q

F(R) = N(R) - (28)

H? = -

+ H(RR 2+ (VO + b). (29)

6 36

As mentioned before, the important point we want to
emphasize here is that the effective domain wall equation
of motion contains a so-called dark matter energy compo-
nent in addition to the usual dark radiation term. This is our
new finding which was not discussed in the previous
domain wall study. So the novel feature of our model is
that, even without the matter field localized on the brane it
evolves like a standard cosmology. Interestingly this dark
matter component is depending upon the charge (Q) of the
Born-Infeld electric field. On the other hand, invisible dark
radiation energy depends upon the linear combination of
both mass (M) and Born-Infeld electric charge (Q) of the
bulk black hole spacetime. So the evolution of the domain
wall in the Born-Infeld background mimics the evolution
of the standard cosmology. This is the reason we call our
domain wall dynamics as semirealistic in nature.

In addition to this semirealistic evolution we also want to
have a bounce in the domain wall dynamics at a finite value
of its scale factor. This can be achieved by introducing
a Maxwell gauge field in the bulk regarding which we
have particularly emphasized in the Introduction. From
the above Eq. (29), we see that due to the presence of
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FIG. 1 (color online).

Plot for metric function N(r) (dotted red line) and potential F(r) (solid black line). For these particular plots

weset 0 =1, 0 =1, M =3, A = 2 with plot (A) V, =2, Vo, =2, plot (B) Vo = —1, Vy = 4 and plot (C) Vy = —2, Vo, = —2.

negative energy component so-called “stiff matter” in-
duced from the charge of bulk Maxwell field, we have a
bounce followed by a standard cosmological evolution. It
is very difficult to get an analytic expression for the solu-
tion of the above equation of motion. We, therefore, plotted
the potential F(R) for different values of the parameters of
the model in Fig. 1 comparing with the bulk Gy, = N(R)
metric component. It is clear from the plots that there exists
a minimum value of the scale factor at which bounce
occurs for three different cases. For the limiting case,
near the bouncing point we can solve the above Hubble
equation with the approximation that the domain wall
dynamics is governed by the stiff matter and the dark
radiation. In that limit the solution for the scale factor
looks like [13]

1
R("?) = Jm (Q1L2 + 243\42772), (30)

where, for convenience, we use conformal time dr =
R(n)dn in the above expression. It is clear from the above
solution that we have the minimum value of the scale factor

12

2. )
R(M)in = where M = M — —757(4AQ2)§,

12M JT
In order to have a real solution, mass (M) and Born-
Infeld charge (Q) of the black hole should satisfy M >

%%(4)\Q2)%. As expected in the late time evolution is

radiation dominated, R(7) ~ 7.

In order for the completeness we also solve the above
Hubble equation numerically as shown in Fig. 2. The
qualitative feature of the scale factor is the same for the
different parameter values at the bouncing point. So we
only plotted the scale factor for the model A of Fig. 1. As
Fig. 1 shows the effective potential of the domain wall has
a minimum which leads to an exponential expansion phase
of the domain wall after the bounce. We, therefore, have a
natural inflationary phase after the bounce but for a very
short period of time. Near the minimum of the potential the
scale factor evolves like

R(r) ~ L5
where F(R) has a minimum at R.

At this point we want to emphasize that, for the two
horizon bulk black hole background, the bounce generi-
cally happens inside the inner horizon. The stability issue
on this kind of bounce inside the Cauchy horizon has been
raised in Ref. [17], although we think this issue needs
further study to completely rule out this kind of bouncing
cosmological models. But the general argument says that
the inner horizon of a charged black is intrinsically un-
stable under small perturbation. This instability is related
to the strong cosmic censorship conjecture of a black hole
spacetime. However, we are not going to study this issue
here any further. The point we want to emphasize in our
study is that for a wide range of parameters of our solution
we have charged under the Born-Infeld gauge field black
hole which has no inner horizon. So, for those cases the
stability issue is still not clearly understood. We defer it for
our future study.

IV. DOMAIN WALL COSMOLOGY WITH
BRANE MATTER FIELD

So far we have discussed the case where there is no
realistic matter field localized on the brane. In this section
we will study a more realistic situation where we have
radiation as well as normal baryonic matter field localized
on the domain wall. As we have discussed earlier, the dark
matter component is induced on the domain wall through

R(7)
20¢

05F

0.0 : : : : s
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 2. Numerical plot for scale factor R(7) for model A
of Fig. 1. So, parameters are QT =1, 0 =1, M =3, A =2,
Vo =2, Vo =2. The minimum value of the scale factor
R(7)min = 0.558303.
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the bulk field. So, the modified Hubble equation for the
domain wall turns out to be
2
0 2M+4AQ+5-[(R)

H?>=—=—+
6R® R* 3R* R’

+(VO+(VO+pradR4+me3)2)
6 36
1 (prad 2prddpm+pm) 6QT2 36M+‘70prad
36 R’ R®) 36R° 18R*
24/\Q+V0pm H (R) (VO V2) 1)
18R3 R? 6 36

As we can easily identify from the third and fourth terms of
the second line of the above equation, the induced dark
radiation (pg4,q) and the dark matter (p4,,) component on
our domain wall can be read off as

_36M 36 5
Pdrad = VO VO [M T("‘AQ ) ]
2409 9610
= _ = _ , 32
Pdm VO VO ( )

with the standard normalization for the Hubble equation
VO M2 , where M » is the four dimensional Planck

constant.

Now big-bang nucleosynthesis in standard cosmological
evolution during the radiation dominated era as well as the
anisotropy in the cosmic microwave background spectrum
[18] tell us that any nonstandard radiation like energy
density must be very tiny in order to satisfy the observed
relic abundance. So, the induced dark radiation energy
(Pdrag) should be much smaller than that of the usual
radiation density (p.,q). As we mentioned before and is
also clear from the above expression for the dark radiation,
by suitably choosing the mass (M) and Born-Infeld charge
(Q) of the bulk black hole, we can make it zero or very tiny.
Furthermore, we know that about 23% of the total energy
component in our universe is nonbaryonic dark matter in
nature. With this consideration we can fix the Born-Infeld
charge of the black hole to say Q = Qg,,. This observation
also fixes the mass of the bulk black hole to be

2.5 2

M = \/—;(4/\Qﬁm)§. (33)
Considering the above mass of the black hole, we can
ignore the dark radiation term in the effective Hubble
equation in our subsequent discussions. At this point it is
important to note the recent interests in the additional dark
radiation component in the standard model of cosmology.
There has been recent speculation that, in order to fit some
cosmological observation such as WMAP, the effective
number of relativistic degrees of freedom in our universe
has to be larger than four [19,20], even though there is an
active debate going on along the lines of this subject. In
order to confirm this we need to wait for further precision
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observation such as PLANCK. A different particle physics
model has already been considered in order to explain this
extra dark radiation component. An axtra relativistic par-
ticle such as a sterile neutrino has been introduced as a dark
radiation [19]. Interestingly brane world cosmological
models naturally predict an effective dark radiation com-
ponent induced from the bulk gravitation [21] as we also
have seen in our current analysis. So by imposing the
constraint coming from this extra cosmological dark radia-
tion component in our model, we can in principle give a
precise constraint on the bulk black hole charges. For our
current study we will consider the dark radiation compo-
nent to be negligibly small.

Now, further constraint on the black hole parameters
will come from the bounce for a particular value of the
scale factor. Since we are considering the case where the
domain wall is very close to the bouncing point, we can
ignore the matter and cosmological constant part from the
Hubble Eq. (31) and set it to zero right at the bounce. At the
bouncing point we approximated Eq. (31) to be

2 2 12 %
Prad | 2PradPm | P\ _ 00"  2Viprag _
<Rrzé TR +R6)_ R TR 0 G

It is very difficult to get an analytical expression for the
scale factor. As we have checked if the condition below is
satisfied then we can have a bounce at R, satisfying the
above equation:

- (6QT2 - pgn)R(z) + 2V0prang =0,
(35)

p%ad + 2pradme0

where

2-3ab + 2(~9a2c + A (4D + 27acz))%

RO = 1
6la(—9a>c + 3a (=4b" + 27ac?) |

with

a= 8‘70/7rad; b = 2(6Q+2 - p%q)’ ¢ = 2pradpm'

If we consider only the radiation field on the brane then
all the above expressions become simple. To simplify the
subsequent analysis, let us consider p,, = 0; then in order

to get a bounce one needs to satisfy [13]
2 - 2mp3

4 2 — d
QT = 5 Oprad - 3M127ra .

So, the bounce restricts the value of electromagnetic
charge of the bulk black hole. Then if the above bound is
satisfied, the minimum value for the scale factor approxi-

mately amounts to
384mp3, d));

Rb = Rmin = (
M;

In conclusion we have seen that dynamics of a domain wall
in the Maxwell-Born-Infeld black hole background is

(36)

(37)
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semirealistic in nature. The dynamics of the domain wall is
governed by the dark radiation, dark matter and cosmo-
logical constant, all of which can be induced from the
above-mentioned static bulk black hole charges. In addi-
tion to the above semirealistic cosmological expansion, we
also have seen that our model passes through a bouncing
phase as well. All these interesting features give us hope
that the brane domain wall model could be an interesting
framework to construct singularity-free cosmological
models. In the next section we will discuss the perturbation
across the domain wall junction.

V. PERTURBATION

In this section we will try to set up the stage for the scalar
perturbation in the dynamic domain wall scenario for our
future study. A detailed study on the perturbation dynamics
in the framework of the domain wall scenario has not been
studied yet. The present paper is beyond the scope of this
study. In this section, we will begin this program by first
calculating how the perturbed Israel junction condition
across the domain wall looks. Some part of this calculation
can be found in many papers dealing with perturbation in a
brane-world scenario (see the review [22]). First we will
start with a general form of the bulk background metric,

ds> = G ,,dX*dXx®
= —n(r)2de® + b(r)*dr* + R(r)?(dx® + dx* + dx?),
(38)
where for our particular case n(r) = ﬁ = N(r). We
parametrize our brane as
X?=Xy*) where X=t=1t(r); X'=r=r(r). (39)
Four tangent vectors to the brane are

_ axe at d
V :—:>Va:<_;0)0)_r);

a Ve =(0,58%,0). (40
o gyr o \or aT /1 =(0,5%,0). @40)

The normal vector to the brane would be

ﬁa=@5’a+15{,, “4n
Y Y
where y = +/n> — b%*#?. The normal vector satisfies
Vf,ﬁa = ( and normalizibility condition 71,7¢ = 1.
The form of the induced brane metic is defined as
before:

a?sﬁrane = GabVﬁV,?dy“dy”
= —d7* + R(1)*(dx* + dy* + dz?),  (42)
with
dt 1 1
(—) = = —. (43)
dr}  n* = b’ v

Now, in this background setup, we will consider the linear
perturbation with a dynamic domain wall. We will consider
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the scalar perturbation in our background. The linearly
perturbed Einstein equations of motion take the following
form:

SRup = 8T, + 8T + 6T%,;
1 _
O0Kyy = ———=90|V(d)hyy] 44
MN 200 —2) [V()hun] (44)
with the Background metric perturbation g,, =
G, + 6G,p, where
—2n*W R*X nW,
5Gab= R2X‘l’ R2[286”+25’”] Rz.Xr,i . (45)
nW, R*X,; 26*°W,,

In five dimension, the gauge transformation x* — x% + ¢,
contains three arbitrary scalar functions. Therefore, by
appropriately choosing those functions one can set three
scalar degrees of freedom of 6G,;, to be zero. After choos-
ing this gauge, the metric perturbation becomes

—2n*'W 0 nWw,
5G,=| o 0 RX, | ws
nwr Rer,j 2b2W,r

Finally we, therefore, have four scalar degrees of freedom.
Furthermore, since we have a domain wall which breaks
the translational invariance along the radial direction, we
have a brane fluctuating mode. Let us parametrize the
perturbed brane position as X¢ = X¢ 4+ y“(y*), where y*
is the brane coordinate. The fluctuation vector field y“ can
be conveniently decomposed as

X4 = €MV + i, (47)

where (£, &) are the five arbitrary functions defining the
fluctuating domain wall coordinate. However, we also have
a reparametrization invariance in domain wall coordinate
y*. So, we can again fix this gauge by choosing &* = 0.
The domain wall fluctuation can, therefore, be parame-
trized by a single function ¢. The perturbed induced metric
on the brane therefore would be

oh,, = 6Gy, _fLVf’, + 2K (48)

wv

where K, = V4 V5V, i1, is the background extrinsic cur-
vature of the brane.

The form of the perturbed normal vector to the domain
wall én, takes the following form:

~ 2
n

Sn,=—LD

n; 5 1

n
-,
y: 2
~ 2. 49)
(SanEDI _ED%
2 Y

én; = —9;{,
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where
D, = 6G it + (€9,.G i’

D, =+ {Gupit®Viyd i’

Equipped with all the above relevant variations the expres-
sion for the perturbed extrinsic curvature becomes

RR'
8K,y = —{; +—5 8n, + A%, (50)
’ n
18i§ﬁb—_ = _ S — 7 =
5K0i = 5 (Vbl’lt + V,I’lb + rvbn, + rV,nb)
+ \71;(% (V;8n, + V,6n;) + AI‘fbr‘zC), (S

b ) ) ]
0Ky = %(Vbﬁ, + Vit + iVyi, + iV, i)
Y
_ (1 - -
+ Vf;V’;(E (V,8ny + Vyén,) + Argbﬁc), (52)

where
AT¢, = 8T¢, + (i’9,1¢,. (53)

In this section we have computed the perturbing boundary
condition across the junction of the dynamic domain wall.
We will do the detailed analysis of this perturbation in our
subsequent paper.

VI. CONCLUSION

The standard model of cosmology is one of the most
successful models in successfully explaining the evolution
of our universe. There are some important fundamental
issues in this model which have been puzzling physicists
for a long time. As we have been mentioning throughout
our present paper, our universe under the standard model of
cosmology encountered a singularity as we go backward in
time. This is definitely unexpected for any physically
meaningful theory. There have been many attempts to
construct effective models which can avoid this big-bang
singularity. As we have mentioned, a higher dimensional
cosmological model has particularly gained considerable

PHYSICAL REVIEW D 86, 084056 (2012)

interest in this respect. In this paper we have studied
dynamic domain wall cosmology where we can realize
the bouncing cosmology. People have already found this
kind of bouncing solution before [13], but the interesting
finding in our model is the possibility of inducing a dark
matter like energy component on the domain wall by
considering simple well-known fields in the bulk. This
aspect leads us to construct a semirealistic bouncing do-
main wall cosmology by introducing different types of
gauge fields in the higher dimensional background. We
have considered the Maxwell-Born-Infeld gauge field
background in the bulk and studied the dynamics of the
domain wall in those backgrounds. We found out the
analytic bulk spacetime solutions taking into account
the backreaction of those gauge fields and the dynamic
domain walls. There exist many different types of solutions
depending upon various choices of parameters [15]. In
this paper we discussed a particularly simple solution in
which the dynamics of the domain wall mimics a semi-
realistic cosmological evolution along the extra dimension
compared to our standard cosmological scenario.

As we already mentioned, the important aspect of our
model is the presence of a dark matter like energy compo-
nent which is induced from the bulk Born-Infeld charge. In
addition to this we have a standard dark radiation component
coming from the black hole mass (M) and Born-Infeld
charge (Q). In addition to the standard evolution an effective
negative energy density is induced from the bulk usual
electromagnetic charge (Q1) leading to a singularity free
bounce of the domain wall at finite value of its scale factor.
All these aspects provide us an interesting possibility to
construct a realistic bouncing domain wall cosmology.
Furthermore, it gives us a hint that maybe the domain wall
framework could be an interesting playground to solve the
long-standing dark matter and dark energy problem in our
universe. Perturbation analysis in this kind of model is very
important in regard to the stability of itself as well as the
cosmic microwave background observation. We have just
initiated this in our current paper which shows a fairly
complicated set of equations only for the perturbed junction
condition across the domain wall. In our next paper we will
consider this in detail.
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