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Tendex and vortex fields, defined by the eigenvectors and eigenvalues of the electric and magnetic parts

of the Weyl curvature tensor, form the basis of a recently developed approach to visualizing spacetime

curvature. In particular, this method has been proposed as a tool for interpreting results from numerical

binary black hole simulations, providing a deeper insight into the physical processes governing the merger

of black holes and the emission of gravitational radiation. Here we apply this approach to approximate but

analytical initial data for both single boosted and binary black holes. These perturbative data become exact

in the limit of small boost or large binary separation. We hope that these calculations will provide

additional insight into the properties of tendex and vortex fields and will form a useful test for future

numerical calculations.
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I. INTRODUCTION

The first dynamical simulations of the inspiral and
merger of binary black holes [1–3] marked a significant
breakthrough in the field of numerical relativity and an
important step towards understanding the two-body prob-
lem in general relativity. They also produced the first
reliable predictions of the gravitational wave signals emit-
ted in these events, which are needed for the analysis of
data from gravitational wave interferometers. Soon after
these initial calculations, which adopted equal-mass and
nonspinning binaries, simulations of binaries with unequal
masses or nonzero spin revealed important phenomena,
including orbital hang-up (see, e.g., Ref. [4]), spin-flip
(e.g., Ref. [5]), and black hole recoil (e.g., Refs. [6–10];
see also Ref. [11] for a review).

In an effort to gain a better physical understanding of
these phenomena, several researchers have developed
tools for the visualization and interpretation of gravita-
tional fields and spacetime dynamics. Here we focus on
tendex and vortex fields (see Refs. [12–14]), which are
defined in terms of the eigenvectors and eigenvalues of the
electric and magnetic parts of the Weyl curvature tensor
(see Refs. [15–17] for an alternative cross-correlation
approach). As we will explain in more detail below, the
tendex fields describe tidal stretching or compression,
while the vortex fields describe precession.

Tendex and vortex fields and their properties have al-
ready been explored for a number of different types of
spacetimes. In Ref. [13], the authors focus on applications
to weak-field systems and gravitational wave generation
by such systems, including the case of a Newtonian slow-
motion binary. Several numerical simulations of binary
black hole systems are discussed in Ref. [12], where the
new tools are applied to analyze an extreme-kick merger.
In Ref. [14], the authors use tendex and vortex fields in
conjunction with results from topology to investigate
asymptotic properties of gravitational radiation.

In this paper we add to this list an analysis of tendex
and vortex fields for approximate but analytical initial
data describing boosted and binary black holes (see
Ref. [18]). The initial data are derived as perturbations of
Schwarzschild black holes and become exact in the limit of
small boost or large binary separation. Given that the initial
data are analytical, we can also find expressions for the
tendex and vortex fields, providing an analytical example
of these fields for a strong-field binary. Our calculations
reveal some interesting properties of tendex and vortex
fields, including the scaling of these fields with the black
hole masses. More importantly, we hope that these analyti-
cal expressions will be helpful in future comparisons with
numerical simulations. As analytical, strong-field solutions
they provide a powerful test for algorithms that compute
tendex and vortex fields. Moreover, comparisons between
numerical results for tendex and vortex fields in inspiral-
ing binary black holes and their counterparts in binary
black hole initial data may shed some light on the origin
of so-called junk radiation that is observed in current
binary black hole simulations (see also the discussion in
Ref. [19]).
Our paper is organized as follows. In Sec. II we briefly

review the notion of tendex and vortex fields, following
Ref. [12], and apply these tools to a Schwarzschild black
hole. We review the perturbative initial data for single
boosted and binary black holes in Sec. III. In Secs. IV
and V we apply the new visualization tools to these per-
turbative initial data, relegating some details of the calcu-
lations to several appendices. We conclude with a brief
discussion and summary in Sec. VI. Throughout this paper
we use geometrical units with G ¼ c ¼ 1.

II. TENDEX AND VORTEX FIELDS

Owen et al. [12] introduced several tools for visualizing
spacetime curvature, based on the eigenvectors and eigen-
values of the electric and magnetic parts of the Weyl
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curvature tensor. In Sec. II Awe follow [12–14] and define
tendex and vortex fields as well as related quantities
needed for the rest of the paper. In Sec. II B we apply these
definitions to a Schwarzschild black hole, which serves
both as a pedagogical example and as the background
solution in later parts of this paper.

A. Definitions

Assuming maximal slicing and vacuum, as we will
throughout this paper, we can write the electric and mag-
netic parts of the Weyl curvature tensor as

Eij ¼ Rij � Ki
kKjk (1)

and

Bij ¼ �j
lkDkKli; (2)

respectively. Here lowercase Latin indices run over the
three spatial coordinates, Rij is the three-dimensional

Ricci tensor, Kij is the extrinsic curvature, Dk denotes

the covariant derivative compatible with the spatial metric
�ij, �ijk is the spatial Levi-Civita tensor,

�ijk ¼ �1=2½ijk�; (3)

where [ijk] is the alternating symbol with ½123� ¼ þ1, and
� is the determinant of the metric. Maximal slicing implies
that the trace of the extrinsic curvature vanishes, K �
�ijKij ¼ 0.

Evaluating the electric part of the Weyl tensor on the
horizon of a black hole and contracting it twice with the
horizon’s inward unit normal vector Ni yields the horizon
tendicity

ENN ¼ EijN
iNj: (4)

The horizon tendicity measures the strength of the tidal
acceleration at the horizon [12]. The analogous quantity for
the magnetic part of the Weyl tensor yields the horizon
vorticity

BNN ¼ BijN
iNj; (5)

which measures the strength of the frame-drag angular
acceleration at the horizon [12]. Horizons can be colored
according to the horizon tendicity or vorticity to help
illustrate their gravitational properties. We provide an ex-
ample in Fig. 1 below but also refer to the many examples
in Refs. [12–14].

Both Eij and Bij are symmetric and therefore can be

characterized by their three orthonormal eigenvectors and
the associated eigenvalues. It is convenient to work in an
orthonormal basis where the spatial metric is �{̂ |̂. In such a

frame, which we will denote with hats, we do not need to
distinguish between contravariant and covariant indices.
The eigenvectors and eigenvalues satisfy familiar equa-
tions of the form

E {̂
|̂v

|̂ ¼ �v{̂; (6)

which is Eq. (3) of Ref. [14] except that we raised the free
index using the spatial metric. We then refer to the eigen-
vectors of E {̂ |̂ as the tendex fields and the corresponding

eigenvalues as tendicities, while the corresponding quan-
tities for B{̂ |̂ are called the vortex fields and vorticities.

Finally, we refer to the integral curves of the tendex and
vortex fields as tendex lines and vortex lines. Both Eij and

Bij are also traceless, so that, in an orthonormal basis, their

eigenvalues have to add to zero. In the following we will
derive Eij and Bij in a coordinate basis and then switch to

an orthonormal basis to solve the eigenvalue problem.
An observer oriented along a tendex vector will tend

to be tidally stretched for negative tendicity and tidally
compressed for positive tendicity [12,13]. Neighboring
gyroscopes oriented along a vortex vector will exhibit
counterclockwise differential precession for negative vor-
ticity and clockwise differential precession for positive
vorticity [12,13]. In the following sections we will repre-
sent tendex and vortex fields in two-dimensional plots with
the help of iron filings that are familiar from represen-
tations of magnetic field lines. The iron filings show the
direction of the eigenvector; we simultaneously shade
the plot backgrounds according to the corresponding

FIG. 1 (color online). The deviation from the average horizon
tendicity for a single black hole boosted with P ¼ 0:1M in the
positive z direction (i.e., pointing up). The horizon tendicity is
negative everywhere, but it is more negative (darker shading)
near the poles at � ¼ 0 and � ¼ � and less negative (lighter
shading) near the equator at � ¼ �=2. The true distorted shape
of the horizon is shown, but for the small boosts relevant for this
paper the distortion from the unperturbed spherical shape is not
readily apparent.
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eigenvalues (see Refs. [12–14] for many examples of
alternative representations of these fields).

B. A Schwarzschild black hole

In this section we compute tendicities and vorticities for
a Schwarzschild black hole in isotropic spatial coordinates,
both as a pedagogical example and so that we can use the
results as the background solution in our later perturbative
treatment.

Consider a Schwarzschild black hole with bare massM.
For a Schwarzschild black hole the bare mass is equal to
the black hole’s Arnowitt-Deser-Misner (ADM) energy
MADM or the irreducible mass Mirr. In this section we
may therefore replace M with either MADM or Mirr. We
write the spatial metric as

�ij ¼ c 4 ��ij; (7)

where c is the conformal factor and ��ij is the conformally

related metric. In isotropic coordinates, on a slice of con-
stant Schwarzschild time t, the conformal factor for a
Schwarzschild spacetime then takes the form

c ¼ 1þM
2r

; (8)

and the conformally related metric is flat; in spherical polar
coordinates we have

��ij ¼ diagð1; r2; r2sin2�Þ: (9)

Also, on a slice of constant Schwarzschild time t the
extrinsic curvature vanishes identically,

Kij ¼ 0: (10)

From (2) we see that the magnetic part of theWeyl tensor is
also zero,

Bij ¼ 0: (11)

As one might expect for a nonrotating, static black hole,
all vorticities therefore vanish identically.

The tendicities of a Schwarzschild black hole, on the
other hand, are nonzero. In order to evaluate them, we first
note that for a vanishing extrinsic curvature, the electric
part the Weyl tensor (1) reduces to the Ricci tensor

Eij ¼ Rij: (12)

We can evaluate the Ricci tensor using

Rij ¼ �Rij � 2ð �Di
�Dj lnc þ ��ij ��

lm �Dl
�Dm lnc Þ

þ 4

�
ð �Di lnc Þð �Dj lnc Þ � ��ij ��

lmð �Dl lnc Þð �Dm lnc Þ
�

(13)

(see, e.g., Ref. [11]), where �Rij and �Di are the Ricci tensor

and covariant derivative associated with the conformally
related metric ��ij. Since the latter is flat, we have �Rij ¼ 0,

and we find that the only nonzero components of Eij are

Err ¼ � 2M
c 2r3

; (14)

and

E�� ¼ E��

sin2�
¼ M

c 2r
: (15)

To compute the horizon tendicity, we first note that the
inward normal on a sphere of constant radius r is

Ni ¼
�
� 1

c 2
; 0; 0

�
: (16)

We then have

ENN ¼ EijN
iNj ¼ ErrN

rNr ¼ � 2M
c 6r3

; (17)

which, when evaluated at the horizon r ¼ M=2, yields

ENN ¼ � 1

4M2
¼ �

ð2ÞR
2

; (18)

where ð2ÞR is the two-dimensional Ricci scalar for the
horizon and the last equality is a consequence of a more
general result for quiescent black holes given in Ref. [12].
To solve the eigenvalue problem in Eq. (6), we convert

Eij to a spherical polar orthonormal basis. The same trans-

formation to an orthonormal basis will be used in later
sections—only the conformal factor will be different when
we consider perturbed data. Noting that the spatial metric
is defined by �ij ¼ ei � ej, we now define orthonormal

basis vectors

er̂¼ 1

c 2
er; e�̂¼

1

c 2r
e�; e�̂¼ 1

c 2rsin�
e�; (19)

with a corresponding dual basis of oneforms

~!r̂¼ c 2fdr; ~!�̂¼ c 2rfd�; ~!�̂¼ c 2rðsin�Þfd�: (20)

The orthonormal components E {̂ |̂ can be identified using

Eij
fdxifdxj ¼ E {̂ |̂ ~!

{̂ ~!|̂: (21)

For example,

Er̂ �̂ ¼ 1

c 4r sin�
Er�: (22)

The other components of E {̂ |̂ are similar, and Bij trans-

forms just like Eij. Applying these transformations to (14)

and (15) we find that the nonzero components of E {̂ |̂ in a

spherical polar orthonormal basis are

Er̂ r̂ ¼ �2E�̂ �̂ ¼ �2E�̂ �̂ ¼ � 2M
c 6r3

: (23)

This is consistent with the results in Refs. [13,20] but
expressed in a different coordinate system. Equation (23)
shows that E {̂ |̂ is diagonal in this basis, so its orthonormal

eigenvectors can be chosen to be
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vð0Þ{̂
E1 ¼ ðer̂Þ{̂ ¼ ð1; 0; 0Þ; (24)

vð0Þ{̂
E2 ¼ ðe�̂Þ{̂ ¼ ð0; 1; 0Þ; (25)

and

vð0Þ{̂
E3 ¼ ðe�̂Þ{̂ ¼ ð0; 0; 1Þ: (26)

Here the superscriptð0Þ has been added for consistency with
later sections where these results will serve as background
solutions to a perturbative treatment, and the labels E1, E2,
and E3 denote these as the three eigenvectors of E {̂ |̂. The

corresponding eigenvalues are given by

�ð0Þ
E1 ¼ Eð0Þ

r̂ r̂ ¼ � 2M
c 6

ð0Þr
3
¼ � 128Mr3

ðMþ 2rÞ6 ; (27)

and

�ð0Þ
E2 ¼ �ð0Þ

E3 ¼ Eð0Þ
�̂ �̂

¼ M
c 6

ð0Þr
3
¼ 64Mr3

ðMþ 2rÞ6 : (28)

Since �ð0Þ
E1 is negative, observers are stretched in the radial

direction. The eigenvalues �ð0Þ
E2 and �

ð0Þ
E3 are positive and deg-

enerate, so observers are compressed equally in all tangential

directions (see also Fig. 2 in either of Refs. [12,13] and the
associated discussion).

III. PERTURBATIVE BLACK HOLE INITIAL DATA

Numerical relativity simulations using a ‘‘3þ 1’’ de-
composition require initial data, namely, a spatial metric
�ij and extrinsic curvature Kij satisfying the Hamiltonian

constraint and the momentum constraint. Using the con-
formal transformation (7), and transforming the extrinsic
curvature according to

Kij ¼ c�2 �Aij; (29)

the Hamiltonian constraint takes the form

�D2c ¼ � 1

8
c�7 �Aij

�Aij; (30)

while the momentum constraint reduces to

�Dj
�Aij ¼ 0: (31)

Here �Di denotes the covariant derivative associated with
the conformally related metric ��ij, and �D2 � ��ij �Di

�Dj is

the associated Laplace operator. In the above expressions
we have again assumed maximal slicing and vacuum; we
have also assumed conformal flatness, meaning that ��ij is a

flat metric and �D2 a flat-space Laplace operator.
The momentum constraint has become linear under

these assumptions and is solved analytically by so-called
Bowen-York solutions [21–23]. For a black hole at coor-
dinate location Ci with linear momentum Pi these solu-
tions are given by

�Aij
CP ¼ 3

2r2C
½PinjC þ PjniC � ð ��ij � niCn

j
CÞPkn

k
C�; (32)

where rC ¼ jxi � Cij is the coordinate distance from the
center of the black hole and niC ¼ ðxi � CiÞ=rC is the unit

vector (normalized with respect to the conformally related
background metric) that points from the center to coordi-
nate location xi.
The solutions (32) can then be inserted into the

Hamiltonian constraint (30), which, in general, still has
to be solved numerically (see, e.g., Refs. [24–29] for differ-
ent approaches and results, as well as [11] for a review).
Here we will review a perturbative but analytical approach
(see Refs. [18,30,31]). We note that for vanishing boost,
the Hamiltonian constraint (30) is solved exactly by the
Schwarzschild conformal factor (8). For nonzero boost, we
can then consider the leading-order perturbations of the
Schwarzschild conformal factor. In the following two sec-
tions we will consider single boosted black holes and
binary black holes separately.

A. Single boosted black holes

We first note that �Aij is linear in the magnitude P of the
momentum. From the Hamiltonian constraint (30) we then

FIG. 2 (color online). The vortex eigenvalue �B2 in the z ¼ 0
plane for a black hole boosted in the positive z direction, along
with the projection of eigenvector v{̂

B2 into that plane. Randomly

placed line segments of fixed length mimic the appearance of
iron filings and trace the orientation of the eigenvector, while the
background shading shows the behavior of the eigenvalue. The
eigenvalue is most negative where the shading is darkest and
approaches zero as the shading fades away. In this figure the
black hole is boosted in the direction pointed out of the paper, at
the reader. Note that this figure and later figures bear some
resemblance to the ridge patterns in Fig. 3 of Ref. [14].
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see that all perturbations of c can only contain even
powers of P. Defining

�P � P

M
; (33)

we can therefore write the solution to the Hamiltonian
constraint (30) as

c ¼ c ð0Þ þ �2PuþOð�4PÞ; (34)

where c ð0Þ is the Schwarzschild conformal factor (8) for

a black hole at coordinate location Ci,

c ð0Þ ¼ 1þ M
2rC

; (35)

and where the function u can be written as

u ¼ M
8ðMþ 2rCÞ5

ðu0ðrCÞP0ðcos�Þ þ u2ðrCÞP2ðcos�ÞÞ:

(36)

Here

P0ðcos�Þ ¼ 1 (37)

and

P2ðcos�Þ ¼ 3

2
ðcos2�Þ � 1

2
(38)

are Legendre polynomials with � measured from the boost
direction, and the radial functions u0ðrCÞ and u2ðrCÞ ap-
pearing in Eq. (36) are given by

u0ðrCÞ ¼ M4 þ 10M3rC þ 40M2r2C þ 80Mr3C þ 80r4C;

(39)

and

u2ðrCÞ ¼ M
5r3C

�
42M5rC þ 378M4r2C þ 1316M3r3C

þ 2156M2r4C þ 1536Mr5C þ 240r6C

þ 21MðMþ 2rCÞ5 ln
�

M
Mþ 2rC

��
(40)

(see Refs. [30,31]).

B. Binary black hole systems

The initial data discussed in Sec. III A can be used
to construct similar initial data for a binary black hole
system with one hole at coordinate location Ci

1 with bare
mass M1 and momentum Pi

1 and another at coordinate
location Ci

2 with bare mass M2 and momentum Pi
2 (see

Ref. [18]).
The momentum constraint (31) is linear in �Aij, so it can

be solved by adding two solutions of the form shown in
Eq. (32):

�Aij ¼ �Aij
C1P1

þ �Aij
C2P2

: (41)

The Hamiltonian constraint (30) is not linear in c , but it is
still possible to construct a perturbative solution similar to
that for a single boosted black hole by adding the separate
perturbations from each of the holes. The derivation in
Ref. [18] assumes that the coordinate distance s between
the holes obeys

s � M1 � P1; s � M2 � P2; (42)

with P1=M1 � P2=M2 � �P. The conformal factor sat-
isfying Eq. (30) to second order in the boosts is

c ¼ 1þ M1

2rC1

þ M2

2rC2

þ �2Pu1 þ �2Pu2 þOð�4PÞ; (43)

where u1 and u2 are appropriate versions of Eq. (36), with
rC replaced by either rC1

or rC2
.

In this paper we will assume an equal-mass binary with
M1 ¼ M2 ¼ M. We also assume a quasicircular orbit,
which implies that the black holes have equal magnitude
momenta P1 ¼ P2 ¼ P, so �P1

¼ �P2
¼ �P. Applying the

virial relationship from Eq. (57) of Ref. [18] results in the
Kepler law

M
2s

¼ �2P þOð�4PÞ: (44)

Note that in using Eq. (57) of Ref. [18] we have replaced
the irreducible mass [32] with the bare mass, but this
difference only changes the calculation at order Oð�4PÞ,
so it can be ignored here.
For both single boosted and binary black holes, �Aij

is linear in P, so that perturbations of c contain only
even powers of P. From (29) we then see that Kij can

only have odd powers of P. Therefore, perturbations of
the Schwarzschild expressions for Eij also contain only

even powers of P, while perturbations of Bij contain only

odd powers.

IV. TENDEX AND VORTEX FIELDS FOR
BOOSTED BLACK HOLES

We now consider a single black hole at the origin
boosted in the þz direction, described by the perturbative
initial data from Sec. III A. We then compute the tendex
and vortex fields to leading-order, adopting the results of
Sec. II B as the unperturbed background solution.

A. The electric part of the Weyl tensor

As we have discussed above, only even powers of �P can
appear in perturbations of the electric part of the Weyl
tensor, so that we may write the result as

E {̂ |̂ ¼ Eð0Þ
{̂ |̂ þ �2PE

ð2Þ
{̂ |̂ þOð�4PÞ: (45)

For a black hole at the origin we can replace rC with r and

find that in a spherical polar orthonormal basis, Eð0Þ
{̂ |̂ has

nonzero components given by Eq. (23) with the conformal
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factor c replaced by c ð0Þ. The perturbations Eð2Þ
ij , expre-

ssed in a coordinate basis, are computed in Appendix B 1
(see Eqs. (B8)–(B11)). We then obtain the perturbations of
the orthonormal components from

Eð2Þ
r̂ r̂ ¼ 1

c 4
ð0Þ

Eð2Þ
rr � 4u

c 5
ð0Þ

Eð0Þ
rr ; (46)

Eð2Þ
r̂ �̂

¼ Eð2Þ
�̂ r̂

¼ 1

c 4
ð0Þr

Eð2Þ
r� ; (47)

Eð2Þ
�̂ �̂

¼ 1

c 4
ð0Þr

2
Eð2Þ
�� �

4u

c 5
ð0Þr

2
Eð0Þ
��; (48)

and

Eð2Þ
�̂ �̂

¼ 1

c 4
ð0Þr

2sin2�
Eð2Þ
�� � 4u

c 5
ð0Þr

2sin2�
Eð0Þ
��; (49)

where the function u is given by Eq. (36).

B. The magnetic part of the Weyl tensor

Only odd powers of �P appear in the magnetic part of the
Weyl tensor, so, to leading-order, it can be written in the
form

B{̂ |̂ ¼ �PB
ð1Þ
{̂ |̂ þOð�3PÞ: (50)

In Appendix B 2 we show that the only nonvanishing

components of the leading-order term Bð1Þ
ij , expressed in

a coordinate basis, are the r� and �r components

Bð1Þ
r� ¼ Bð1Þ

�r ¼ � 96Mr3sin2�

ðMþ 2rÞ5 : (51)

We then use the transformation (22) to find the orthonor-
mal components

Bð1Þ
r̂ �̂

¼ Bð1Þ
�̂ r̂

¼ 1

c 4
ð0Þr sin�

Bð1Þ
r�: (52)

C. Horizon tendicity and vorticity

In Appendix B 3 we adopt the results for Eij in a coor-

dinate basis to find the horizon tendicity. This calculation
also relies on results for the perturbed horizon location that
were found in Ref. [18]. We compute the horizon tendicity
directly, following the procedure outlined in Sec. II A, but
in an alternative approach it is also possible to employ the
Newman-Penrose formalism [33] (see Ref. [13]). The re-
sult of this calculation is

ENN ¼� 1

4M2
þ�2P

1

16M2

þ�2P
ð�1871þ2688ln2Þ

640M2
P2ðcos�ÞþOð�4PÞ: (53)

The first two terms simplify if we express results in terms
of the black hole’s irreducible mass. From Eq. (26) of
Ref. [18] we have1

M ¼ Mirr

�
1� P2

8M2
irr

�
þOð�4PÞ: (54)

Inserting this relation into the expression above we see that
the (proper area weighted) average value of the horizon
tendicity is

Eave
NN ¼ � 1

4M2
irr

þOð�4PÞ: (55)

The simplicity of this result is not surprising on physical
grounds and we might have anticipated it from the Gauss-
Bonnet theorem as discussed in this context in Ref. [12].
As shown in Appendix B 3, the average horizon tendicity
for a horizon with spherical topology will take the above
form whenever a particular combination of spin coeffi-
cients vanishes when integrated over the horizon—which
is true here to the relevant order.
To leading-order in �P, the deviation from this average

value is proportional to P2ðcos�Þ. In Fig. 1 we plot this
deviation of the horizon tendicity from its average value for
a black hole boosted in the þz direction with P ¼ 0:1M.
In contrast to the horizon tendicity, the horizon vor-

ticity vanishes, at least to the order of our analysis.
Following the same steps that were used to derive ENN in
Eqs. (B15)–(B19), we see that the horizon vorticity is

BNN ¼ Bð1Þ
rr �rr

ð0Þ þOð�3PÞ ¼ Oð�3PÞ; (56)

because from Eq. (B13) the only nonzero components of
Bij to this order are Br� and B�r.

D. Tendex fields

In order to find the tendex fields we have to find the
eigenvectors and eigenvalues of the electric part of
the Weyl tensor. We have already solved this problem for
the unboosted background solution in Sec. II B. We
can now find the leading-order corrections to the
Schwarzschild results by solving the eigenvalue problem
perturbatively. While this ‘‘stationary perturbation theory’’
technique is well known, especially in the context of
quantum mechanics, we summarize the most important
results and specialize to the three-dimensional matrices
encountered in this context, in Appendix A. Given that
two of the unperturbed eigenvalues are degenerate [see
Eq. (28)], both degenerate and nondegenerate perturbation
theory are required.

1We note that this result holds only for wormhole data. For
trumpet data, for example, the bare mass M appears to be equal
to the irreducible mass Mirr for single boosted black holes; see
Refs. [34,35].
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Applying these techniques to the perturbations of the electric part of the Weyl tensor as derived in Sec. IVA above, we find
that the nondegenerate eigenvalue (27) generalizes to

�E1 ¼ �ð0Þ
E1 þ �2P�

ð2Þ
E1 þOð�4PÞ: (57)

Here the background term �ð0Þ
E1 is given by Eq. (27) and

�ð2Þ
E1 ¼

4M
5ðMþ 2rÞ12 ð�21M2ð3ðcos2�Þ þ 1ÞðM2 þ 2Mrþ 24r2ÞðMþ 2rÞ5 ln

�
M

Mþ 2r

�
� 6Mrðcos2�Þ

� ð21M7 þ 231M6rþ 1540M5r2 þ 6930M4r3 þ 18720M3r4 þ 27568M2r5 þ 18816Mr6 þ 3360r7Þ
� 2rð21M8 þ 231M7rþ 1550M6r2 þ 6930M5r3 þ 18120M4r4 þ 24368M3r5

þ 11616M2r6 � 4320Mr7 þ 3200r8ÞÞ: (58)

The corresponding eigenvector is

v{̂
E1 ¼ vð0Þ{̂

E1 þ �2Pv
ð2Þ{̂
E1 þOð�4PÞ; (59)

where the background term vð0Þ{̂
E1 is given by Eq. (24) and where the only nonvanishing component of vð2Þ{̂

E1 is

vð2Þ�̂
E1 ¼ � M

80r3ðMþ 2rÞ6
�
3840r8 sin� cos�� ðsin2�ÞðMþ 2rÞ

�
2rð21M6 þ 357M5rþ 2170M4r2

þ 6342M3r3 þ 9388M2r4 þ 6216Mr5 þ 720r6Þ þ 21MðMþ 8rÞðMþ 2rÞ5 ln
�

M
Mþ 2r

���
: (60)

The degenerate unperturbed eigenvalues become

�E2 ¼ �ð0Þ
E2 þ �2P�

ð2Þ
E2 þOð�4PÞ (61)

and

�E3 ¼ �ð0Þ
E3 þ �2P�

ð2Þ
E3 þOð�4PÞ; (62)

where the identical background terms �ð0Þ
E2 and �ð0Þ

E3 are
given by Eq. (28). The two perturbative corrections are

�ð2Þ
E2 ¼

4M
5ðMþ 2rÞ12 ð3MA� 2rBÞ (63)

and

�ð2Þ
E3 ¼

4M
5ðMþ 2rÞ12 ð3MCþ 2rDÞ; (64)

where the coefficients A, B, C, and D are given by

A ¼ 7MðMþ 2rÞ5 ln
�

M
Mþ 2r

�
ð3ðcos2�ÞðM2 þ 3Mr

þ 14r2Þ � ðM� rÞðMþ 6rÞÞ þ 2rðcos2�Þð21M7

þ 252M6rþ 1519M5r2 þ 5698M4r3

þ 13216M3r4 þ 17536M2r5 þ 11184Mr6

þ 2400r7Þ; (65)

B ¼ 21M8 þ 294M7rþ 1472M6r2 þ 3234M5r3

þ 2508M4r4 � 928M3r5 � 480M2r6

þ 4320Mr7 � 1600r8; (66)

C ¼ 7MðMþ 2rÞ5 ln
�

M
Mþ 2r

�
ð2M2 � 3rðcos2�ÞðM

� 10rÞ þ 7Mrþ 18r2Þ þ 2r2ðcos2�Þð�21M6

þ 21M5rþ 1232M4r2 þ 5504M3r3

þ 10032M2r4 þ 7632Mr5 þ 960r6Þ; (67)

and

D ¼ 42M8 þ 525M7rþ 3022M6r2 þ 10164M5r3

þ 20628M4r4 þ 23440M3r5 þ 11136M2r6

þ 1600r8: (68)

The corresponding eigenvectors are

v{̂
E2 ¼ vð0Þ{̂

E2 þ �2Pv
ð2Þ{̂
E2 þOð�4PÞ (69)

and

v{̂
E3 ¼ vð0Þ{̂

E3 þOð�4PÞ; (70)

where the only nonvanishing component of vð2Þ{̂
E2 is

vð2Þr̂
E2 ¼ �vð2Þ�̂

E1 : (71)

The eigenvectors v{̂
E1, v

{̂
E2, and v{̂

E3 are orthonormal to
second order in �P as expected. For small boosts, these
eigenvectors are not visibly different from the purely
radial or purely tangential unperturbed eigenvectors.
Algebraically, we see that the perturbation mixes the er̂
and e�̂ eigenvectors of the unperturbed state but leaves
the e�̂ eigenvector unchanged. This is expected because
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the boost breaks spherical symmetry but preserves
axisymmetry.

E. Vortex fields

As we have seen above, only odd powers of P enter into
an expansion of the magnetic part of the Weyl tensor. For
Schwarzschild we have B{̂ |̂ ¼ 0, so even for small boosts

we cannot treat this problem perturbatively. To leading-
order, B{̂ |̂ takes the simple form given by Eqs. (50)–(52),

so that it is straightforward to compute the eigenvalues and
eigenvectors directly by diagonalization.

We find that the first eigenvalue vanishes to our order of
analysis,

�B1 ¼ Oð�3PÞ; (72)

while the two other eigenvalues take the values

�B2 ¼ ��B3 ¼ ��P
1536Mr6 sin�

ðMþ 2rÞ9 þOð�3PÞ: (73)

The corresponding orthonormal eigenvectors are

v{̂
B1 ¼ ðe�̂Þ{̂; (74)

v{̂
B2 ¼

1ffiffiffi
2

p ððer̂Þ{̂ þ ðe�̂Þ{̂Þ þOð�2PÞ; (75)

and

v{̂
B3 ¼

1ffiffiffi
2

p ððer̂Þ{̂ � ðe�̂Þ{̂Þ þOð�2PÞ: (76)

Figure 2 shows �B2 in the z ¼ 0 plane (orthogonal to the
boost of the black hole), along with the projection of v{̂

B2

into that plane. In Fig. 3 we show the same quantities but in
the y ¼ 0 plane.

V. TENDEX AND VORTEX FIELDS FOR
BINARY BLACK HOLES

We now turn to perturbative initial data describing an
equal-mass binary black hole system in quasicircular orbit.
As demonstrated in Ref. [18], these solutions can be con-
structed as perturbations of two Schwarzschild black holes,
by adding the perturbations created by the black holes’
boosts to those created by the presence of the binary
companion. Here we follow a similar approach to construct
the tendex and vortex fields for such a binary system.
While the calculations can be carried out analytically at
least in principle, some of the expressions become very
unwieldy and do not provide much insight. In some cases
we therefore restrict the analysis to certain regions or
symmetry planes that allow a direct comparison with the
results for single boosted black holes in Sec. IV.

A. The electric and magnetic parts of the Weyl tensor

The perturbations of the electric part of the Weyl tensor
can be constructed as for a single boosted black hole,
adding contributions from the two black holes’ boosts
and then taking into account the perturbation created by
the binary companion. The resulting expressions, however,
are very messy, and we therefore restricted this analysis to
regions either close to one of the black holes, or far from
both. We will return to this analysis later.
To compute the magnetic part of the Weyl tensor we

can also add the perturbations created by the two holes.
As shown in Appendix C 1, it is convenient to first convert
the results for a single boosted black hole to a Cartesian
orthonormal basis with the origin placed at the center of
mass. In this coordinate system, the two black holes,
separated by a coordinate distance s, are placed at coor-
dinate locations (� s=2, 0, 0) with boosts (0, �P, 0).
Keeping symmetry in mind, the nonzero components of
B{̂ |̂, to the desired order in P, are

Bx̂ x̂ ¼ � 2z

y
Bŷ ẑ ¼ �Bẑ ẑ ¼ �P1536Mz

�
� r4C1

ðs� 2xÞ
ðMþ 2rC1

Þ9 þ
r4C2

ðsþ 2xÞ
ðMþ 2rC2

Þ9
�
þOð�3PÞ; (77)

Bx̂ ŷ ¼ �P1536Myz

� r4C2

ðMþ 2rC2
Þ9 �

r4C1

ðMþ 2rC1
Þ9
�

þOð�3PÞ; (78)

FIG. 3 (color online). The vortex eigenvalue �B2 in the y ¼ 0
plane along with the projection of eigenvector v{̂

B2 into that

plane. In this figure the boost of the black hole is pointing
upwards.
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and

Bx̂ ẑ ¼ �P384M

0
@r4C1

ððs� 2xÞ2 � 4z2Þ
ðMþ 2rC1

Þ9

� r4C2
ððsþ 2xÞ2 � 4z2Þ
ðMþ 2rC2

Þ9
1
AþOð�3PÞ: (79)

B. Horizon tendicity and vorticity

To calculate the horizon vorticity it is convenient to
change coordinates and consider Bij in the vicinity of

one of the holes [say hole 1 at coordinate location (s=2,
0, 0)]. In a spherical polar orthonormal basis centered on
this hole, with the boost in the (new) ẑ direction, the
leading-order components of Bij are just those specified

for the single boosted black hole in Eqs. (50)–(52)—this is
because Kepler’s law (44) implies that 1=s scales with �2P,
so that the corrections created by the companion black hole
are of higher order. As shown in Ref. [18], corrections to
the horizon location due to the companion black hole are
also of higher order, so the horizon is still axisymmetric.
As a consequence, the horizon vorticity still vanishes to our
order of analysis.

To find the horizon tendicity for hole 1, say, we first need
to find expressions for the components of Eij near hole

1—this is done in Appendix C 2. We expand Eij as we did

for the single boosted black hole in Eq. (45). As before, the

background Eð0Þ
ij is still given by Eq. (23) with c replaced

by c ð0Þ. The perturbations Eð2Þ
ij expressed in a coordinate

basis are given by Eqs. (C8)–(C11) in Appendix C 2—they
are very similar to those found for a single boosted black
hole but differ in some terms because of the presence of the
companion black hole.

From Eij we compute the horizon tendicity following the

calculation in Appendix B for single black holes, except
that we replace the conformal factor with that for a binary.
The result is

ENN ¼� 1

4M2
þ �2P

9

16M2

þ �2P
ð�1871þ 2688 ln2Þ

640M2
P2ðcos�ÞþOð�4PÞ: (80)

As for the single boosted black hole, we can simplify
the first two terms by expressing them in terms of the
irreducible mass. The relationship between the bare mass
and the irreducible mass in a binary is given by Eq. (47) in
Ref. [18],

M ¼ Mirr � P2

8Mirr

�M2
irr

2s
þOð�4PÞ: (81)

We therefore see that the average horizon tendicity is again

Eave
NN ¼ � 1

4M2
irr

þOð�4PÞ: (82)

To leading-order, the deviation from this average value is
identical to that for a single boosted black hole, so a plot of
the deviation would look like Fig. 1. The spin coefficient
argument made in Appendix B 3 for the single boosted
black hole applies here as well—Eqs. (B24)–(B30) are
unchanged even though expressions for their constituents
change slightly.

C. Vortex fields

While the eigenvalues and eigenvectors of the magnetic
part of the Weyl tensor can be computed everywhere, they
are in general quite complicated and do not offer much
insight. We instead restrict our analysis to certain planes,
some of which allow for a direct comparison with the
results for a single boosted black hole.

1. The symmetry plane between the black holes

The x ¼ 0 symmetry plane midway between the black

holes provides the simplest case. Defining rC � rC1
¼

rC2
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðs=2Þ2 þ y2 þ z2
p

we can write the eigenvalues as

�B1 ¼ �P
3072Mr4Csz

ðMþ 2rCÞ9
ð1þOð�2PÞÞ; (83)

�B2 ¼��P
1536Mr4Csðzþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p Þ
ðMþ 2rCÞ9

ð1þOð�2PÞÞ; (84)

and

�B3 ¼ �P
1536Mr4Csð�zþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 þ z2
p Þ

ðMþ 2rCÞ9
ð1þOð�2PÞÞ: (85)

The corresponding eigenvectors are

v{̂
B1 ¼ ð1; 0; 0Þ þOð�2PÞ; (86)

v{̂
B2 ¼ Að0; y; zþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

q
Þ þOð�2PÞ; (87)

and

v{̂
B3 ¼ Að0;�ðzþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

q
Þ; yÞ þOð�2PÞ; (88)

where the normalization factor A is given by

A ¼ 1ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ zðzþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 þ z2
p Þ

q : (89)

In Fig. 4 we show the eigenvalue �B2 in the x ¼ 0 sym-
metry plane along with the projection of eigenvector v{̂

B2
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into that plane. In this figure, and in all the following
figures, we assume a binary separation s ¼ 50M.

2. The symmetry plane orthogonal to the black
holes’ boosts

Expressions for the eigenvalues and eigenvectors in the
y ¼ 0 and z ¼ 0 planes are somewhat more complicated
but can be written compactly in terms of components of
B{̂ |̂. For the y ¼ 0 symmetry plane, which is orthogonal to

the black holes’ boosts, the eigenvalues are

�B1 ¼ Oð�3PÞ; (90)

�B2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðBx̂ x̂Þ2 þ ðBx̂ ẑÞ2

q
þOð�3PÞ; (91)

and

�B3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðBx̂ x̂Þ2 þ ðBx̂ ẑÞ2

q
þOð�3PÞ: (92)

The corresponding eigenvectors are

v{̂
B1 ¼ ð0; 1; 0Þ þOð�2PÞ; (93)

v{̂
B2¼AðBx̂ x̂�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðBx̂ x̂Þ2þðBx̂ ẑÞ2

q
;0;Bx̂ ẑÞþOð�2PÞ; (94)

and

v{̂
B3 ¼AðBx̂ x̂þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðBx̂ x̂Þ2þðBx̂ ẑÞ2

q
;0;Bx̂ ẑÞþOð�2PÞ; (95)

where the normalization factor A is given by

A¼ 1ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðBx̂ x̂Þ2þðBx̂ ẑÞ2þBx̂ x̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðBx̂ x̂Þ2þðBx̂ ẑÞ2

qr : (96)

In Fig. 5 we show the eigenvalue �B2 in the y ¼ 0 plane,
together with the projection of eigenvector v{̂

B2 into that
plane. A closeup view of the region near hole 1 is shown in
Fig. 6.

3. The orbital plane

Finally, in the orbital plane z ¼ 0 the eigenvalues are

�B1 ¼ Oð�3PÞ; (97)

�B2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðBx̂ ẑÞ2 þ ðBŷ ẑÞ2

q
þOð�3PÞ; (98)

and

�B3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðBx̂ ẑÞ2 þ ðBŷ ẑÞ2

q
þOð�3PÞ: (99)

The corresponding eigenvectors are

v{̂
B1 ¼ A

ffiffiffi
2

p ð�Bŷ ẑ;Bx̂ ẑ; 0Þ þOð�2PÞ; (100)

FIG. 4 (color online). The vortex eigenvalue �B2 in the sym-
metry plane x ¼ 0 between the two binary companions, along
with the projection of eigenvector v{̂

B2 into that plane for a binary

at separation s ¼ 50M. The analogous figure for �B3 and v{̂
B3

would look like this figure flipped vertically about z ¼ 0 but
with the degree of shading indicating the magnitude of a positive
eigenvalue.

FIG. 5 (color online). The vortex eigenvalue �B2 in the sym-
metry plane y ¼ 0 orthogonal to the black holes’ boosts, along
with the projection of eigenvector v{̂

B2 into that plane. A closeup

view of the region near hole 1 is shown in Fig. 6.
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v{̂
B2¼Að�Bx̂ ẑ;�Bŷ ẑ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðBx̂ ẑÞ2þðBŷ ẑÞ2

q
ÞþOð�2PÞ; (101)

and

v{̂
B3 ¼ AðBx̂ ẑ;Bŷ ẑ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðBx̂ ẑÞ2 þ ðBŷ ẑÞ2

q
Þ þOð�2PÞ; (102)

where the normalization factor A is given by

A ¼ 1ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðBx̂ ẑÞ2 þ ðBŷ ẑÞ2

q : (103)

Figure 7 shows eigenvalue �B2 in the plane z ¼ 0 along
with the projection of eigenvector v{̂

B2 into that plane.
A closeup view of the region near hole 1 is shown in Fig. 8.

D. Tendex fields

While the electric part of the Weyl tensor can, in prin-
ciple, be computed everywhere, it is in general quite
complicated, meaning that the expressions for its eigenval-
ues and eigenvectors are even more unwieldy. We therefore
restrict our analysis to two regions, namely, the vicinity
of one of the black holes, and the asymptotically far region.

1. Vicinity of one black hole

As before, we use the perturbation theory results sum-
marized in Appendix A to find the perturbed eigenvalues
and eigenvectors of E {̂ |̂ near hole 1. We change coordinates

as in the horizon vorticity calculation above, replacing rC1

with r for notational convenience. To second order in �P,
the perturbed eigenvectors are exactly those given by
Eqs. (59), (69), and (70) for the single boosted black
hole, but the eigenvalues are slightly different for this
problem. The expansions (57), (61), and (62) apply as
before, but the perturbative pieces change slightly. The
perturbative piece of the first eigenvalue is given by

FIG. 6 (color online). Same as Fig. 5, but in the vicinity of
hole 1. Compare to Fig. 2—note that hole 1 is boosted into the
page here while the hole in Fig. 2 is boosted out of the page.

FIG. 7 (color online). The vortex eigenvalue �B2 in the orbital
plane z ¼ 0 along with the projection of eigenvector v{̂

B2 into that

plane. A closeup view of the region near hole 1 is shown in Fig. 8.

FIG. 8 (color online). Same as Fig. 7, but in the vicinity of
hole 1. Compare to Fig. 3.
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�ð2Þ
E1 ¼

4M
5ðMþ 2rÞ12

�
�21M2ð3ðcos2�Þ þ 1ÞðM2 þ 2Mrþ 24r2ÞðMþ 2rÞ5 ln

0
@ M
Mþ 2r

1
A� 6Mrðcos2�Þ

� ð21M7 þ 231M6rþ 1540M5r2 þ 6930M4r3 þ 18720M3r4 þ 27568M2r5 þ 18816Mr6 þ 3360r7Þ
þ 2rð�21M8 � 231M7r� 1630M6r2 � 6930M5r3 � 13320M4r4 þ 1232M3r5 þ 45984M2r6

þ 65760Mr7 þ 22400r8Þ
�
: (104)

The perturbative pieces of the second and third eigenvalues
are given by Eqs. (63) and (64). The auxiliary variables A
and C remain the same as in the single boosted black hole
case, but B and D are now given by

B ¼ 21M8 þ 294M7rþ 1432M6r2 þ 3234M5r3

þ 4908M4r4 þ 11872M3r5 þ 28320M2r6

þ 35040Mr7 þ 11200r8 (105)

and

D ¼ 42M8 þ 525M7rþ 3062M6r2 þ 10164M5r3

þ 18228M4r4 þ 10640M3r5 � 17664M2r6

� 30720Mr7 � 11200r8: (106)

2. Asymptotic region

We can also find the eigenvalues and eigenvectors of E {̂ |̂

for the binary far from both holes. We return to our original

coordinate system for the binary, with r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
measured from the center of mass. For r � s, we can
expand the conformal factor (43) in powers of �r � s=r
to find

c ¼ 1þ 1

2r

 
2Mþ 2

5P2

8M

!
þOð�6P�rÞ (107)

(where P is the magnitude of each individual black hole’s
momentum). We can therefore identify the ADM mass of
this system as

MADM ¼ 2

 
Mþ 5P2

8M

!
þOð�4PÞ (108)

(see also Eq. (44) in Ref. [18]), where the first term on the
right-hand side accounts for the bare masses of the two
black holes, and the second term for the binding and kinetic
energies. To leading-order, therefore, the conformal factor
of the binary appears like the conformal factor of a single
black hole with the above ADMmass located at the origin.

To compute the electric part of the Weyl tensor, we
recognize that the leading-order terms in the Ricci tensor
Rij arise from the ADM mass term in the conformal factor

above, and that the contributions from the extrinsic
curvature fall off more rapidly and can be neglected. To
leading-order, therefore, the electric part of theWeyl tensor

is identical to that of a single Schwarzschild black hole, if
we express its mass in terms of the ADM mass. Borrowing
the results from Sec. II B we have

Er̂ r̂ ¼�2E�̂ �̂ ¼�2E�̂ �̂ ¼�2MADM

r3
þOð�6P�3rÞ: (109)

Similarly, the tendex fields for the binary in the asymptotic
region are identical to those for a single black hole derived
in Sec. II B, just with the bare mass replaced by the
ADM mass.

VI. SUMMARY

The authors of Ref. [12] recently introduced tendex and
vortex fields, defined in terms of the eigenvectors and
eigenvalues of the electric and magnetic parts of the
Weyl tensor, as an aid to visualize spacetime curvature. In
particular, the method has promise to help interpret results
from numerical relativity simulations, and to provide in-
sight into the physical processes governing the coalescence
and merger of binary black holes as well as the emission of
gravitational radiation.
Many numerical simulations of binary black holes start

with wormhole initial data constructed with the puncture
method (see, e.g., Refs. [27,28]). Here we present pertur-
bative but analytical expressions for the tendex and vortex
fields in black hole initial data, based on the perturbative
treatment of these initial data presented in Ref. [18]. In this
approach, the boosts of the individual black holes and the
effect of the binary companion are treated as perturbations
of a Schwarzschild black hole, so that the data, and hence
our expressions for the tendex and vortex fields, become
exact in the limit of vanishing boost or large binary
separation.
Our results complement other examples of tendex and

vortex fields presented in Refs. [12–14] and help us better
understand the properties of these fields. For example, our
results reveal the scaling of the tendex and vortex fields
with the black hole masses, at least to leading-order. As
analytical expressions for strong-field objects we also hope
that they will prove useful as a test for algorithms that
compute tendex and vortex fields in numerical simulations.
Finally, we speculate that a comparison between the tendex
and vortex fields of initial data, and those observed in
numerical simulations of black hole inspiral, may provide
some insight into the nature and origin of so-called junk
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radiation that is observed in current simulations of black
hole binaries (see also the discussion in Ref. [19]).
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APPENDIX A: FINDING EIGENVALUES AND
EIGENVECTORS PERTURBATIVELY

Finding the eigenvalues and eigenvectors of a perturbed
matrix is a common problem in quantum mechanics that in
its simplest form can be handled by stationary perturbation
theory. It is less familiar in this context, so in this appendix
we review well-known results (see, e.g., Refs. [36,37]) just
to the extent needed for the calculations in Appendix B and
C. Note that this is first order perturbation theory, but that
for consistency with the application and notation elsewhere
in the paper, we work to first order in a small quantity
called �2. We also choose to work in an orthonormal basis.

Let Eð0Þ
{̂ |̂ be a 3� 3 symmetric matrix with real entries.

Eð0Þ
{̂ |̂ has three real eigenvalues �ð0Þ

E1, �
ð0Þ
E2, and �ð0Þ

E3, and

corresponding orthonormal eigenvectors vð0Þ{̂
E1 , v

ð0Þ{̂
E2 , and

vð0Þ{̂
E3 . We now consider a perturbation of Eð0Þ

{̂ |̂ of the form

E {̂ |̂ ¼ Eð0Þ
{̂ |̂ þ �2Eð2Þ

{̂ |̂ : (A1)

We then want to find the new eigenvalues

�E1 ¼ �ð0Þ
E1 þ �2�ð2Þ

E1 þOð�4Þ;
�E2 ¼ �ð0Þ

E2 þ �2�ð2Þ
E2 þOð�4Þ; and

�E3 ¼ �ð0Þ
E3 þ �2�ð2Þ

E3 þOð�4Þ;
(A2)

along with corresponding new eigenvectors normalized to
order �2

v{̂
E1 ¼ vð0Þ{̂

E1 þ �2vð2Þ{̂
E1 þOð�4Þ;

v{̂
E2 ¼ vð0Þ{̂

E2 þ �2vð2Þ{̂
E2 þOð�4Þ; and

v{̂
E3 ¼ vð0Þ{̂

E3 þ �2vð2Þ{̂
E3 þOð�4Þ:

(A3)

Exactly how we do this depends upon the degeneracy of
the eigenvalues.

1. Nondegenerate Eigenvalues

Suppose that �ð0Þ
E1 is a nondegenerate eigenvalue. The

corresponding perturbed eigenvalue is then

�E1 ¼ �ð0Þ
E1 þ �2Eð2Þ

ij v
ð0Þ{̂
E1 v

ð0Þ|̂
E1 þOð�4Þ; (A4)

and the corresponding perturbed eigenvector is

v{̂
E1 ¼ vð0Þ{̂

E1 þ �2
Eð2Þ
|̂ k̂
vð0Þ|̂
E1 v

ð0Þk̂
E2

�ð0Þ
E1 � �ð0Þ

E2

vð0Þ{̂
E2

þ �2
Eð2Þ
|̂ k̂
vð0Þ|̂
E1 v

ð0Þk̂
E3

�ð0Þ
E1 � �ð0Þ

E3

vð0Þ{̂
E3 þOð�4Þ: (A5)

2. Degenerate Eigenvalues

Suppose that the unperturbed matrix Eð0Þ
{̂ |̂ has a twofold

degeneracy, e.g., �ð0Þ
E2 ¼ �ð0Þ

E3. In this case the normalized

vectors vð0Þ{̂
E2 and vð0Þ{̂

E3 might be any two orthonormal vec-

tors spanning the corresponding subspace. Choose vð0Þ{̂
E2 and

vð0Þ{̂
E3 so that �2Eð2Þ

{̂ |̂ v
ð0Þ{̂
E2 v

ð0Þ|̂
E3 ¼ 0. This ensures that the un-

perturbed states are indeed the limit of the perturbed states
as �2 ! 0. Then, the perturbed eigenvalues are

�E2 ¼ �ð0Þ
E2 þ �2Eð2Þ

{̂ |̂ v
ð0Þ{̂
E2 v

ð0Þ|̂
E2 þOð�4Þ; (A6)

and

�E3 ¼ �ð0Þ
E3 þ �2Eð2Þ

{̂ |̂ v
ð0Þ{̂
E3 v

ð0Þ|̂
E3 þOð�4Þ; (A7)

and if the perturbation succeeds in breaking the degeneracy
at first order in �2, the eigenvectors are

v{̂
E2 ¼ vð0Þ{̂

E2 þ �2
Eð2Þ
|̂ k̂
vð0Þ|̂
E2 v

ð0Þk̂
E1

�ð0Þ
E2 � �ð0Þ

E1

vð0Þ{̂
E1 þOð�4Þ; (A8)

and

v{̂
E3 ¼ vð0Þ{̂

E3 þ �2
Eð2Þ
|̂ k̂
vð0Þ|̂
E3 v

ð0Þk̂
E1

�ð0Þ
E3 � �ð0Þ

E1

vð0Þ{̂
E1 þOð�4Þ: (A9)

APPENDIX B: SINGLE BOOSTED BLACK HOLES

1. The electric part of the Weyl tensor

From the form of the initial data specified in Sec. III A
we can expect the lowest-order perturbation to Eij to be of

order �2P:

Eij ¼ Eð0Þ
ij þ �2PE

ð2Þ
ij þOð�4PÞ: (B1)

If we write the Ricci tensor as

Rij ¼ Rð0Þ
ij þ �2PR

ð2Þ
ij þOð�4PÞ; (B2)

we see that

Eð0Þ
ij ¼ Rð0Þ

ij ; (B3)

which we already computed in Sec. II B, and

Eð2Þ
ij ¼ Rð2Þ

ij � �kl
ð0ÞK

ð1Þ
il K

ð1Þ
jk : (B4)
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The perturbative term Eð2Þ
ij can then be found by substituting Eq. (34) into Eqs. (7), (29), and (13). We note that

�ij
ð0Þ ¼ c�4

ð0Þ ��
ij; (B5)

Kð1Þ
ij ¼ c�2

ð0Þ �Aij; (B6)

and we compute the perturbation of the Ricci tensor from

Rð2Þ
ij ¼ �2ð �Di

�Djðc�1
ð0Þ uÞ þ ��ð0Þ

ij ��lm
ð0Þ �Dl

�Dmðc�1
ð0Þ uÞÞ þ 4ð �Diðlnc ð0ÞÞ �Djðc�1

ð0ÞuÞ þ �Djðlnc ð0ÞÞ �Diðc�1
ð0ÞuÞ

� ��ð0Þ
ij ��lm

ð0Þð �Dlðlnc ð0ÞÞ �Dmðc�1
ð0ÞuÞ þ �Dmðlnc ð0ÞÞ �Dlðc�1

ð0Þ uÞÞÞ: (B7)

From (36) and (32) we then find the nonzero components of Eð2Þ
ij to be

Eð2Þ
rr ¼ M

20r4ðMþ 2rÞ8
 
3M

 
�2rðcos2�Þð21M7 þ 399M6rþ 3052M5r2 þ 12194M4r3 þ 27344M3r4

þ 33712M2r5 þ 19776Mr6 þ 3360r7Þ � 7Mð3ðcos2�Þ þ 1ÞðMþ 4rÞðMþ 6rÞðMþ 2rÞ5 ln
 

M
Mþ 2r

!!

� 2rð21M8 þ 399M7rþ 3062M6r2 þ 12274M5r3 þ 27544M4r4 þ 33712M3r5 þ 18976M2r6

þ 2080Mr7 þ 3200r8Þ
!
; (B8)

Eð2Þ
r� ¼ Eð2Þ

�r

¼ 3M2

20r3ðMþ 2rÞ8
 
3840r8 sin� cos�� ðsin2�ÞðMþ 2rÞ

 
2rð21M6 þ 357M5rþ 2170M4r2 þ 6342M3r3

þ 9388M2r4 þ 6216Mr5 þ 720r6Þ þ 21MðMþ 8rÞðMþ 2rÞ5 ln
 

M
Mþ 2r

!!!
; (B9)

Eð2Þ
�� ¼

M
20r2ðMþ2rÞ8

�
3M

�
7MðMþ2rÞ5 ln

�
M

Mþ2r

��
3ðcos2�ÞðM2þ7Mrþ14r2Þ�ðM�2rÞðMþ3rÞ

�

þ2rðcos2�Þð21M7þ336M6rþ2275M5r2þ8330M4r3þ17528M3r4þ20608M2r5þ11664Mr6þ2400r7Þ
�

�2rðM�2rÞð21M7þ252M6rþ1220M5r2þ3002M4r3þ3800M3r4þ2000M2r5�160Mr6þ800r7Þ
�
;

(B10)

and

E ð2Þ
�� ¼ Mðsin2�Þ

20r2ðMþ 2rÞ8
�
3M

�
7MðMþ 2rÞ5 ln

�
M

Mþ 2r

�
ð2M2 þ 3rðcos2�Þð3Mþ 10rÞ þ 11Mrþ 18r2Þ

þ 6r2ðcos2�Þð21M6 þ 259M5rþ 1288M4r2 þ 3272M3r3 þ 4368M2r4 þ 2704Mr5 þ 320r6Þ
�

þ 2rð42M8 þ 609M7rþ 3778M6r2 þ 12836M5r3 þ 25340M4r4 þ 28112M3r5 þ 14816M2r6

þ 3200Mr7 þ 1600r8Þ
�
: (B11)
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2. The magnetic part of the Weyl tensor

The magnetic part of the Weyl tensor Bij is defined in

Eq. (2). To lowest order in the momentum this is

Bij ¼ Bð1Þ
ij þOð�3PÞ ¼ �lkjð0ÞD

ð0Þ
k Kð1Þ

li þOð�3PÞ; (B12)

where the extrinsic curvature is given by Eq. (B6) and the
covariant derivative and antisymmetric tensor are con-
structed using the unperturbed spatial metric. Evaluating
Eq. (B12) results in

Br� ¼ B�r ¼ ��P
96Mr3sin2�

ðMþ 2rÞ5 þOð�3PÞ; (B13)

and the other components vanish to this order.

3. Horizon tendicity

For the perturbative initial data of Sec. III A, the appar-
ent horizon is located at a coordinate distance

h ¼ M
2

� �P
M
16

cos�þOð�2PÞ (B14)

from the center (see Eq. (24) in Ref. [18]). The inward unit
normal on the horizon is then given by

Ni ¼ �si ¼ ��ijsj; (B15)

where

sj ¼ �ð1;�@�h; 0Þ (B16)

and where the normalization factor � is

� ¼
 

�rr��� � ð�r�Þ2
�rrð@�hÞ2 þ 2�r�@�hþ ���

!
1=2

(B17)

(see, e.g., Ref. [11]). We then compute the horizon tendic-
ity from

ENN ¼ EijN
iNj ¼ Eij�

iA�jBsAsB; (B18)

where A and B run over only r and �. For a diagonal spatial
metric this simplifies to

ENN ¼ EAB�
AA�BBsAsB: (B19)

This can be expanded in terms of unperturbed and per-
turbed quantities:

ENN ¼ Rð0Þ
rr ð�rr

ð0Þ þ �rr
ð2Þ � ð@�hÞ2=�ð0Þ

��Þ � 2Rð0Þ
r� �

��
ð0Þ@�h

þ Rð0Þ
��ð���

ð0ÞÞ2�ð0Þ
rr ð@�hÞ2 þ �rr

ð0ÞR
ð2Þ
rr

� �rr
ð0Þ�

kl
ð0ÞK

ð1Þ
rl K

ð1Þ
rk þOð�4PÞ: (B20)

When evaluated at the horizon location, Eq. (B20)
becomes

ENN ¼ � 1

4M2
þ �2P

2560M2
ð�1711þ 2688 ln2

þ 3ðcos2�Þð�1871þ 2688 ln2ÞÞ þOð�4PÞ: (B21)

We could plot this function for ENN, but plotting the
deviation from the proper area weighted average value of
ENN over the horizon is more interesting. This average is

Eave
NN ¼

R
2�
0

R
�
0 ENNc

4h2ð1þ ð@�hÞ2h�2Þ1=2 sin�d�d�R
2�
0

R
�
0 c 4h2ð1þ ð@�hÞ2h�2Þ1=2 sin�d�d� ;

(B22)

which evaluates to

Eave
NN ¼ � 1

4M2
þ �2P

16M2
þOð�4PÞ ¼ � 1

4M2
irr

þOð�4PÞ;

(B23)

as discussed in Sec. IVC.
The appearance of the irreducible mass in Eq. (B23) is

not surprising given that the denominator of Eq. (B22) is
16�M2

irr þOð�4PÞ, which follows from Ref. [32] if we

make the usual approximation of replacing the proper
area of the event horizon with that of the apparent horizon.
To see that the numerator of Eq. (B22) is as simple as
�4�þOð�4PÞ, we use the Newman-Penrose formalism
[33,38] as discussed in Ref. [12] to rewrite the horizon
tendicity as

ENN ¼ �
ð2ÞR
2

þ 2<ð�	� �
Þ; (B24)

where ð2ÞR is the two-dimensional Ricci scalar for the
horizon, < means ‘‘the real part of,’’ and �, 	, �, and 

are spin coefficients evaluated on the horizon. Equation (B24)
is defined with respect to a particular null tetrad specified in
Ref. [12], but the required spin coefficients can still be
constructed from purely spatial quantities. We find that

� ¼ � 1ffiffiffi
2

p m?imjðKij �DjNiÞ; (B25)

	 ¼ 1ffiffiffi
2

p mim?jðKij þDjNiÞ; (B26)

� ¼ � 1ffiffiffi
2

p m?im?jðKij �DjNiÞ; (B27)

and


 ¼ 1ffiffiffi
2

p mimjðKij þDjNiÞ; (B28)

where mj ¼ ðej2 þ iej3Þ=
ffiffiffi
2

p
is a leg of the null tetrad con-

structed from two orthonormal spatial vectors tangent to the
horizon, and m?j is its complex conjugate. With the above
expressions, the combination �	� �
 turns out to be
purely real. Moreover, evaluating the spin coefficients for a
horizon location of the form h ¼ M=2þ �fð�Þ we obtain
�	��
¼ �2P

2048M4
ð�9M2ðcos2�Þ

þ256ðf�2ðcot�Þ@�fÞðf�2@�@�fÞÞþOð�4PÞ:
(B29)
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Inserting fð�Þ ¼ �ðM=16Þ cos� from (B14) all the
leading-order terms cancel, meaning that, to our order of
analysis, the integral in the numerator of (B22) reduces to the
Ricci scalar term

� 1

2

Z 2�

0

Z �

0

ð2ÞRc 4h2ð1þ ð@�hÞ2h�2Þ1=2 sin�d�d�:

(B30)

Since the horizon has the topology of a sphere, the Gauss-
Bonnet theorem guarantees that the integral is 8�, so the
numerator of Eq. (B22) is indeed �4�þOð�4PÞ.

APPENDIX C: BINARY BLACK HOLES

1. Additivity of the magnetic part of the Weyl tensor

We begin by showing that to calculateBij for the binary,

we can, to our order of analysis, add the corresponding
single-hole corrections, i.e.,

Bij ¼ BC1P1

ij þBC2P2

ij þOð�3PÞ: (C1)

The conformal factor is given by Eq. (43), so the extrinsic
curvature is

Kij ¼
 
1þ M1

2rC1

þ M2

2rC2

!�2

ð �AC1P1

ij þ �AC2P2

ij Þ þOð�3PÞ:

(C2)

At a distance of s=2 or more away from hole 2 we can use
Eq. (44) to expand and find

Kij ¼
 
1þ M1

2rC1

!�2
�AC1P1

ij þOð�3PÞ: (C3)

At these locations KC2P2

ij ¼ 0þOð�5PÞ, and since we can

do the analogous analysis at a distance of s=2 or more away
from hole 1, we can write the extrinsic curvature every-
where as

Kij ¼ KC1P1
ij þ KC2P2

ij þOð�3PÞ: (C4)

The background (two unboosted black holes) Christoffel
symbol is

�ið0Þ
jk ¼ �ið0ÞC1

jk þ �ið0ÞC2

jk þOð�2PÞ; (C5)

where �ið0ÞC2

jk isOð�4PÞ at a distance s=2 or more away from

hole 2, and �ið0ÞC1

jk has the analogous behavior. Together,

Eqs. (C4) and (C5) imply that the covariant derivative of
the extrinsic curvature is

DkKij ¼ DC1

k KC1P1

ij þDC2

k KC2P2

ij þOð�3PÞ; (C6)

where the covariant derivative in the first term on the right-
hand side takes into account metric terms from only the
first black hole, and the second term is similar. From
Eq. (2) the magnetic part of the Weyl tensor is therefore
Eq. (C1), as desired.

2. The electric part of the Weyl tensor

Our calculations for Eij near hole 1 are very similar to

those for the single boosted black hole in Appendix B.
Using Eq. (44) the conformal factor (43) can be expanded
as in Eq. (34), with the difference being that the perturba-
tion term now has a contribution due to the presence of
hole 2 in addition to the term due to the boost of hole 1

�2PuþOð�4PÞ ¼
M
2s

þ �2Pu1ðrÞ þOð�4PÞ
¼ �2Pð1þ u1ðrÞÞ þOð�4PÞ: (C7)

It was shown in Ref. [18] that the effect of the boost of hole
2 is of higher order. To lowest order, the extrinsic curvature
near hole 1 is also unaffected by hole 2, as we discussed
above. We can use the same approach as in Appendix B to
find the nonzero components of the perturbation of Eij to

second order in �2P, except that we now replace u with
1þ u. This calculation yields the nonzero components

Eð2Þ
rr ¼ M

20r4ðMþ 2rÞ8
 
3M

 
�2rðcos2�Þð21M7 þ 399M6rþ 3052M5r2 þ 12194M4r3 þ 27344M3r4

þ 33712M2r5 þ 19776Mr6 þ 3360r7Þ � 7Mð3ðcos2�Þ þ 1ÞðMþ 4rÞðMþ 6rÞðMþ 2rÞ5 ln
 

M
Mþ 2r

!!

� 2rð21M8 þ 399M7rþ 3142M6r2 þ 12914M5r3 þ 29144M4r4 þ 33712M3r5 þ 12576M2r6

� 8160Mr7 � 1920r8Þ
!
; (C8)

Eð2Þ
r� ¼ 3M2

20r3ðMþ 2rÞ8
 
3840r8 sin� cos�� ðsin2�ÞðMþ 2rÞ

 
2rð21M6 þ 357M5rþ 2170M4r2 þ 6342M3r3

þ 9388M2r4 þ 6216Mr5 þ 720r6Þ þ 21MðMþ 8rÞðMþ 2rÞ5 ln
 

M
Mþ 2r

!!!
; (C9)
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Eð2Þ
�� ¼

M
20r2ðMþ2rÞ8

�
3M

�
7MðMþ2rÞ5 ln

�
M

Mþ2r

��
3ðcos2�ÞðM2þ7Mrþ14r2Þþð2r�MÞðMþ3rÞ

�

þ2rðcos2�Þð21M7þ336M6rþ2275M5r2þ8330M4r3þ17528M3r4þ20608M2r5þ11664Mr6þ2400r7Þ
�

�2rðM�2rÞð21M7þ252M6rþ1180M5r2þ2602M4r3þ2200M3r4�1200M2r5�3360Mr6�480r7Þ
�
;

(C10)

and

Eð2Þ
�� ¼ Mðsin2�Þ

20r2ðMþ 2rÞ8
�
3M

�
7MðMþ 2rÞ5 ln

�
M

Mþ 2r

�
ð2M2 þ 3rðcos2�Þð3Mþ 10rÞ þ 11Mrþ 18r2Þ

þ 6r2ðcos2�Þð21M6 þ 259M5rþ 1288M4r2 þ 3272M3r3 þ 4368M2r4 þ 2704Mr5 þ 320r6Þ
�

þ 2rð42M8 þ 609M7rþ 3818M6r2 þ 13156M5r3 þ 26140M4r4 þ 28112M3r5 þ 11616M2r6

� 1920Mr7 � 960r8Þ
�
: (C11)
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