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The Eisenhart-Duval lift allows embedding nonrelativistic theories into a Lorentzian geometrical
setting. In this paper we study the lift from the point of view of the Dirac equation and its hidden
symmetries. We show that dimensional reduction of the Dirac equation for the Eisenhart-Duval metric in
general gives rise to the nonrelativistic Lévy-Leblond equation in lower dimension. We study in detail in
which specific cases the lower dimensional limit is given by the Dirac equation, with scalar and vector
flux, and the relation between lift, reduction, and the hidden symmetries of the Dirac equation. While there
is a precise correspondence in the case of the lower dimensional massive Dirac equation with no flux, we
find that for generic fluxes it is not possible to lift or reduce all solutions and hidden symmetries. As a by-
product of this analysis, we construct new Lorentzian metrics with special tensors by lifting Killing-Yano
and closed conformal Killing-Yano tensors and describe the general conformal Killing-Yano tensor of the
Eisenhart-Duval lift metrics in terms of lower dimensional forms. Last, we show how, by dimensionally
reducing the higher dimensional operators of the massless Dirac equation that are associated with shared
hidden symmetries, it is possible to recover hidden symmetry operators for the Dirac equation with flux.
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L. INTRODUCTION

The Eisenhart-Duval lift of a Riemannian metric [1]
is an example of geometrization of interactions. The
dynamics of a classical physical system, described by a
Riemannian metric 4, in n dimensions and in the pres-
ence of a scalar potential V and a vector potential A, is
shown to be equivalent to geodesics in a Lorentzian space-
time of dimension n + 2. This geometrical idea has been
historically introduced by Eisenhart in Ref. [1]; however,
to our knowledge it took a number of years after the same
idea was independently rediscovered in Ref. [2], from there
prompting further work, among which are Refs. [3,4]. Over
time it has found a number of applications, among which
one can mention the following, nonexhaustive, examples:
providing a relativistic framework to study nonrelativistic
physics, as the free Schrodinger equation in n dimensions
and with metric g can be written in the lifted geometry as the
free, massless Klein-Gordon equation [5]; simplifying the
study of symmetries of a Hamiltonian system by looking at
geodesic Hamiltonians [6,7]; building new Lorentzian
pp-wave metrics solutions of the Einstein-Maxwell equa-
tions [4,8]; and studying from a geometrical point of view
dynamical systems as diverse as protein folding [9], rare gas
crystals [10], and chaotic gravitational N-body systems [11].

On a separate account, there has been much recent
activity in the study of hidden symmetries of physical
systems. The interest has increased for two main reasons.
First, it has been discovered that a number of hidden
symmetries are related to separation of variables for
equations of physics related to different spin and of either
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classical or quantum nature: the geodesic equation [12],
the Hamilton-Jacobi and Klein-Gordon equation [13,14],
the Dirac equation [15,16], electromagnetic perturbations
in n =35 dimensions [17], and linearized gravitational
perturbations [17-21]. Such separation has been achieved
for Kerr-NUT-(A)dS spacetimes [22], which are higher-
dimensional generalizations of the Kerr metric with cos-
mological constant and NUT charge. For these spacetimes
it has been proven that a principal conformal Killing-Yano
tensor is present [23] and that from it all the geometrical
structure and further hidden symmetries follow [24]. It is
also possible to show that the theory of the worldline
supersymmetric spinning particle in these spacetimes
admits a number of nontrivial supercharges that make
its bosonic sector integrable [25]. In general, see
Refs. [26-28] for an extensive review of hidden symme-
tries in the framework of gravitational systems. The second
reason for the recent activity is the fact that several new
examples of spacetimes with nontrivial hidden symmetries
of higher order have been found, in many cases using the
Eisenhart-Duval lift procedure applied to integrable
systems such as the Goryachev-Chaplygin top, the
Kovalevskaya top, and the Calogero model [29-31].

In this paper we look at the Eisenhart-Duval lift proce-
dure from the point of view of hidden symmetries of the
Dirac equation and of conformal Killing-Yano tensors
(CKY). There is a number of reasons why this is mean-
ingful. First, if it is possible to perform the Eisenhart-Duval
lift of a known CKY tensor, then this opens the possibility
to create new Lorentzian metrics with CKY tensors. To this
extent it is useful to note that a classification of higher
dimensional spacetimes with CKY tensors has only been
completed in the case of rank 2 closed tensors and
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Riemannian signature with and without torsion [32-35]. In
this paper we show how to perform such a lift under
appropriate conditions, thus presenting new Lorentzian
metrics with CKY tensors. Second, since the Eisenhart-
Duval lift links a higher dimensional dynamics in the
absence of forces other than gravity to that of a lower
dimensional system in the presence of scalar and vector
potential, there is the possibility to establish a link between
the higher dimensional (massless) Dirac equation and a
Dirac equation in lower dimension with scalar and vector
flux. In the paper we show concretely how to perform the
dimensional reduction of the higher dimensional Dirac
equation and obtain the lower dimensional Dirac equation
with flux and, its inverse operation, oxidation. This is of
interest in itself and more so since we are able to show a
geometrical link between hidden symmetry operators of
the free higher dimensional Dirac equation, which are
given in terms of CKY tensors [36,37], and the recently
discussed hidden symmetry operators of the Dirac equation
with flux [38]. While analyzing the hidden symmetries of
the higher dimensional and lower dimensional theories, we
find the nontrivial result that for generic fluxes each of the
two theories can have hidden symmetries that are not
present in the other. It is worth noticing that this phenome-
non is not present when we relate the massive lower
dimensional Dirac equation with the other fluxes turned
off and the massless higher dimensional Dirac equation.
For those hidden symmetries that are common to the two
theories, we can perform dimensional reduction and find
the symmetry operators with flux discussed in Ref. [38].
Under the hypothesis that symmetry operators linear in
momenta for the lower dimensional theory cannot be lifted
to symmetry operators in higher dimension of order >1,
we interpret this result as meaning that the two theories
differ as the level of phase space dynamics, which is differ-
ent from what happens in the case of a scalar particle. A
third reason to study CKY tensors for Eisenhart-Duval lift
metrics is that it is possible to characterize the higher
dimensional CKY equation completely in terms of lower
dimensional forms. We do this and obtain equations in
lower dimensions that generalize the CKY equation and
implicitly classify the most general higher dimensional
CKY tensor.

The rest of the paper is organized as follows. In Sec. II
we introduce useful notation and basic notions about
hidden symmetries. Section III is devoted to the
Eisenhart-Duval lift. We discuss the geometrical lift and
the dynamics of a scalar particle and its hidden symme-
tries. Finally, we show how to lift lower dimensional CKY
tensors and the fact that there are restrictions to this pro-
cedure. We also classify the most general higher dimen-
sional CKY tensor in terms of lower dimensional forms.
Section IV is devoted to analyzing the dimensional reduc-
tion of the Dirac equation in higher dimension. We show
that in general one can recover in lower dimension the
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nonrelativistic Lévy-Leblond equation. In addition, it is
also possible in some cases to recover the lower dimen-
sional Dirac equation with flux using the higher dimen-
sional massless Dirac equation plus a nontrivial projection.
Such a projection is responsible for the fact that not all
higher dimensional linear symmetry operators can be
dimensionally reduced: for a specific class of symmetry
operators we show in detail when this can be done and
obtain a subset of the linear symmetry operators of the
Dirac equation with flux discussed in Ref. [38]. We
also use the Dirac equation to gain insight on the earlier
finding that not all lower dimensional CKY tensors can
be lifted. Section V presents some examples, and finally
Sec. 1is devoted to conclusions and final remarks. In the
Appendices we discuss useful identities for the metric,
Hodge duality, and differentiation of forms, and we present
the full set of higher dimensional CKY equation in terms of
equations for lower dimensional forms.

II. PRELIMINARIES
A. Notation

We start with a Riemannian metric g defined on an
n-dimensional manifold M. Its Eisenhart-Duval lift will

be an (n + 2)-dimensional manifold .’M, which is a bundle
over M on which a Lorentzian metric ¢ is defined. In
general, (n + 2)-dimensional quantities will be denoted
with a hat symbol, so, for example, if f is a p form on
M, then its natural embedding in M will be denoted by f ;
if D is the Dirac operator on /M, then D will be the Dirac
operator on j/l; and so on. Indices w, v,..., from the
lowercase Greek alphabet represent spacetime indices on
M, while M, N, ..., from the uppercase Latin alphabet
represent spacetime indices on M. Local coordinates used
for M are {x*}, and for the lift we introduce new variables
v, t 50 that {#M} = {v, 1, {x*}} are local coordinates on M.
When we work with the Dirac equation and Gamma ma-
trices it is convenient to use locally flat indices: we will use
a=1,...,n for M and A=+, —,1,....,n for M.
Vielbein forms on M are indicated as e = e}, dx* and,
analogously, on M as &4 = &4, d™. Inverse vielbeins are
written as E4 and EY, respectively. V always means the
appropriate covariant derivative, acting on either tensors,
forms or spinors.

The notation we use to describe differential forms is the
following: we display formulas valid on M, and similar
formulas hold for ‘M. Let {dx*} be a coordinate basis
for 1 forms and {0 u} for vectors. The exterior algebra
is QM) = (371 QP(M). Given a p form w =
ﬁwmmﬂpd)c"1 ...dxtr € QP(M) and a vector v, the in-
ner derivative of w relative to v, or hook operation, is a
(p — 1) form v , w with components given by

(v . w):u'l-ull’pfl = UAwA#]mMp—]’ 2.1
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Given a vector v = v#9,,, there is a canonical form asso-
ciated with it using the metric to lower the component
indices, v = v,dx*, and similarly given a 1 form A =
A, dx*, there is a vector A= \H9 - Such an operation is
also called musical isomorphism. Given a vielbein basis for
1 forms {e“}, then the vectors X¢ = (e?)* are a basis for the
tangent space of M and satisfy (X*)*(X?), = n?, where
7 is the unit matrix for M (and 4 is the Minkowski metric
for le). Then the differential and codifferential of a form
 can be written as

do = e AV, o, Sw=-X.,V,0. 2.2)

An inhomogeneous form w can be written as a sum of
homogeneous p forms

w = z '),

p=0

(2.3)

We define the degree operator 7 and parity operator 7,
which act as

mTw =

pw?,
p=0

nw =Y (-1, (24
p=0

For «, B, a p, and, respectively, ¢ form, we define the
contracted wedge product recursively by

a/0\,8=a/\B,

anB =X, o) AKX LB (k= 1), 25)
a/k\ B=0 (k<0).
The contracted wedge product satisfies the identities
e ANM(X, 2 a)AB] = (—1)"[(7m — m)a]AB,
[(X, + @)AB] [ 1nB 06

e’ A [a{n\(Xa 2B = [(_1)”61]{”\[(77 —m)B].

When dealing with the Dirac equation, we use the
following isomorphism 7, between (M) and the
Clifford bundle:

1
f= ?fmmﬂpdxf’“l coodxPr —

O s 2.7)
7*(f) - Ef,u.l...p,l, 7.

Here {I'#} are the Gamma matrices, satisfying the standard
relation THT? + T"T# = 2gk7, THi-Hp = e el
and the equation above straightforwardly generalizes to
the case of an inhomogeneous form. Any time the context
makes it clear that quantities refer to the Clifford bundle,
we will write f instead of y,.(f). For example, under these
conditions the Dirac operator is written as D = ¢*V,,.
The product of two Clifford bundle forms can be reex-
pressed in terms of contracted wedge products using the
Gamma matrix algebra. Let « € QP (M), B € Q9(M), and
p = q. Then the Clifford product expands as
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)4 _1)m(p—m)+[m/2]
aB=>y ( o @B, (2.8)
m=0 :
and
P _1)m(p—m+1)+[m/2]
Ba = (—1)r Z ( oy a;\ﬁ. 2.9

m=0

B. Basics of hidden symmetries

Hidden symmetries of a Hamiltonian physical system
are associated with conserved quantities of the dynamics
that are polynomial in the momenta. If the system is
classical by momenta, we mean the variables p, canoni-
cally conjugated to the position variables x*, and if the
system is quantum mechanical, we mean the appropriate
operators. When the spacetime admits a Killing vector K,
then the conserved quantity is of order one in the momenta,
and vice versa, if there is such a quantity, it can be written
in terms of a Killing vector and its derivatives. Of particu-
lar importance are the following two classes of special
tensors.

Killing-Stiickel tensors (KS) are symmetric tensors
K#i-tp = K1) satisfying the differential equation

VOK#-#) =, (2.10)
They generate conserved quantities
Cx = K*=trpy ...py, (2.11)

for the theory of the classical free scalar particle in curved
space. A well-known example is given by Carter’s constant
for the Kerr metric, and Carter-like constants for curved
backgrounds keep being discovered in recent research [39].
Quantum mechanically, the corresponding operators in the
case of rank 2 are given by

K =V, [K"V,] (2.12)

but these do not always generate conserved quantities, as
the commutator [XK, V,V#] is given by an appropriate
contraction of the Ricci tensor with K [40]. Failure of the
commutator to close on zero indicates that the classical
symmetry is gravitationally anomalous. If the spacetime is
special, for example, in the case of the Kerr-NUT-(A)dS
spacetime, then the anomaly vanishes. Another special
case when the anomaly vanishes is when the KS tensor
can be written as the square of a Killing- Yano tensor, which
will be defined below. In the case of rank 2 KS tensors, the
theory of the supersymmetric spinning particle admits a
superfield that is the generalization of the phase space
function K#”p,, p,, a candidate conserved quantity that
is also supersymmetric. In this case, too, in general there
is an anomaly and the superfield is not supersymmetric nor
conserved, but for Kerr-NUT-(A)dS spacetimes the anom-
aly vanishes [25]. Finally, it is worth noticing that a Killing
vector is a Killing-Stickel tensor of rank 1.
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Conformal Killing-Yano tensors are forms w, =
1-Mp

Wy, ..p,] SUCh that

Va

Wy, = v[/\wmmm]
+D+W8A[ulva|p|m..#,,]’ (2.13)
or equivalently without using components
Vyw = LXJ dw — X" Adw, (2.14)

T+ 1 n—m+1

for any vector X. This formula generalizes automatically to
the case of inhomogeneous forms. When w is coclosed,
6w =0, w is a Killing-Yano form (KY), and when it is
closed, dw = 0, it is a closed conformal Killing-Yano form
(CCKY). Equation (2.14) is invariant under Hodge duality,
interchanging KY and CCKY tensors. Benn, Charlton, and
Kress [36,37] have shown the important result that, in all
dimensions n and arbitrary signature, first-order symmetry
operators of the massless Dirac operator are in one-to-one
correspondence with CKY forms. Specifically, if S is an
operator satisfying DS = RD for some operator R, then S
is given by

S=3S8,+aD, (2.15)

where « is an arbitrary inhomogeneous form, and S,
given in terms of an inhomogeneous CKY form w obeying
(2.14), is

T—1 n—a—1

Sy =X 0V, +——do ———Sw.

21 2(n — ) (2.16)

Then S, obeys
[ID, S,1]1= DS, — (3S,)D = —(L 5w)D. 2.17)
n — 1T

The freedom of adding an arbitrary form « is unavoidable.
It can also be shown that if w is a CCKY form, then the
operator

n—m—1

Sp=¢"ANwV,———dw

=) 2.18)

either commutes or anticommutes with the Dirac operator,
depending whether w is even or odd [41].

Similar results hold in the case of the spinning particle;
see, for example, Ref. [42] for the discussion of KY
tensors. For the Kerr-NUT-(A)dS metrics it is possible to
show that there exist n independent such operators, as
many as the number of dimensions (one of them being D
itself), that they all mutually commute and that this
explains the separation of variables for the Dirac equation
in these metrics [16,41].

If a spacetime admits Killing spinors, with or without
torsion, then these can be used to build CKY tensors
[43-45]. The Dirac equation with skew-symmetric torsion
has been discussed in Ref. [46]. The link between CKY tensors
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and G structures has been discussed in Refs. [47-49]. For
application of the idea of hidden symmetries to other systems
see, for example, Refs. [50,51].

III. THE EISENHART-DUVAL LIFT
A. The geometric lift

In this paper we will consider the Eisenhart-Duval lift in
the time independent case. Let M be an n-dimensional
Riemannian spacetime, with metric

g = gur(X)dxtdx”. (3.1)

On M we can consider the classical theory of a particle
of mass m and electric charge e, interacting with a position
dependent potential V(x) and with a stationary electromag-
netic field with vector potential A, (x), introducing the
Hamiltonian

1
H =_—g*(p, —eA,)(p, — eA,) + V(x),

m (3.2)

where p, is the canonical momentum. The Hamiltonian
function written above is not explicitly invariant under a
gauge transformation of the vector potential, but the full
theory is. What happens is that under a gauge transforma-
tion the canonical momenta change as well as the vector
potential, generating a canonical transformation. As a
result the Hamiltonian equations of motion are not explic-
itly gauge invariant, but the theory, in fact, is. It is possible
to introduce gauge invariant momenta P, = p, — €A,
while at the same time modifying the Poisson brackets
and recognizing that P acts as a U(1) covariant derivative;
see Refs. [42,52-57]. This is not needed to the extent of the
calculations done in this paper, and we will work with the
canonical p, variables.

It is a result by Eisenhart [1] that the Hamiltonian
(3.1) can be obtained by reduction from the following
Hamiltonian in (n + 2) dimensions:

H = §MN}5M15N
e e
= oMV -~ A ——A
8 (p,u m /va)<p1/ m va)

2
+2p,p; + —Vplz,, 3.3)
m

where Py = (Py, Pt Ppyr -2 Pu,). FH  describes the
motion of a massless particle in the higher dimensional
Lorentzian metric

& = gyndiMdzN
2e 2 )
= gupdxtdx’ + —A,dx*dt + 2dtdv — —Vdr-.
m m
(3.4)

To see this, consider the coordinate v, generated by the
covariantly constant Killing vector &€ = 9/dv, which is
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conjugate to p,. p, is constant along a solution of the
equations of motion. If we specialize to a null solution with

JH = 0 and choose p, = m, then we have

~

0=H = g (p, —eA,)(p, — eA,) + 2mp, + 2mV,
(3.5)
or equivalently
p.=—H. (3.6)

This means we can identify J{, generator of time
translations in the n-dimensional system, with — p, in the
(n + 2)-dimensional one, which generates translations
along —d/dr. Expressions for the vielbeins of the metric
(3.4), as well as the dual vector base, the Levi-Civita
connection, and spin connection components can be found
in Appendix A.

Geometrically we can describe M as a bundle over M,
with projection IT: (¢, v, x*) — x*. Then if f is a p form
defined on M, its pullback on M under the map [I*isa p
form f on M.

As seen above, null geodesics on M relative to g gen-
erate massive geodesics on M relative to g. It is, in fact,
possible to do more: given a generic conserved quantity for
the motion on M that is a nonhomogeneous polynomial in
momenta, in other words a hidden symmetry, this can be

lifted to an appropriate hidden symmetry on M that is
homogeneous in momenta and that therefore is associated
with a Killing tensor. The Poisson algebra on M of con-
served charges for the original motion then is the same as
the Schouten-Nijenhuis algebra of the Killing tensors as-
sociated with lifted conserved charges [29]. This means
that the dynamical evolution on M as described in full
phase space can be embedded in the higher dimensional
phase space. As we will see, this does not happen in the
case of the Dirac equation, where, in general, it will not be
possible to lift all hidden symmetries from M to M. This
corresponds to the fact that when performing the dimen-
sional reduction of the Dirac equation on M a nontrivial
projection is required in phase space in order to recover the
Dirac equation with V and A flux on M. This projection is
not compatible with all hidden symmetry transformations.

B. Lift of conformal Killing-Yano forms
In this section we consider the CKY equation on M:

Ao 1 1
vXf_’n'+1 nm+2)—a7+1

X.af- X AT

3.7

VX vector. We will specialize to a homogeneous form f
since any nonhomogeneous CKY form can be splitinto a sum
of homogeneous CKY forms. CKY forms are the appropriate
forms to look for, since in (n + 2) dimensions we are focus-
ing on null geodesics that are in correspondence with
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geodesics on the base manifold /M, and since they generate
symmetries of the massless Dirac equation.

Before studying the general case we begin with four
simplified ansitze for the higher dimensional CKY form.
Given a p form f = f(x) living on the base manifold M,
we can build the following higher dimensional forms:

fi="r (3.8)
fao=et Af, (3.9)
fi=e Af, (3.10)

fa=et Ae Af, (3.11)
where by writing on the right-hand side f instead of f for a
form on M we are performing a slight abuse of notation
with the purpose of indicating that f represents the canoni-
cal embedding in M of a form originally defined on M.
Since in principle each of the four forms above can be
multiplied times a function of the ¢ and v variables, we
allow from the beginning for a p form f; = f,(v, t, x) that
can have v, t dependence. Hodge duality in M maps a form
of type f | into one of type f 4—after allowing for f — 4, f.
Similarly, it relates the forms f » and f 3 to themselves.

We will first study the conditions under which these four

ansitze generate CKY tensors on M. After that we will
study the equations for the general CKY tensor. Two main
findings are worth noticing. One is that in case of Egs. (3.8)
and (3.11) it is possible to generate KY and CCKY, respec-
tively, tensors on ‘M when f is KY and CCKY, on M. By
doing this we can construct new examples of Lorentzian
metrics with CKY tensors by lifting known CKY tensors
in Riemannian signature, for example, when M is the
Kerr-NUT-(A)dS metric or the Taub-NUT metric
[58—63]. Second, it will not be possible to lift a generic
CKY tensor on ‘M to a CKY tensor on M. This will be
discussed in more detail in Sec. IV, where it will be shown
that the process of lift/oxidation and its inverse, reduction,
at the level of the Dirac equation involves a nontrivial
projection in phase space, and this is not compatible with
all lower and higher dimensional hidden symmetries.

1. Ansatz 1

Consider the p form fl on M given by (3.8). Let us
check under which conditions this satisfies the (n + 2)-
dimensional CKY equation (3.7).

The CKY equation (3.7) splits into three types of equa-
tion, one for each of X = X7, X = X, and X = X%, We
can analyze each using Egs. (C2)—(C6). The X=X
component gives

d,f =0, (3.12)
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Sf =0, (3.13)
the X = X~ component gives
dvt . f =0, (3.14)
F/z\f =0, (3.15)
+1
0 f+P = S Far=o, (3.16)
p 2m 1
and, last, the X =X component gives
X, FAf=— X, (.17)
2m lf_p+1 a2 9if: '
V.f= ;X df (3.18)
a p + 1 a . . .

The latter equation is the Killing-Yano equation on the
base. The former instead implies (3.16).

Thus we have a f-parametrized family of KY forms on
M. But this is compatible with Eq. (3.16) only if F' A; f is
KY as well, which in general will not be the case. Then it
must be that separately

a,f =0, (3.19)
(X, F)/l\ 1 (3.20)

which implies
FAf =0. (3.21)

Thus there is no v, ¢ dependency, and we discover that a
KY form on the base manifold M can be lifted directly
to a KY form on ‘M, since the conditions found imply
57, = 0. With such a form we can construct a symmetry
operator for the Dirac equation on M, and when p is odd
we know that such an operator strictly commutes with the
Dirac operator D [41]. Also for such values of p the
conditions we have found in this section guarantee that
on M we can build a symmetry operator for the Dirac
equation with V and A flux [38]. In Sec. IV we show how in
the case of p odd it is possible to dimensionally reduce
such a hidden symmetry operator on M to get a hidden
symmetry operator associated with flux on M. We will also
see how this is not possible if p is even, which goes in
agreement with the fact that the conditions required on an
even CKY tensor with flux in Ref. [38] are different. Such
other conditions are those to be found in Sec. III B4. It is
worthwhile to realize that the conditions found here are
more restrictive than those in Ref. [38], so in general it is
possible to conceive the existence of tensors that satisfy the
less restrictive conditions, thus generating symmetries of
the Dirac equation with flux on /M, but that at the same
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time do not satisfy the conditions of this section and there-
fore cannot be lifted to M.

Last, we notice that since Hodge duality exchanges
KY with CCKY forms, the result of this section implies
that the form f4 of Eq. (3.11) is expected to be a CCKY
form on j\/l, with the f function appearing there a CCKY
form on M.

2. Ansatz 2
Consider the (p + 1) form fz on M given by
fao=etAf. (3.22)
We can calculate derivatives of f2 and get
V_fr=2¢"Nd,f, (3.23)
A oA . \% e
V+f2 = 6+ /\[(—av + at>f+—(FAf)], (324)
m 2m - 1
Vaf2z=2¢" A (— E A0, + Vaf), (3.25)
m

Afy = =6t N~ Ao, f +é* A(EAAa,,f—df),
m

(3.26)
An e
Of,=—a,f+eé" A (——Aﬁ 20,f — Bf). (3.27)
m
The X = X" component of the CKY equation gives
a,f=0, (3.28)
the X = X~ component gives
8f =0, (3.29)
df =0, (3.30)
0] +—FAf=0, (3.31)
2m 1
and, last, the X = X component gives
V.f=0. (3.32)

So in this case f and fz are covariantly constant forms.

3. Ansatz 3
Consider the (p + 1) form f on M given by
fi=eé Af. (3.33)
The explicit form of the derivatives of f3 is
V_f3=26" ANd,f (3.34)
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A

Vifs=é A [(Kav + a,)f +iFAf]
m 2m 1
dvt

a
m

+é+/\é_/\( f)—i—dﬁv/\f, (3.35)

@af‘f" =e A <_%Aaav.f + vaf)

+ S ot nem AL(X, 5 F)AS] +i(XaJF) Af,
2m 1 2m

(3.36)
c?f3=é+/\d—v/\f+é‘/\<£A/\avf—df)
m m
. o \% ~ e
+etAe /\(—av—i-at)f—i-—F/\f, (3.37)
m m
A Ay dv# o € 4
5f3:€ A Jf +eée A _—A Javf—é\f
m m

e
+é"Ae” Al—FA
¢ ¢ <2m 2f>

- [(%av + a,)f+ ﬁF/l\f].

The CKY equation gives again a covariantly constant case,
with 9,f = 0= 9,f, V. f = 0.

(3.38)

4. Ansatz 4
Last, consider the (p + 2) form f4 on M given by

fa=etne Af (3.39)
Its derivatives are given by
V_fi=2e"Aé" Ad,f, (3.40)

Ao 1 \%4
V+f4=é+A—dV/\f+é+Aé*/\[(—a,,+a,)f
m m

e
+ —FAf |,
2 ]

(3.41)
m 1

@af4 = é+ /\i(XaJF)/\f
2m

+ et AT A [—ana,,f + Vaf], (3.42)
m

af, = —é*x\fFAeré*/\é*A<—5AAan+df),
m m

(3.43)
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A A

Ofs=—& Ao, f+et /\(XGU + at)f
m

A (%A” Lo, f + 8f>. (3.44)
These are exactly the Hodge dual of the equations for d f 1
and & f1 found in Sec. III B 1, with the understanding that
the form f there is related to the f form of this section by
Hodge duality on the base manifold M. The CKY equa-
tions therefore lead to the Hodge dual of the conditions
found there, as it can be checked using the identities in
Appendix B, namely,

dyuf =0, (3.45)
df =0, (3.46)

dV A f=0, (3.47)

(X, .F)Ag=0, (3.48)
FAf=0, (3.49)

FAf =0, (3.50)

Vof = =y N (3.51)

There are two things worth noticing. The first is that
Eq. (3.51) is the CCKY equation on the base manifold
and that this is ultimately made possible by the fact that
n—p+1={m+2)—(p+2) + 1. When all the condi-
tions are satisfied, f4 is a CCKY tensor on /M. The second
thing worth noticing is that the remaining conditions guar-
antee that if p is even, we can build a symmetry operator of
the Dirac equation on M and of the Dirac equation with V
and A flux on M [38]. These conditions complement those
found in Sec. I B 1 and are associated with the dimen-

sional reduction to M of a symmetry operator on ,’ﬁ/l, as
will be discussed in more detail in Sec. I'V. In this case, too,
the conditions are stronger than those found in Ref. [38].

5. The general CKY tensor

We are now ready to tackle the general case. Let the p
form f be parametrized as

F=f+e"Apt+e Ap +e" A" Ag (352

where the forms f, p*, and g are p, p— 1, and p — 2
forms, respectively, defined on M. We can calculate all its
derivatives by adding the derivatives calculated in the four
previous ansitze. The full conditions obtained from the
CKY equation are somewhat long and are listed in
Appendix D. We are interested here in discussing the
special case where the forms f, p*, and g do not depend
explicitly on the v, ¢ coordinates, or, in other words, the Lie
derivative of f with respect to the Killing vectors d,, and 9,
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is zero. In this case we can relate the parametrization (3.52)
to the lift of a set of forms defined on the base manifold M,
while in the most general case listed in the Appendix D it is
necessary to consider v and ¢ parametrized families of
forms.

In general, the CKY equation reduces to a series of
equations on M. We label these according to two indices

(=+)dg =0, (=H)'8f=0;  (+-)FAp” =0,

(+*)=—FAg = +
T 2m '8

n+3—pl2m

1 dv
(+a)— FAf = +7|:—dp+ —p—Ap~ —EF/\g],
2m 1 )4 m m

+1

e e X
+_7XJFA +V ++7XJF/\ = 4
(@h) = 5 Ka s FINF+ Vap™ 5 (X, F) Mg = 2t
avt _]
ap ,
m

+ G
n+3—p

e
A =—FAf—6pT +
[Zm zf p

e e
W+ —X, . F)Ap” = ——4
(@X)Veg + 5 (Xa s F)Np e g

e X
bV +—XJF/\7: a
(ab)V,f 2m(a )Ap P

These equations classify the most general CKY tensor on
M that has zero Lie derivative with respect to d,, and 9, in
terms of forms on /M. The last two equations are, respec-
tively, a CCKY and a KY equation for g and f, respectively,
with a deformation parametrized by the covariantly con-
stant form p~ and by F. The form p™* instead is related to a
deformation of the equations with no derivatives for f and
g that we have found in the previous sections for terms of
the kind dV A ,dV s,and F A, .

In particular, it can be seen that under no circumstance
can the form f be strictly CCKY with 6f # O or can the
form g be strictly KY with dg # 0, thus proving that if any
such form exists on M, then it cannot be lifted to M in
order to give a CKY form. The forms p~, f, and g satisfy a
set of generalized interdependent CKY equations.

6. Conditions for rank 2 CCKY tensors

It is of particular interest to discuss rank 2 CCKY tensors
in the Eisenhart-Duval lift metrics given the fact there
exists a classification of such tensors for Riemannian
spacetimes. Therefore an interesting question is whether
Eisenhart-Duval spacetimes can provide new nontrivial
examples of such forms.

If the form f of the previous section is of rank 2, then g is
a function and p* are 1 forms. Equation (—+):dg =0
then tells us that g is constant. Asking that f is closed
amounts to the two conditions

1
[iF/z\f— Spt —(n+2-

d
Jl:dp+—;v/\p’+%F/\gi|
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i and J according to the following convention. The first
index [ = —, +, a reflects which derivative is used in the

CKY equation among ﬁ_, ©+, and @a. Once the appro-
priate CKY equation is chosen, the second index J, taking
values J = +, —, &, a, is related to taking the projection
on M of the CKY equation along the é*,é7,é* A é~, and
é“ direction. The full set of equations is

dvt dv
4f+—/\g+
m m

e
++) — —FApT =0,
(++) o FAP

dv¥
m

p) ¥ p’:l =0,
(a=)V.p~ =0,

(3.53)

e
Al dg+—FAp |,
[g 2m 2p ]

, I:-l—df—i-iF/\p’].
m

df + £Fap =0, (3.54)
m

av
dp* == Ap +%gF= 0, (3.55)

which have as solutions

f=—S2AAp +dAD, (3.56)
m

\%4
pt=—p — 8 A+ dAO,
m m

(3.57)
where A© and A are a0 and a 1 form, respectively, to be
found by solving the other equations.

The full set of equations are complicated to solve. One
might hope to obtain a simplification in the case F = 0,
V # 0. If F = 0, then equation ( + +) gives

av

dvt
—.

m

=g (3.58)

Taking the hook contraction of this equation with dV*, we
get 0 = g%, and since M has a Euclidean signature,
this means that either g = 0 or V = const. We take g = 0.

The rest of the equations simplify to
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(=+)sf =0,
#
0 =0,
m

avt
(+*) 8pt=-n ap,
m

3.59
(+a) dp* = —2d—v/\p7, :9)
m

(a_) vap_ =0,

e
H)V.pt =—=
(a+)Vqp p——

(ab) V,f=0.

avt
/\<—5p+ + pr),
m

Now we can see that equation (a+) implies dp* = 0, and
this together with (+a) implies dV A p~ = 0, or

Vv

— =ap - X+ ﬁ, (3.60)
m
where « and 8 are constants.
Now (+ *) together with (a+) give
av#
Var' = (p Jea=alp Pe oD
m

and this together with Eq. (3.57) yields the following
equation for the form A©:

V (dA?) = —alp; p; — |p~[?8,)e". (3.62)

One might try to solve this equation when M is the
Euclidean flat space. A solution can indeed be displayed;
however, in this case M is flat, and therefore this corre-
sponds to no new metrics. Regardless of the specific form
of M the conditions we found so far guarantee that the
codifferential of f is a null form:

5Ff=m+Da(p)et. (3.63)

We do not pursue here the task of solving (3.62) when
M is a nonflat space, or that of solving the full set of
equations when F # (. However, we consider this an
interesting task given its potential to generate new metrics
with rank 2 CCKY tensors that are not covered by the
Riemannian classification.

IV. DIRAC EQUATION

In this section we describe in detail the massless Dirac

equation on M and show that in general it gives rise to a
nonrelativistic Lévy-Leblond equation. We then specialize
to those special cases when it is possible to reduce the
higher dimensional Dirac equation and obtain again a
Dirac equation in lower dimension. First, we show how
an appropriate nontrivial projection on the higher dimen-
sional spinor allows one to reduce the massless Dirac

equation on M to the Dirac equation with V and A flux
on M. We also show how to perform the inverse lift
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operation, that is, how to embed a lower dimensional
solution of the Dirac equation with flux into a solution of
the massless higher dimensional Dirac equation. Second,
we consider the dimensional reduction of hidden symmetry
operators associated with the KY and CCKY tensors of
Secs. III B 1 and III B 4, showing how only a subset of these
commutes with projection operation and thus yields hidden
symmetry operators for the theory on M.

A. Dimensional reduction and lift
1. Nonrelativistic Lévy-Leblond equation

In Ref. [5] it has been shown how the massless free
Klein-Gordon equation in (d + 2)-dimensional Lorentzian
spacetime can be reduced to the massive Schrodinger
equation in Riemannian d-dimensional spacetime using a
projection on the base space M of the Eisenhart-Duval
spacetime M. In this section we show analogously how
dimensional reduction of the massless Dirac equation on
M yields its nonrelativistic counterpart on /M, that is, the
Lévy-Leblond equation [64]. The first derivation of the
Lévy-Leblond equation from a lightlike reduction from 4
and 5 dimensions has been given in Ref. [65].

Spinors on M have dimension 2[5, while spinors on M
have dimension 2I"z"] = 2 - 2B8]. Given the Pauli matrices

4.1)

(0 =i
== (1)
(1 0
a3:<0 —1)’

o *ioy

> These satisfy (o%)> =0,
{o*, 07} = . Let [ be gamma matrices for ‘M, and ["*

we define o~ =

for M. We use the following representation for gamma
matrices on M:

f*a = 03 ® Fa.
4.2)

[*=0t®l, =09l

Using the explicit form of the spin connection (AS), we
find the expression for the covariant derivatives of a spinor

% on M:

. . 1% 1 .
V_ =24, V., =(fav+a[)——1“*dv—iF,
m 2m dm
V,=V,-%4,0,+-STT0F,,. 4.3)
m 4m

Thus we can write the Dirac operator on M as
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A A,

D - FAﬁA
oV
1o, + F+<—av +a, +iF)
m dm
+ f“(va - anav). (4.4)
m

In the case of a Killing vector K the symmetry operators of
Eq. (2.16) assume the form

A

Sk=@k+

>

dk. 4.5)

Bl

For the two Killing vectors X" and X~ — L X of the lift
metric the operators can be calculated explicitly and are
given by

Kge = 0, (4.6)

and

K(X—_%XJr) = 6,. (47)
They both commute with the Dirac operator D on M, so
we can ask that a spinor ¢ on M that satisfies D # =0is
also an eigenspinor of the two operators. For the purpose of
recovering the Lévy-Leblond equation we ask the less
restrictive condition of fp being eigenspinor only of Kg+:

8v1,7/ =im 921
We have chosen the 9, eigenvalue to be proportional to

the mass parameter m in order for the Dirac operator to
reduce to

(4.8)

D= iml + f*[iv +a, + 4iF] +19D,  (4.9)

m
where D, =V, —ieA, is the U(l) covariant spinor
derivative on M. We also define the Dirac operator on

M with A flux as D =T1“D,.
According to the gamma matrices representation (4.2),

we write a spinor ¢ on M as

@:(”)
X2

where y; and y, are spinors on M. Then the massless

(4.10)

Dirac equation on le, D 12/ = (0, can be written as

D @ + 8, X1 -0
im —D X2 ’
where the operator O is given by O = iV + ;% F, and it

reduces to two equations on M:

dx2+ Ox, + Dy, =0,

@.11)

imy, — Dy, = 0.
(4.12)

This is the nonrelativistic Lévy-Leblond equation for a

particle of mass m = % in curved space, with scalar and
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vector potential and with an additional term ;5 F. This
extra term induces an anomalous gyromagnetic factor g =
3/2 and was not present in the original work by Lévy-
Leblond. To see the value of the gyromagnetic factor, one
can in the second equation in Eq. (4.12) find y; as a
function of y, and substitute it back into the first equation,
thus getting

1 3e R
_ B oA -y — F — — =
[E Zrﬁ(H eA*)? =V szF 8’71])(2 0,

(4.13)

where E = i0,, Hu = —iVM is the momentum, and R is
the scalar curvature of M.

In Ref. [65] the anomalous gyromagnetic factor term
does not appear; however, there the setting is different:
dimensional reduction is done starting from a massless
Dirac equation with vector flux on M, while in the present
case the vector potential originates from the metric and not
directly from the massless Dirac equation. Therefore the
massless Dirac equation considered in Ref. [65] that is
dimensionally reduced is not the same as the one consid-
ered here. Situations where a dimensional reduction indu-
ces an anomalous gyromagnetic factor are not unknown;
see Ref. [66] for an example and further references.

This dimensional reduction gives a geometrical deriva-
tion of the Lévy-Leblond equation. One of the reasons why
this is ultimately possible is the fact that the Bargmann
group—the central extension of the Galilei group that
leaves invariant the Schrodinger equation and the Lévy-
Leblond equation—can be embedded in the de Sitter group
o(l,n+1)[2]

2. Relativistic Dirac equation: Lift and reduction

The 9, term, as seen in the previous section, is of main
importance in order to obtain nonrelativistic equations. In
this section we seek to understand those cases when the
massless Dirac equation on M can be dimensionally re-
duced to the, still relativistic, Dirac equation with flux on
M. As we will see, this cannot always be done differently
from the nonrelativistic case, the details of the reduction
depending on the explicit form on the scalar and vector
potentials. However, at least in the case of V = m and
F = 0 the dimensional reduction and its inverse, the lift,
can always be performed.

We start then by asking the following two conditions
for ¢:

A

a, 0 = imi, (4.14)

A

9, =0, (4.15)

which, as seen in the previous section, are compatible with
the Dirac equation on M.
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The Dirac operator reduces to

A

D= iml™ + f*[iv + 4iF] +1D,.  (4.16)
m

Then the massless Dirac equation on M, D i =0, can be

written as
( D O )( X1 ) 0
im —DJ\ x,

where the operator O is given by O =iV + ;5 F. The

4.17)
general solution of D ¢ = 0 is given by
A - ﬁ Dx,
lp - ( >)
X2

i
—D2X2 = (9)(2,
m

(4.18)

where y, satisfies
(4.19)

which is an integrability condition of (4.17).

To make contact with the Dirac equation with flux on
M, we impose the following condition on the generic
spinor ¢ of (4.10):

This allows one to solve for y; if y, is known and vice
versa, since O is invertible for generic values of F, V, and
E. The reason to ask for this condition is that, when it is
satisfied, then the spinor y; satisfies

(D+iV)x; =0, (4.21)

which is the Dirac equation with V and A flux on the base.
It is worth noticing that the condition (4.20) is nontrivial
and will be satisfied only for specific combinations of V
and F.'

To gain insight into the condition, we can rewrite
Eq. (4.20) as a projection P1,7/ = (Z/, where P is the
projector

'We are not trying to prove here that the projection (4.20) is
the only way to obtain a Dirac equation on M. Other methods
can be conceived. As a concrete example, when M is a one-
dimensional Lorentzian manifold, one could consider a
Majorana-Weyl spinor, which has 16 real components, and
compare it with either a Weyl or a Majorana spinor on M,
which is an eight-dimensional Riemannian manifold, which also
has 16 real components. It may be hoped that in this way a
projection such as (4.20) may not be needed. A concrete calcu-
lation, however, shows that the ten-dimensional spinor reduces
into a pair of separate eight-dimensional Majorana-Weyl spinors,
each of which has eight real components. The ten-dimensional
Dirac equation can induce an eight-dimensional massless Dirac
equation for one of the spinors on M; however, this is not
compatible with (4.14). One has either to set the right-hand side
of (4.14) to zero or to set both the other spinor and the fluxes to
zero, which amounts to a special choice of Majorana-Weyl
spinor on M and of metric. Although this is an interesting
possibility, we have not considered it further since we have
been focusing on the case where (4.14) holds.
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1 — 9" +igl™
2

P is well defined when —iV~'O = | — i & V™! F is inver-

tible, in which case it satisfies P2 = P.

The following three alternative cases can occur. First,
ifboth V = 0 and F = 0, then Eq. (4.20) is always satisfied
and y; satisfies the massless Dirac equation on the base
with no flux, Dy; = 0. Second, if instead V # 0 but
F=0, then —iV'O=1 and P=J(1+T"+T").
Then PzZ = (p has the symmetric solution y; = y,.
Third, if both V # 0 and F # 0, then for generic values
of V and F the operator P will be well defined and the
solution of P(Ap = fp will be a twist of the symmetric case
parametrized by F.

In the symmetric case V # 0 and F = 0, the projector P
satisfies the equation

4T

P =

(4.22)

Dp = D +i(m+V), (4.23)
which means that for generic values of V it will not be
possible to ask that for any spinor 1:0 that satisfies the

massless Dirac equation on M then its projection pr
will also satisfy the equation. The only exception to this
is for V = —m, which corresponds to considering the
Dirac equation on M for a particle of mass m. In this
case if D¢ =0, then DP¢ = 0 and from Py we can
construct a solution of the Dirac equation with mass on M.
Considering all possible such ¢, we can construct all the
independent solutions on M. Vice versa, given a solution
of the Dirac equation with mass on M, this can be lifted to
a solution of the massless Dirac equation on M satisfying
pr = fp On the other hand, a direct substitution of the
condition y; = Y, into the Dirac equation (4.17) shows
that the case V = —m is the only one consistent with the
spinor equations. It is interesting to notice that solutions of
the equation Py = 0, which are orthogonal to the previous
ones, satisfy the condition —iV y; = Oy,. Then these are
associated with solutions of the Dirac equation on the base
with —V flux.

In the generic case V # 0 and F # 0 Eq. (4.23) will also
receive contributions proportional to V™! F and its deriva-
tives. This opens the possibility of nontrivial solutions,
although these are not easy to analyze in the general
case. One possibility is to analyze the compatibility con-
dition between the projection and the Dirac equation.
When both hold, then y, also has to satisfy the nontrivial
equation

Vv

m
In Sec. V we show a simple example with nonzero V and F
where the projection is compatible with the Dirac equation.

We conclude the discussion showing how to lift a solu-
tion of the Dirac equation with flux to a solution of the
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massless Dirac equation on M. Suppose there exists
a given spinor y; on M satisfying the Dirac equation
with flux

Dy, +iVy, =0. (4.25)
To upgrade y; to a spinor on M we can define a spinor Y,
on M solving

Dy, = imy;. (4.26)

Now, in order for the spinor ¢ = (x;, x») to satisfy the
massless Dirac equation on j\/l we need to ask that also
condition (4.20) holds. Again the number of solutions will
not be maximal owing to compatibility conditions.

B. Hidden symmetry operators

In this section we examine hidden symmetry operators
of the two theories from the two complementary points
of view of dimensional reduction and lift. From the former,
it is to be expected that not all hidden symmetries of
the dynamics on M can be reduced to symmetries of the
dynamics on M as the embedding of the lower dimen-
sional theory in the higher dimensional one is a proper
inclusion in terms of dynamics. For example, there are KY
and CCKY forms on M that arise as lifts of KY and CCKY
forms on M and yet such that their corresponding sym-
metry operators cannot be dimensionally reduced. This is
consistent with the observation made in Secs. IIIB 1 and
III B 4 that according to whether the form is even or odd
different conditions are required in order for it to generate a
hidden symmetry operator for the Dirac equation with flux
on M. Those symmetry operators that cannot be dimen-
sionally reduced are built from even KY or odd CCKY
tensors and are those that in lower dimension would gen-
erate anomalous symmetry operators. From the point of
view of the lift of hidden symmetry operators instead we
have seen in Sec. III B that it is possible to have symmetry
operators on M generated by CKY tensors that cannot be
lifted to M.

At the end of the section we will discuss a simple
example in which a CKY tensor on /M that is neither
strictly KY nor CCKY, when it exists, gives rise to a
symmetry operator of the Dirac equation on M, but this
symmetry cannot be lifted to a symmetry operator of the

Dirac equation on M. While this is not a proof that such a
lift is not possible, we hope that such an example can help
create an intuition on the underlying reason why the lift
cannot be done. A proof follows from the results of Sec. I1I
where it is shown no CKY tensor on M can be written in
terms of a CKY form on M that is neither KY or CCKY.

We start analyzing dimensional reduction. We consider
the KY form f | on M that is obtained by lifting a KY p
form f on /M, as in Sec. IIIB 1, and its associated sym-
metry operator of the Dirac equation given by Eq. (2.16).
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From the results of that section, and using Egs. (C5) and
(C6), one can see that 6f; = 0, and df, = df. Then in
terms of explicit components we can write

S’f} = ﬁ I:f‘Blmeilf.?Bl.qu_] ©A
+ 2(p1_i_1)2f‘AIMAPHC?f‘1A1mAP+1 ]
i e | (427)

Notice that there is a term proportional to (X4 f)I'* (X,.F)

coming from V that drops out owing to Egs. (3.15) and
(3.21) and the identities (2.8) and (2.9). The operator above
is a symmetry operator of the Dirac operator on M; in
other words, it transforms solutions of the equation in other
solutions. However, to see whether it can be dimensionally
reduced to a symmetry operator of the Dirac equation with
flux on M, we need to check whether its action commutes
with the projection (4.20). If it does, then its action gen-
erates an action on the space of solutions of the Dirac
equation with flux into itself.

First of all, we notice that when the higher dimensional
spinor fp satisfies condition (4.14) then the action of § 7 is

the same as that of

() '® S, (4.28)
where
1
_ by..b,\ fa
S =G [ o, 2
+ ———T%a+1( 4.2
G o 42

is an operator on M that formally is the same as a sym-
metry operator generated from f but such that it uses the
U(1) covariant derivative instead of the spinor derivative.
Let us then define a new solution ¢’ by

(XY e S(X1)=< Sexi )
v (X/z) ()7 @5 X2 (_l)pflsf/\/z ’

(4.30)

and check whether ;Z’ satisfies (4.20). First of all, notice
that [iV,S;] & (X*.f)9,V =dV.f=0. Then iVy| =
&iV x;. Second, since i satisfies the Dirac equation, then

i i
Ox, = Z@Z y = EDZ((—I)IVISJ“Xz)

= (1P 8D = (178, 0x, (@43D)

In the last equality we have used the result found in
Ref. [38] that S, graded commutes with D, and therefore
commutes with D?. Then
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iVxi=38;iVx1=8;0x, = (—1)\"18,0x5. (4.32)

This proves that the symmetry operator S 7, commutes with

the projection (4.20) if and only if p is odd. Then in this
case it generates a symmetry operator of the Dirac equation
with flux on M, by looking at its action on the spinor y;.
Such an action is given in terms of the operator Sy, which
is the symmetry operator found in Ref. [38]. In this refer-
ence it was found that a subset of the conditions found in
Sec. lII B 1, namely, Eqgs. (3.14), (3.18), and (3.21), guar-
antee that Sy is a symmetry operator of the Dirac equation
with flux, and the results of this section provide a geomet-
rical alternative proof of the original result.?

A similar analysis can be done with respect to the CCKY
tensor f4 discussed in Sec. III B 4. We consider the sym-
metry operator (2.18). This can be written down explicitly
and dimensionally reduced when p is even. Now the con-
ditions found in Sec. III B 4 are required to see that the F

term present in the spinor derivative \Y drops out and that
the action of the operator commutes with that of the
projection (4.20). Again, the conditions found are a subset
of those found in Ref. [38] for the case of even tensors.

With this we have shown concretely how not all the
higher dimensional symmetry operators corresponding
to CKY tensors can be dimensionally reduced to give
symmetry operators in lower dimension. In particular,
this happens also for a subset of the tensors found in
Secs. IIIB 1 and III B 4, which were obtained as a lift of
CKY tensors on M. Those lifted tensors such that their
higher dimensional symmetry operators do not commute
with the projection (4.20) are exactly those for which in
lower dimension the corresponding symmetry operators
are anomalous owing to the presence of flux. This provides
a geometrical interpretation of the anomaly. It should be
noticed that the hidden symmetries compatible with the
lift, given by odd KY and even CCKY tensors, are exactly
those that give rise to operators that fully commute with the
Dirac operator [41].

Now we turn to the last objective of this section, provid-
ing an intuitive explanation why not all of the symmetry
operators found in lower dimension can be lifted. For the
calculations to be simpler, suppose there is no flux: V = 0,
F = 0. Let us assume that on M there exists a CKY p
form w that is neither K'Y nor CCKY. Then from Eq. (2.17)
we know that

DS, = (—1)?"'S,D — (4.33)
n

Suppose we try to lift S, to an operator on M of the kind
S = (03)’ ' ®S,. This is not the only possible way of

>The conditions found in Ref. [38] are more general than those
found here, the most general possible. Correspondingly, not all
of the generalized CKY tensors found there can be lifted in the
present context to CKY tensors on M, as discussed in Sec. IIL.
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doing the lift, and therefore this is not a proof, but rather an
illustration. Then

DS=(T"a9,+1%0, + ocs@D)(03)" ' ®8,

(=nr
——

=(-1)P"1SD+ . (03)PSwD. (4.34)
n

If 1:0 is a generic solution of the higher dimension Dirac
equation, the first term is zero but in general the second
will not be since dw # 0 and Dy, # 0. This corresponds

to the fact that there is no CKY tensor on /M that can be
written in terms of such a form @ on M. So the impossi-
bility to perform the lift seems related to the doubling of
the spinor degrees of freedom in higher dimension and the
fact that the higher dimensional Dirac equation mixes such
degrees of freedom.

V. EXAMPLES

In this section we present some examples of metrics with
and without flux.

A.Thecase V=m,F =0

When V = m, F = (0, it is possible to use solutions of
the massless Dirac equation on M to build solutions of the
Dirac equation with mass on M. It is also possible to
perform the inverse operation and lift solutions from M
to M. There is a number of known examples of nontrivial
spacetimes with Euclidean signature that admit CKY ten-
sors. Following Ref. [43] we can take M to be the sphere
S”", which admits both KY and CCKY forms; Sasakian
manifolds, which admit a rank 2 CCKY form, as, for
example, S! bundles over Kihler manifolds; Kihler and
nearly Kihler spaces, which admit a rank 2 CKY form; and
G, and weak-G, manifolds. There is also a classification of
compact manifolds of Riemannian signature that admit
special KY forms (for the definition of special KY forms
we refer the reader to Ref. [43]), and these are Sasakian,
nearly Kédhler, and weak-G, manifolds. We can also con-
sider M to be a Riemannian space admitting Killing
spinors, along the lines of Ref. [44], as Killing spinors
generate a tower of KY and CCKY forms. In particular, we
can consider all spaces of special holonomy [Calabi-Yau,
hyperKihler, G,, Spin(7)]; maximally symmetric spaces;
compact spaces with positive curvature the cone over
which is irreducible, which include the already mentioned
3-Sasaki manifolds when n = 4m — 1, m is an integer,
with hyperKéahler cone, Sasaki-Einstein manifolds when
n = 4m = 1 with Calabi-Yau cone, the already mentioned
almost Kéhler case when n = 6, which has G, cone, and
weak-G,, which has Spin(7) cone. There are also non-
compact spaces with negative curvature, in this case either
the hyperbolic space H" or a warped product M = N X R
with metric ds? = e*¥ds% + dy?, where u € RO and N is

084050-13
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a complete, connected spin manifold that admits nontrivial
parallel spinors.

Another nontrivial example of Riemannian metric
with CKY forms is to consider M to be a manifold with
the canonical metric, which as shown in Refs. [32,67] is
the most general metric that admits a principal conformal
Killing-Yano form, that is, a rank 2 nondegenerate CCKY
form. This metric depends on a set of one-variable func-
tions, and when these are chosen so that the metric satisfies
the Einstein vacuum equations with cosmological constant,
then one obtains the (Wick rotated) Kerr-NUT-(A)dS met-
ric of Ref. [22]. The canonical metric in n = 2N + €
dimensions, where € = 0, 1, admits N + € Killing vectors
and N CCKY forms of even rank. By the results of Sec. III
it is possible to lift all of these tensors to KY and CCKY

tensors on M. The metric § on M also has the two Killing
vectors d,,, d,. The Dirac equation on M admits separation
of variables due to a complete set of mutually commuting
operators, one of which is the Dirac operator [15,16]. Then
if y; is a solution of the massive Dirac equation on M, one
can upgrade it to a solution of the massless Dirac equation
on M by setting x» = x;.

B. The case V a central potential, F = 0

Consider a flat Riemannian space M = R". Suppose
the electromagnetic field is zero, F = 0, and the potential
V is central, V = V(r), with r* = x,x*. Then we can
consider the rank n — 1 KY tensor

Fardn

built using the totally antisymmetric Levi-Civita n form
€),..),- There is a conserved tensor associated with any
geodesic on M, which is givenby C) , , = x*f,\ A ..
When n = 3, the conserved quantity is proportional to the
angular momentum, and therefore this example includes
cases such as the Kepler problem or the harmonic oscil-
lator; for d > 3 we can think of this as a generalization of
angular momentum. That the quantity is conserved can be
seen by direct differentiation, noticing that the geodesic

S.D

——
X GMAI-"/\H*I’

equation implies that X is proportional to VV = ‘fi—‘r/ % and
therefore

. dVv x*

Crrys & ar TXVG;W/\]...An,z =0. (5.2)

This condition is equivalent to dV¥ . f = 0, which is the
same as Eq. (3.14) and guarantees that we can promote f to
a KY tensor on the Eisenhart-Duval lift manifold M, and
build conserved tensors for the null geodesic motion on M.

C.Thecase V#0,F # 0

We present here a very simple example with the intent of
showing that the projection (4.20) does indeed admit non-
trivial solutions. From the construction of this example,
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however, it will become clear that interesting nontrivial
solutions will in general require more effort.

We take M to be three-dimensional flat Euclidean
space. The Gamma matrices are I'} = o, I, = 0, '3 =
03, and the Pauli matrices. We consider a magnetic field
F = ¢(x)o,0, = id o4, and as an ansatz for the spinor y,
we take the spinor y, = (1, 0). The projection becomes

iVy, = i(V + %)Xz = iVdxa (5.3)
where we have defined the function
~ e
d=1+ 4’;5‘/. 5.4
The Dirac equation on M gives
Dy, +iVx, =0, Dy, = imy;. (5.5)

One can check by direct substitution that these two coupled
equations are compatible with the projection only if

(iV + d(Ing))x, = —imx,.

Then it must be ¢ = (x3) in which case the equation
above becomes an equation for the function ¢:

iV + d(Ing) = —imd.

(5.6)

(5.7)

But V and d; are both real, and therefore it must be that q’; is
constant and that V = —md. Then also V and the mag-
netic field are constant. The Dirac equation on M reduces
to the single equation

Dy, = imyx,, (5.8)

where m ¢ plays the role of an effective mass and a solution

is given by
( eimq§x3 )
o )

VI. DISCUSSION AND CONCLUSIONS

(5.9

In this paper we have studied the Eisenhart-Duval lift
from the point of view of hidden symmetries of the Dirac
equation and have gained insight on the relationship be-
tween the procedure of lift/oxidation, its inverse procedure
of reduction, and the symmetry operators of the Dirac
equation with flux.

We have shown how the massless Dirac equation on M
can be dimensionally reduced to a nonrelativistic Lévy-
Leblond equation on M. We have also discussed those
cases where it is possible to obtain on M again a Dirac
equation. When V = —m and F = 0, it is always possible
to obtain by reduction the massive Dirac equation on M
and to lift the hidden symmetries on M to hidden symme-
tries on M. However, for generic fluxes the Dirac equa-
tions in lower and higher dimension are not equivalent

084050-14
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systems when considered from the point of view of their
dynamics in phase space, since each theory can have
hidden symmetries that are not present in the other. We
have shown an example where the impossibility to lift
some CKY tensors in the absence of flux is related to the
doubling of the spinor degrees of freedom in higher
dimension and the way that the higher dimensional Dirac
equation mixes such degrees of freedom, and examples
where the impossibility to dimensionally reduce instead is
related to the fact that symmetries of the Dirac equation
with flux on M present anomalies and not all KY and
CCKY tensors are allowed. Whenever it is possible to
either lift or dimensionally reduce the symmetry operators,
then we find a geometrical relation between the symmetry
operators of the two theories, one with flux and the other
without. The situation is different from what happens
analyzing the Eisenhart-Duval lift for a scalar particle:
in that case all hidden symmetries of the lower dimensional
theory can be lifted to hidden symmetries in higher
dimension.

A by-product of this analysis is that we can build new
Lorentzian metrics with KY and CCKY tensors, by lifting
KY and CCKY tensors defined on Riemannian metrics. We
also have presented a classification of the most general
CKY tensor for the Eisenhart-Duval metric in terms of a set
of equations for forms on the base manifold, both in the v, ¢
independent case and in the general one.

There is a number of questions left open in this work.
One of these is the following: what is the actual form of

generic solutions of the CKY equations on M in terms of
forms on M, and do these solutions give any nontrivial
generalization of the CKY equations? Another one is re-
lated to supergravity solutions: it is known how spacetimes
with a null covariantly constant (Killing) vector can pro-
vide supersymmetric solutions of supergravity theories. It
would be interesting to know if the present construction
can be used in the context of supergravity to either provide
new solutions or discuss existing ones in terms of hidden
symmetries. Also it would be interesting to know if the
tools used in the present analysis can also be used to study
the more general class of Kundt spacetimes; see Ref. [68]
for a recent discussion of their role in supergravity and
string/M-theory.
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APPENDIX A: EISENHART-DUVAL METRIC

The nonzero Christoffel symbols for the Eisenhart-
Duval lift metric (3.4) are

2
fy € A . _1 e A 2
F” - WA,\& V, FM[ - §<ﬁA/\F “w EGMV y
. e . 1
r,u,l/ :EV(MAV)’ I‘?, =E8)‘V,
A e A
I, =- %F)‘M, [, =T4, (A1)

The covariantly constant Killing vector is d,, and its asso-
ciated 1 form is (9,)® = dr. A convenient choice for the
vielbeins is

et = di,
Vv e
e~ =dv — —dt+—A,dx*,
é v Audx (A2)
o4 = eu’
where {e%, a = 1, ..., n} is a set of vielbeins for M, and
the (n + 2)-dimensional Minkowski metric 7,5 has the
following nonzero entries: 9. = N_, =1, N, = Nup-
The corresponding dual basis vectors are
5TV — O+ — A—y_A—_V
e )y =X"=9, e )yY=X =—9,+09,
m
(e1)F = X* = — S Aag, + (ev)ts. (A3)
m
These are related to the inverse vielbein £Y by
Ey = 7apX". (Ad)

From Eq. (A2) we can read the nonzero coefficients of
the spin-connection:

. 1 . e

Wy, = —EaaVeJr +%Fabeb,

) e (AS)
Wap = Wep — 2mFab€ .

APPENDIX B: HODGE DUALITY

In this section we display identities for Hodge duality on
M; these are straightforwardly generalized to the Hodge

duality on M with the appropriate change of signature and
number of dimensions.

The Levi-Civita tensor & is an antisymmetric n form
satisfying

(BI)

eANe = sn!,
n
where s is the product of signs in the metric signature. With
this the Hodge dual of a homogeneous p form @ can be
defined as
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* W = — wAe. (B2)
pl r
It follows that
w3k @ = s(— )PP g, *¥] = g,
, (B3)
*g = §, g2 = (—1)s.

The Hodge duality operation exchanges a wedge product
into an interior product and vice versa: for any vector X¢
dual to a vielbein e“ it holds that

*(e4 A w) = (—1)PX% J (*w),
#(X9 ., w) = (—=1)PTle? A (xw).

(B4)

Also it transforms a contracted wedge product into a
contracted wedge product. If &, 8 are homogeneous forms
of degrees p and ¢, then

k!

G~ 0
= o Ve A )

(= Dk ‘”(*a) AR

“anp) =

(B5)

APPENDIX C: DIFFERENTIATION OF FORMS

Consider a p form f on M that only has components on
M, according to

f= Frtyon, (0, 1, XH)EM A A GM

= f,lL].-.,lL,,(v’ t, x#)e”’] A AeMr, (Cl)

When there is no v, t dependence, then this yields a form f
on M. We can explicitly calculate the components of the

tensor V f . We start with

@—fﬂl---ﬂp = EA—/I@M]?M---/L,, = X+M@Mﬁm~uﬂp
vvf,\,u,l...,u,, = an/.L]...,u,p + (fv : f),u,]...,u,p
Dol oy (C2)
A similar calculation yields
Aoa Vv
V+f=<—av+a>f+—(F/\f) NI
m
(C3)
and
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Vof =— Aaauf+Vf—f Al(X, 5 F) L flL

(C4

With this we are able to calculate

~

Adf =2 AV, f
( 3, +a)f+e A, f

+ (——A/\ anerf), (C5)
m
and
5 = —(eM*t . vAf
—CAt o, f 4 6f + et A(FAS). (CO)
m 2m 2
Analogous relations for the forms é* and &~ are
Vaet=0 VM=+—a V_e =0,
~ 1 ~
Vie =—dv, Ve =X, ,F (C7)
m 2m

APPENDIX D: THE FULL CKY EQUATION

From the V_ equation we get four identities:

(__)avp_zor
_l’_
(- )—+18vp
1 \%
=—<—<—6U + Gt)p_ +£A/\ 9,8 — dg)
p+1 m m
1
————— (=AY L, f+Sf —d,p"
5 (Bt ar o

\%4 _ e _
—(—8v+8,)p ——FAp )
m 2m 1

(=) +2 — p)ayg = (ap* + Ao + aug),
m

1
+1

p € — -
(—a)p 1 (EA Ad,p~ —dp ) (D1)

We can think of these as equations for the partial v deriva-
tives of the forms f, p=, and g. Then from V
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(+-) 2

x(5f+—AJavf—a p*
(++) -
(+%)

(+a)

p+1 p+1

dvt

n+2-— pI:dVﬁ
n+3-—

P dv
+1m

(Cav+a)r+srar+ Ap

+1

1% 1
( 9, + 9 )p* + C Fap = —(—a,,p+ —fAnd,e+ dg) -
2m 1 m

\% _ e _
—(—a,,+a,)p ——FAp ),
m 2m 1
\% av
Jf+(—6v+a[)p++iF/\p++—/\g=O,

2m 1 m
_ \% e
ap - +H|—0,t 0 )g |+ —FAg=—
m 2m 1

1
p+1

n+3—p

( AAd,pt dp*—iF/\g).
m
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1
n+3—p

1
(——F/\f-i— CAt g o+ 8pt )
2m m

(D2)

These are equations for the partial ¢ derivatives. Last, the Va equation gives

X,
(a—) — iAaavpf +V,p-=—", (—Guf —C AN dyp~ + dp7> — % A <5p’ +Eat, d,p~ + 9,8),
m p+1 m n+3—p m
(@+) = == (X, s FINf + Vop* — S A4,0,0% + -~ (X, . F) A g
2m 1 m 2m
X 1% av
=2 J[—<—8v+6,)f—£A/\8Up++dp+——/\pf-i-iF/\giI
p+1 m m m m
e, e e avt 7:|
——2 A =—FAf+—A* L a,p" +8pt ——.p |
n+3—p [ 2m M m vP P m P
e _ e
(ai)vag + Z_(Xa 4 F)/l\p - _Aaavg
¥ m v m (D3)
e e e e
=—" (-9, ++<—av+a) T ——AAD, +d)—7“/\<5 + —A* L0, + —FA —),
p+1< P m 1)P m § & n+3—-p & m § 2m P
e e
(ab)__Aaavf+vaf+_(XaJF)Ap_
m 2m
X
— Za J<—£A/\avf+df+£F/\p_)
p+1 m m
Vv
—e—“/\<5f + CAt o, f—a,pt — <—av + a,)p* —iF/\;f).
n+3—p m m 2m 1

Further simplifications can be obtained taking each of the four @a equations, and calculating the product e“A and X¢ J,
summing over a. This gives equations for the differential and codifferential of f, p*, and g that can be put back in the other
CKY equations.
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