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A 2-parameter inhomogeneous cosmology in Brans-Dicke theory, obtained by conformally trans-

forming the Husain-Martinez-Nuñez scalar field solution of the Einstein equations is studied and

interpreted physically. According to the values of the parameters it describes a wormhole or a naked

singularity. The reasons why there is not a one-to-one correspondence between conformal copies of this

metric are discussed.
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I. INTRODUCTION

In their low-energy limit, most theories attempting to
quantize gravity produce modifications of general relativ-
ity in the form of nonminimally coupled dilaton fields
and/or higher derivative terms in the gravitational sector
(this is the case, for example, of the bosonic string theory
which reduces to an ! ¼ �1 Brans-Dicke theory [1]).
Attempts to explain the present-day cosmological accel-
eration discovered using the luminosity distance-redshift
relation of type Ia supernovae [2] without introducing the
ad hoc dark energy has led, among other scenarios, to
infrared modifications of gravity [3]. This ‘‘fðRÞ’’ gravity
is nothing but a Brans-Dicke theory with a special scalar
field potential (see Ref. [4] for reviews).

Several alternative theories of gravity have been pro-
posed and studied recently, as low-energy effective actions
or as toy models for quantum or emergent gravity, or in the
context of early or late universe cosmology (see Ref. [5] for
a recent review). In addition, varying ‘‘constants’’ of nature
hypothesized by Dirac [6] can be implemented naturally in
scalar-tensor gravity, in which the gravitational coupling
depends on the spacetime point [7,8].

When approaching a theory of gravity, it is important
to understand its spherically symmetric solutions and, in
particular, its black holes. Solutions of the field equations
describing inhomogeneities in cosmological spaces have
been studied with the specific purpose of modeling spatial
variations of the gravitational coupling [9,10]. Spherically
symmetric inhomogeneous solutions of Brans-Dicke grav-
ity which describe a central condensation embedded in
a Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) back-
ground have been found, but not studied or interpreted,
in Ref. [10]. Extra value is added to the study of spacetimes
describing central objects in cosmological backgrounds by

the fact that such metrics are not well understood even in
the context of Einstein theory [11–15]. Moreover, the old
problem of the influence of the cosmic expansion on local
dynamics (and vice-versa), which originally led to the
study of such solutions [11], is not completely solved [16].
In this paper we analyze a Brans-Dicke solution found

by Clifton et al. [10] and describing an inhomogeneity
embedded in a FLRW universe. This solution is gener-
ated using a conformal transformation and the Husain-
Martinez-Nuñez scalar field solution of general relativity
[17] as a seed. The conformal copy is not a perfect mirror
image of the original solution, however, because it is found
(in Sec. II) that it describes a spacetime with properties
quite different from the original one. This fact should not
lead to superficial statements on the physical inequivalence
between conformal frames because the usual conformal
mapping between Brans-Dicke’s and Einstein’s theories
(and their solutions) prescribes also a scaling of units in
the Einstein frame [18] which went lost in Ref. [10], where
the authors intended only to generate a new spherical and
inhomogeneous solution of the Brans-Dicke field equa-
tions. Section IV contains a discussion on this subject.

II. UNDERSTANDING THE CLIFTON-
MOTA-BARROW SPACETIME

Clifton et al. [10] conformally mapped the spherically
symmetric and dynamical Husain-Martinez-Nuñez [17]
scalar field solution of general relativity to obtain the
2-parameter class of Brans-Dicke spacetimes
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C is a parameter related to the mass of the central inho-
mogeneity, and ! is the Brans-Dicke coupling parameter
which is required to be larger than �3=2. We adopt the
notations of Ref. [19]. There are spacetime singularities at
r ¼ 2C and at t ¼ 0, therefore, the relevant coordinate
range is 2C< r <þ1 and t > 0 [10]. The scale factor
of the spatially flat FLRW background universe is
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is the areal radius.
Let us examine the behavior of the area 4�R2 of

2-spheres of symmetry by studying how the areal radius
behaves as a function of r. We have
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The critical value r0 exists in the relevant spacetime region
r0 > 2C if �<�1. In this case the areal radius can be
written as
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and RðrÞ ! þ1 as r ! 2Cþ: the area of 2-spheres of
symmetry diverges as r ! 2Cþ. Because of Eq. (11), for
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@R=@r ¼ 0 at r ¼ r0, and @R=@r < 0 for r < r0. The func-
tion RðrÞ has a minimum at r0 (Fig. 1). The area of
2-spheres of symmetry decreases between 2C and r0, where
it is minimum, then it increases again. There is a wormhole
throat joining two spacetime regions (cf. Ref. [20] for a
detailed wormhole theory). Note that, since
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sufficient condition �<�1 imposes the constraint on the
Brans-Dicke parameter
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which can be satisfied in the allowed parameter region
!>�3=2. Therefore, for �3=2<!<!0 there is an
apparent horizon at r0 > 2C and the solution can be taken
to represent a Brans-Dicke wormhole. Here by wormhole
we simply refer to a spacetime containing a smooth
wormhole throat connecting two spacetime regions. Other
definitions of wormhole (for example, a generalization to
the dynamical case of the definition of Ref. [21]) are more

FIG. 1 (color online). The areal radius R (vertical axis) as
a function of r (horizontal axis) for the parameter values
� ¼ ffiffiffi

3
p

=2, � ¼ �3=2, and C ¼ 1 (in units of C) at a time t�
at which aðt�Þ ¼ 1.
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stringent and would not allow this spacetime to be called a
wormhole.

The region 2C< r < r0 is not a FLRW region and the
scalar field (2) is finite and nonzero at r0:
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��1
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The proper radius (13) of the wormhole throat is exactly
comoving with the cosmic substratum and disappears if
the central inhomogeneity is removed, which is formally
described by the limit C ! 0.

Let us now investigate the presence of apparent horizons
in the metric (1). Using Eq. (10) and substituting the
relation between differentials
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into the line element (7), one obtains
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In the presence of spherical symmetry the apparent hor-
izons are located by the roots of the equationrcRrcR ¼ 0
(e.g., Ref. [22]) or gRR ¼ 0, which here yields

D1ðrÞAðrÞ ¼ H2ðtÞR2ðt; rÞ: (24)

The left-hand side of this equation depends only on rwhile
the right-hand side depends on both r and t. This equation
can only be satisfied when the right-hand side is time-
independent and the only possibility for this to occur is

whenH ¼ �=t ¼ 0, corresponding to � ¼ 0,� ¼ ffiffiffi
3

p
, and

! ¼ 0. This value of the Brans-Dicke parameter gives a
static solution describing a spherical inhomogeneity in a

Minkowski background, which is discussed in the next
section. With this exception, Eq. (24) has no solutions and
there are no apparent horizons in the spacetime (1). In
particular, for �<�1 the wormhole throat is not an
apparent horizon.
Let us discuss now the case ! � !0 and the case

� ¼ � ffiffiffi
3

p
=2. In these situations there is no wormhole

throat and no apparent horizon in the r > 2C region and
the Clifton-Mota-Barrow spacetime contains a naked
singularity.
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goes to zero as r ! 2Cþ. Since r0 < 2C, the areal radius
RðrÞ is always an increasing function of r in the relevant
range 2C< r <þ1. This spacetime contains a naked
singularity at R ¼ 0.

III. THE SPECIAL CASE ! ¼ 0

The value ! ¼ 0 of the Brans-Dicke coupling, corre-

sponding to � ¼ ffiffiffi
3

p
and � ¼ 0, produces the static metric
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which is time-dependent even though the metric is static.1

The metric (26) is easily identified as a member of the
Campanelli-Lousto class [24]. The general Campanelli-
Lousto solution has the form
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and �0, a, and b are constants with �0 > 0. The Brans-
Dicke parameter is given by [24]
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In the case of the metric (26) setting
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reproduces the Campanelli-Lousto metric (28). Then,
the expression (30) gives !ð4�3 � 1; 2�3 � 1Þ ¼ 0 for

1This is not the only occurrence of this circumstance: a similar
situation is known for the static limit of another separable
solution of the Brans-Dicke field equations found by Clifton
et al. [23].
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� ¼ � ffiffiffi
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p
=2. However, the scalar field (27) differs

from the Campanelli-Lousto scalar (29) by the linear
dependence on the time t. Thus, the static limit of the
Clifton-Mota-Barrow solution provides a (rather trivial)
generalization of a Campanelli-Lousto solution.

The nature of the Campanelli-Lousto spacetime depends
on the sign of the parameter a [25] which, in our case,

corresponds to the choice � ¼ ffiffiffi
3

p
=2 or � ffiffiffi

3
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=2. For

a � 0 (corresponding to � ¼ þ ffiffiffi
3
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3 ’�1:1547<�1) the Campanelli-Lousto space-

time contains a wormhole throat coinciding with an appar-

ent horizon and located at r0 ¼ 2Cð1��
2 Þ> 2C [25]. This

is consistent with Eq. (24) with H ¼ 0 since, in this case,
the equation gRR ¼ 0 locating the apparent horizons
reduces to D1ðrÞ ¼ 0 which yields again the root
r0 ¼ Cð1��Þ lying in the physical region r > 2C.2

This is the only case in which the Clifton-Mota-Barrow
solution under study contains an apparent horizon.

For a < 0 (which is reproduced by the choice � ¼
� ffiffiffi

3
p

=2 and gives a ’ �2:1547 and� ’ 1:1547> 0) there
are no apparent horizons and the spacetime contains a
naked singularity [25]. This is consistent with the fact
that Eq. (24) with H ¼ 0 can only be satisfied if
D1ðrÞ ¼ 0 and in this case there are no acceptable solutions
because r0 < 2C.

IV. DISCUSSION AND CONCLUSIONS

According to the parameter values, the Clifton-Mota-
Barrow spacetime (1) contains a wormhole or a naked
singularity (black holes, wormholes, and naked singular-
ities could in principle be distinguished observationally
through gravitational lensing [26]). In the last situation,
this solution of the Brans-Dicke field equations cannot be
obtained as the development of regular Cauchy data.

One question which arises is the following: the Husain-
Martinez-Nuñez and the Clifton-Mota-Barrow spacetimes
are conformally related. As explained long ago by Dicke
[18], the Jordan and the Einstein conformal frames should
be different representations of the same physics (provided
that the conformal transformation does not break down)—
this issue has been the subject of a lively debate but
has been shown to be largely a pseudo-problem (see
Refs. [27–29] and the references therein). Then, why
does the same solution look so different in the two different
conformal frames for the parameter values for which a
Jordan frame wormhole or naked singularity (1) corre-
sponds to the Einstein frame black hole of Ref. [17]? The
answer is that, by following the more ordinary route and
conformally transforming the Clifton-Mota-Barrow metric
and scalar field (1) to the Einstein frame would produce
the Husain-Martinez-Nuñez metric with scaling units of

length, time and mass. What is physically relevant is the
ratio of a physical quantity to its unit, and the units change
with the spacetime position. Specifically, the units of length
and time scale as the conformal factor�, while the unit of
mass scales as ��1 and derived units scale accordingly
[18]. In the Einstein frame, matter is coupled nonminimally
to the metric while in the Jordan frame matter is minimally
coupled. The scaling of units in the Einstein frame goes
hand in hand with the nonminimal coupling of matter to the
metric. In vacuo (which is the situation contemplated here),
the nonminimal coupling of matter is forgotten, but the
scaling of units should be remembered.
Another issue is that, contrary to event horizons (which

are null surfaces and are conformally invariant), apparent
horizons (which can be spacelike or even timelike) are not
conformally invariant and change location under a con-
formal transformation [30]. In order to characterize the
properties of a dynamical black hole when conformal
transformations are involved, one should not consider the
apparent horizons of a metric but a new surface charac-
terized by an entropy 2-form, as explained in detail in
Refs. [30,31]. The new prescription of Ref. [30] takes into
account the scaling of units in the Einstein frame.
Therefore, a metric obtained from the conformal trans-

formation to the Einstein frame of a seed Jordan frame
metric with the extra information that units are scaling is
quite different from the same formal metric with fixed
units, which explains why conformally related spacetimes
can look very different. Clifton-Mota-Barrow took the
Husain-Martinez-Nuñez solution of general relativity with
fixed units and used it as a seed to generate a new class of
solutions of Brans-Dicke gravity—they did not worry about
generating a physically equivalent solution, which would
have required to take into account scaling units. This pro-
cedure is certainly legitimate and achieves the goal, but it
generates physically inequivalent spacetimes when the
requirement of scaling units is dropped. Indeed, there are
comments in the literature about the fact that conformally
related solutions of Brans-Dicke theory and of the Einstein
equations do not share the same properties [32]. A similar
situation occurs with the Campanelli-Lousto solutions of
Brans-Dicke theory [24], which relate to Fisher-Janis-
Newman-Winicour solutions of the Einstein equations in
the Einstein frame [25], and with the veiled black holes of
Refs. [29–31] (see Ref. [25] for a detailed discussion). To
conclude, the physical nature of the Clifton-Mota-Barrow
class of solutions is now clear and they do not cause prob-
lems for the interpretation of conformal frames.
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3783 (1994).

[18] R. H. Dicke, Phys. Rev. 125, 2163 (1962).
[19] R.M. Wald, General Relativity (Chicago University Press,

Chicago, 1984).
[20] S. A. Hayward, Phys. Rev. D 79, 124001 (2009).
[21] K. A. Bronnikov, M.V. Skortsova, and A.A. Starobinsky,

Gravitation Cosmol. 16, 216 (2010).
[22] A. B. Nielsen and M. Visser, Classical Quantum Gravity

23, 4637 (2006); G. Abreu and M. Visser, Phys. Rev. D 82,
044027 (2010).

[23] V. Faraoni, V. Vitagliano, T. P. Sotiriou, and S. Liberati,
Phys. Rev. D 86, 064040 (2012).

[24] M. Campanelli and C. Lousto, Int. J. Mod. Phys. D 02, 451
(1993); C. Lousto and M. Campanelli, in The Origin of
Structure in the Universe, Proceedings, Pont d’Oye,
Belgium, 1992, edited by E. Gunzig and P. Nardone
(Kluwer Academic, Dordrecht, 1993), p. 123.

[25] L. Vanzo, S. Zerbini, and V. Faraoni, arXiv:1208.2513
[Phys. Rev. D (to be published)].

[26] J. G. Cramer, R. L. Forward, M. S. Morris, M. Visser,
G. Benford, and G.A. Landis, Phys. Rev. D 51, 3117
(1995); K. S. Virbhadra, D. Narashima, and S.M. Chitre,
Astron. Astrophys. 337, 1 (1998); E. Eiroa, G. E. Romero,
and D. F. Torres, Mod. Phys. Lett. A 16, 973 (2001);
K. S. Virbhadra and G.F. R. Ellis, Phys. Rev. D 65, 103004
(2002); J.M. Tejeiro and E.A. Larranaga, Romanian Journal
of Physics 57, 736 (2012); K.K. Nandi, Y.-Z. Zhang,
and A.V. Zakharov, Phys. Rev. D 74, 024020 (2006);
T.K. Dey and S. Sen, Mod. Phys. Lett. A 23, 953 (2008);
K. S. Virbhadra and C.R. Keeton, Phys. Rev. D 77, 124014
(2008); S. Sahu, M. Patil, D. Narasimha, and P. S. Joshi,
Phys. Rev. D 86, 063010 (2012).

[27] E.E. Flanagan, Classical Quantum Gravity 21, 3817 (2004).
[28] V. Faraoni and S. Nadeau, Phys. Rev. D 75, 023501

(2007).
[29] N. Deruelle and M. Sasaki, arXiv:1007.3563.
[30] V. Faraoni and A. B. Nielsen, Classical Quantum Gravity

28, 175008 (2011).
[31] A. B. Nielsen and J. T. Firouzajee, arXiv:1207.0064.
[32] K. A. Bronnikov, M. S. Chernakova, J. C. Fabris, N. Pinto-

Neto, and M. E. Rodrigues, Int. J. Mod. Phys. D 17, 25
(2008); P. E. Bloomfield, Phys. Rev. D 59, 088501 (1999);
K. K. Nandi, B. Bhattacharjee, S.M.K. Alam, and
J. Evans, Phys. Rev. D 57, 823 (1998).

INTERPRETING THE CONFORMAL COUSIN OF THE . . . PHYSICAL REVIEW D 86, 084044 (2012)

084044-5

http://dx.doi.org/10.1016/0550-3213(85)90506-1
http://dx.doi.org/10.1016/0550-3213(85)90559-0
http://dx.doi.org/10.1086/300499
http://dx.doi.org/10.1086/301144
http://dx.doi.org/10.1086/301144
http://dx.doi.org/10.1086/apj.2001.560.issue-1
http://dx.doi.org/10.1086/apj.2004.607.issue-2
http://dx.doi.org/10.1038/34124
http://dx.doi.org/10.1086/apj.1999.517.issue-2
http://dx.doi.org/10.1086/apj.2003.594.issue-1
http://dx.doi.org/10.1086/apj.2003.598.issue-1
http://dx.doi.org/10.1086/apj.2003.598.issue-1
http://dx.doi.org/10.1086/apj.2004.602.issue-2
http://dx.doi.org/10.1086/apj.2004.602.issue-2
http://dx.doi.org/10.1103/PhysRevD.70.043528
http://dx.doi.org/10.1103/PhysRevD.70.043528
http://dx.doi.org/10.1103/PhysRevD.68.063510
http://dx.doi.org/10.1103/PhysRevD.68.063510
http://dx.doi.org/10.1103/RevModPhys.82.451
http://dx.doi.org/10.1103/RevModPhys.82.451
http://dx.doi.org/10.1016/j.physrep.2012.01.001
http://dx.doi.org/10.1016/j.physrep.2012.01.001
http://dx.doi.org/10.1038/139323a0
http://dx.doi.org/10.1098/rspa.1938.0053
http://dx.doi.org/10.1098/rspa.1938.0053
http://dx.doi.org/10.1098/rspa.1973.0070
http://dx.doi.org/10.1103/PhysRev.124.925
http://dx.doi.org/10.1103/PhysRev.124.925
http://dx.doi.org/10.1007/BF00668828
http://dx.doi.org/10.1103/PhysRevD.1.3209
http://dx.doi.org/10.1086/150607
http://dx.doi.org/10.1046/j.1365-8711.2001.04157.x
http://dx.doi.org/10.1046/j.1365-8711.2001.04157.x
http://dx.doi.org/10.1088/0264-9381/18/22/301
http://dx.doi.org/10.1088/0264-9381/18/22/301
http://dx.doi.org/10.1111/j.1365-2966.2005.08831.x
http://dx.doi.org/10.1111/j.1365-2966.2005.08831.x
http://dx.doi.org/10.1103/PhysRevD.81.104044
http://dx.doi.org/10.1103/PhysRevD.81.104044
http://dx.doi.org/10.1111/j.1365-2966.2012.20618.x
http://dx.doi.org/10.1111/j.1365-2966.2012.20618.x
http://dx.doi.org/10.1111/j.1365-2966.2012.20617.x
http://dx.doi.org/10.1103/PhysRevD.84.044045
http://dx.doi.org/10.1103/PhysRevD.84.044045
http://dx.doi.org/10.1103/PhysRevD.85.083526
http://dx.doi.org/10.1103/PhysRevD.85.083526
http://dx.doi.org/10.1103/RevModPhys.82.169
http://dx.doi.org/10.1103/RevModPhys.82.169
http://dx.doi.org/10.1103/PhysRevD.50.3783
http://dx.doi.org/10.1103/PhysRevD.50.3783
http://dx.doi.org/10.1103/PhysRev.125.2163
http://dx.doi.org/10.1103/PhysRevD.79.124001
http://dx.doi.org/10.1134/S0202289310030047
http://dx.doi.org/10.1088/0264-9381/23/14/006
http://dx.doi.org/10.1088/0264-9381/23/14/006
http://dx.doi.org/10.1103/PhysRevD.82.044027
http://dx.doi.org/10.1103/PhysRevD.82.044027
http://dx.doi.org/10.1103/PhysRevD.86.064040
http://dx.doi.org/10.1142/S0218271893000325
http://dx.doi.org/10.1142/S0218271893000325
http://arXiv.org/abs/1208.2513
http://dx.doi.org/10.1103/PhysRevD.51.3117
http://dx.doi.org/10.1103/PhysRevD.51.3117
http://dx.doi.org/10.1142/S021773230100398X
http://dx.doi.org/10.1103/PhysRevD.65.103004
http://dx.doi.org/10.1103/PhysRevD.65.103004
http://dx.doi.org/10.1103/PhysRevD.74.024020
http://dx.doi.org/10.1142/S0217732308025498
http://dx.doi.org/10.1103/PhysRevD.77.124014
http://dx.doi.org/10.1103/PhysRevD.77.124014
http://dx.doi.org/10.1103/PhysRevD.86.063010
http://dx.doi.org/10.1088/0264-9381/21/15/N02
http://dx.doi.org/10.1103/PhysRevD.75.023501
http://dx.doi.org/10.1103/PhysRevD.75.023501
http://arXiv.org/abs/1007.3563
http://dx.doi.org/10.1088/0264-9381/28/17/175008
http://dx.doi.org/10.1088/0264-9381/28/17/175008
http://arXiv.org/abs/1207.0064
http://dx.doi.org/10.1142/S0218271808011845
http://dx.doi.org/10.1142/S0218271808011845
http://dx.doi.org/10.1103/PhysRevD.59.088501
http://dx.doi.org/10.1103/PhysRevD.57.823

