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In the present paper, we investigate the Hawking radiation of asymptotically nonflat dyonic black holes

in 4D Einstein-Maxwell-dilaton gravity in semiclassical approximation. We show that the problem allows

an exact analytical treatment and we compute exactly the semiclassical radiation spectrum of both

nonextremal and extremal black holes under consideration. In the high-frequency regime, we find that the

Hawking temperature does not agree with the surface gravity when the magnetic charge is nonzero. Even

more surprisingly, the Hawking temperature is independent of the black hole intrinsic characteristics, as

the mass and magnetic charge, and depends only on the linear dilaton background parameter.
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I. INTRODUCTION

The Hawking radiation of black holes is an emblematic
effect in the quantum field theory in curved spacetime
[1,2]. This effect, lying on the wedge of classical and
quantum gravity, reveals the deep connection between the
black hole physics and thermodynamics. In the semiclas-
sical approximation, the spectrum of the Hawking radiation
can be obtained by computing the Bogoliubov coefficients
in two different vacua and matching them appropriately
[2]. Another procedure that, in asymptotically flat space-
times, gives the same result as the Bogoliubov coefficients
method, is to compute the absorption and the transmission
(or reflection) coefficients of waves defined at the asymp-
totic regions [3].

Ever since its discovery, the Hawking radiation has
continued to be a hot area of research. The importance
of the Hawking effect for the fundamental physics stim-
ulates its investigation for various black hole solutions
with different structures and asymptotics. Unfortunately,
the wave equations in black hole spacetimes cannot be
solved analytically and this makes the full study of the
Hawking radiation hard. Only in special cases we are able
to solve the wave equations exactly. The cases when the
wave equation is exactly solvable are important because
they enable us to study the Hawking radiation in detail
and, for example, allow us to compute the radiation
spectrum exactly. In the present paper, we consider one
such case when the exact analytical treatment of the
Hawking radiation is possible. More precisely, we study
the Hawking radiation of a class of asymptotically nonflat
dyonic black holes in the 4D Einstein-Maxwell-dilaton
gravity.

The Einstein-Maxwell-dilaton gravity in four-
dimensional spacetime is described by the following
action

S ¼ 1

16�G

Z
d4x

ffiffiffiffiffiffiffi�g
p

� ½R� 2g��r�’r�’� e�2�’F��F
���; (1)

where R is the scalar curvature with respect to the space-
time metric g��, F�� is the electromagnetic field, and ’ is

the scalar dilaton field with a coupling constant �. In the
present paper, we are interested in the black hole solutions
of (1). More precisely we consider the following dyonic
black hole solution for � ¼ 1 found in [4]

ds2 ¼ �ðr� r�Þðr� rþÞ
r0r

dt2 þ r0r

ðr� r�Þðr� rþÞdr
2

þ r0rðd�2 þ sin2�d�2Þ; (2)

�e ¼ 1ffiffiffi
2

p r

r0
; (3)

�m ¼
ffiffiffiffiffiffiffiffi
r�
2rþ

s
rþ
r
; (4)

e2’ ¼ r

r0
; (5)

where r�, rþ and r0 are constants. Here�e and�m are the
electric and magnetic potentials and the Maxwell 2-form is
given by

F ¼ d�e ^ dtþ e2’ ? ðd�m ^ dtÞ; (6)

with ? being the Hodge dual.
The solution describes an asymptotically nonflat dyonic

black hole with inner and outer horizons at r ¼ r� and
rþ, respectively. The electric and magnetic charges are
given by

Q ¼ r0ffiffiffi
2

p ; P ¼
ffiffiffiffiffiffiffiffiffiffiffi
rþr�
2

r
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In the limit P ! 0 (r� ! 0), we recover the pure
electrical linear dilaton black hole solution [5] (see also
Ref. [6]). It should be noted that the parameter r0 (or
equivalently the electric charge Q) is associated not with
a specific black hole, but rather with a given linear dilaton
background. The linear dilaton background solution is
obtained by setting rþ ¼ r� ¼ 0 in our solution.

In order to find the physical mass of the black hole
solution under consideration, we use the quasilocal formal-
ism [7]. Since our spacetime is not asymptotically flat, a
suitable substraction procedure is needed to obtain a finite
mass. In our case, the linear dilaton background is the most
natural and unique choice for the substraction background.
The explicit calculations give the following result for the
mass [4]:

M ¼ 1

4
ðrþ þ r�Þ: (8)

The surface gravity is given by

� ¼ rþ � r�
2r0rþ

: (9)

In the case with rþ ¼ r�, we obtain an extremal black
hole solution with zero surface gravity.

Following [8], one can formally derive the first law for
the black holes under consideration, namely

dM ¼ �

2�
d

�
AH

4

�
þ�H

m dP; (10)

where AH ¼ 4�r0rþ is the horizon area and �H
m ¼

ffiffiffiffiffiffi
r�
2rþ

q
is the magnetic potential evaluated on the horizon r ¼ rþ.
Here the parameter r0, (respectively Q) is kept fixed since
it is associated with the background. General comments
about the black hole thermodynamics in asymptotically
nonflat spacetimes will be given in the last section.

In the next section, we study the Hawking radiation of
the asymptotically nonflat black hole solutions presented
above in semiclassical approximation in both the nonex-
tremal and extremal case. The Hawking radiation of pure
electrical linear dilaton black holes (i.e., corresponding
to P ¼ 0) was studied in semiclassical approximation
in Ref. [9].

II. HAWKING RADIATION IN
SEMICLASSICAL APPROXIMATION

A. Hawking radiation of nonextremal black holes

In order to study the Hawking radiation of our black
holes, we consider a test scalar field c satisfying the wave
equation

hc ¼ 0; (11)

where h is the curved spacetime D’alambert operator.
For the static spherically symmetric metric (2), the

D’alambert operator takes the following explicit form:

h ¼ 1ffiffiffiffiffiffiffi�g
p @�

� ffiffiffiffiffiffiffi�g
p

g��@�
�

¼ � r0r

ðr� r�Þðr� rþÞ@
2
tt þ 1

r0r
@r½ðr� r�Þðr� rþÞ@r�

þ 1

r0r
�ð�;’Þ;

where �ð�;’Þ is the Laplace operator on the unit sphere

S2r¼1. So the scalar wave equation hc ¼ 0 multiplied by
r0r becomes

� r20r
2

ðr� r�Þðr� rþÞ@
2
ttc þ @r½ðr� r�Þðr� rþÞ@r�c

þ �ð�;’Þc ¼ 0: (12)

Consider now a harmonic eigenmode as a partial solu-
tion of (12) in separate variables

c !lmðt; r; �; ’Þ :¼ R!lðrÞYlmð�; ’Þe�i!t; (13)

where Ylmð�;’Þ are the spherical harmonics. Then the
Fourier coefficients R!lðrÞ satisfy the equation

d

dr
½ðr� r�Þðr� rþÞ _R!lðrÞ�

þ
�

~!2r2

ðr� r�Þðr� rþÞ � lðlþ 1Þ
�
R!lðrÞ ¼ 0; (14)

where ~! :¼ r0! is a dimensionless frequency.
After the substitutions

z :¼ rþ � r

rþ � r�
; z0 :¼ rþ

rþ � r�
> 1; (15)

the equation for Z!lðzÞ :¼ R!lðrÞ becomes

zð1� zÞ €Z!lðzÞ þ ð1� 2zÞ _Z!lðzÞ

þ
�
~!2ðz� z0Þ2
zð1� zÞ þ lðlþ 1Þ

�
Z!lðzÞ ¼ 0: (16)

An appropriate substitution like Z!lðzÞ :¼zpðz�1Þqh!lðzÞ
will help us to obtain a more familiar linear differential
equation

zð1� zÞ €h!lðzÞ þ ½1þ 2p� 2ðpþ qþ 1Þz� _h!lðzÞ
�

�
ðpþ qþ 1Þðpþ qÞ þ ~!2 � lðlþ 1Þ

� p2 þ z20 ~!
2

z
� q2 þ ðz0 � 1Þ2 ~!2

1� z

�
h!lðzÞ ¼ 0;

where p and q are determined by the conditions that
eliminate the simple rational fraction 1=z and 1=ð1� zÞ
in the coefficient in front of h!lðzÞ. There are four combi-
nations for p and q, that can do it, but the most convenient
one is to take p :¼ iz0 ~! and q :¼ �iðz0 � 1Þ ~!
zð1� zÞ €h!lðzÞ þ ½1þ 2iz0 ~!� 2ð1þ i ~!Þz� _h!lðzÞ

� ½i ~!� lðlþ 1Þ�h!lðzÞ ¼ 0: (17)
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This is just the hypergeometric equation and, after identifying (17) with the canonical form,

zð1�zÞ €h!lðzÞþ½c�ð1þaþbÞz� _h!lðzÞ�abh!lðzÞ¼0; (18)

one can easily obtain the canonical parameters:���������������
a ¼ 1=2þ ið ~!þ �!lÞ
b ¼ 1=2þ ið ~!� �!lÞ
c ¼ 1þ 2iz0 ~!

; where �!l :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~!2 � ðlþ 1=2Þ2

q
: (19)

In our dimensionless variable (15), the singular point z ¼ 1 corresponds to the inner horizon r ¼ r�, while the singular
point z ¼ 0 corresponds to the outer horizon r ¼ rþ. We are interested in the general solution around the outer horizon
r ¼ rþ that can be continued to the spatial infinity z ! �1 (r ! þ1)

h!lðzÞ ¼ C1Fða; b; c; zÞ þ C2z
1�cFð1þ a� c; 1þ b� c; 2� c; zÞ: (20)

Consequently for

Z!lðzÞ :¼ ziz0 ~!ðz� 1Þ�iðz0�1Þ ~!h!lðzÞ; (21)

we obtain the expression

Z!lðzÞ ¼ ð1� zÞ�iðz0�1Þ ~!½C1ð�zÞiz0 ~!Fð1=2þ ið ~!þ �!lÞ; 1=2þ ið ~!� �!lÞ; 1þ 2iz0 ~!; zÞ
þ C2ð�zÞ�iz0 ~!Fð1=2� i½ð2z0 � 1Þ ~!� �!l�; 1=2� i½ð2z0 � 1Þ ~!þ �!l�; 1� 2iz0 ~!; zÞ�;

using (19) and (20).
For the asymptotic of (20) near the outer horizon (i.e., z ! 0�), the zero order expansion of Fða; b; c; zÞ is enough

(Fða; b; c; 0Þ ¼ 1). Also limz!0�ð1� zÞ�iðz0�1Þ ~! ¼ 1. Then we have

Z!lðz ! 0�Þ ’ C1ð�zÞiz0 ~! þ C2ð�zÞ�iz0 ~!: (22)

For physical interpretation, it is appropriate to define a new real spatial variable x, by the relation

� z ¼ r� rþ
rþ � r�

:¼ exp
x

z0r0
; (23)

with r ! rþ ) x ! �1 and r ! þ1 ) x ! þ1. Now taking into account that x ¼ xðrÞ is an uniformly growing
function and replacing (23) in (22), the asymptotic solution (22) multiplied by e�i!t can be considered as a superposition of
an outgoing and an ingoing wave

R!lðr ! rþÞe�i!t ’ Aoute
i!ðx�tÞ þ Aine

�i!ðxþtÞ; where

���������Aout :¼ C1

Ain :¼ C2:

In the case l ¼ 0, Y00ð�;’Þ ¼ 1, and the upper expression is just the solution for the eigenmode c !00ðt; r; �; ’Þ for r ¼ rþ.
At the spatial infinity (r ! þ1, 1=z ! 0), the asymptotic solution can be written by using the known relation between

hypergeometric functions Fða; b; c; zÞ and Fða0; b0; c0; 1=zÞ. Taking only the leading-order expansion of Fða0; b0; c0; 1=zÞ
with respect to 1=z, we have the following expressions:

Fðb; c; z ! �1Þ ’ �ðcÞ�ðb� aÞ
�ðbÞ�ðc� aÞ ð�zÞ�a þ �ðcÞ�ða� bÞ

�ðaÞ�ðc� bÞ ð�zÞ�b;

ð�zÞ1�cFð1þ a� c; 1þ b� c; 2� c; z ! �1Þ ’¼ �ð2� cÞ�ðb� aÞ
�ð1þ b� cÞ�ð1� aÞ ð�zÞ�a þ �ð2� cÞ�ða� bÞ

�ð1þ a� cÞ�ð1� bÞ ð�zÞ�b:

(24)

Applying the transformations (24) to (20), replacing h!lðzÞ in (21) and finally taking into account that

limz!�1½�z=ð1� zÞ�iðz0�1Þ ~! ¼ 1, the general asymptotic solution becomes
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Z!lðz ! �1Þ ’ 1ffiffiffiffiffiffiffi�z
p ½Boutð�zÞi�!l þ Binð�zÞ�i�!l�;

(25)

where

Bout :¼ C1

�ðcÞ�ða� bÞ
�ðaÞ�ðc� bÞ þ C2

�ð2� cÞ�ða� bÞ
�ð1þ a� cÞ�ð1� bÞ ;

Bin :¼ C1

�ðcÞ�ðb� aÞ
�ðbÞ�ðc� aÞ þ C2

�ð2� cÞ�ðb� aÞ
�ð1þ b� cÞ�ð1� aÞ :

Following (23) and applying the substitution

k!l :¼ �!l

z0r0
; (26)

when �!l 2 R, the radial function in x-variable can be
considered again like a superposition of 1D modes with
wave vectors �k!l (ð�zÞ�i�!l ¼ e�ik!lx):

R!lðr!þ1Þ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ�r�

r

r
½Boute

ik!lxþBine
�ik!lx�; (27)

Bout¼�ð2i�!lÞ
�

�ð1þ2iz0 ~!ÞAout

�ð1=2þ ið ~!þ�!lÞÞ�ð1=2þ i½ð2z0�1Þ ~!þ�!l�Þþ
�ð1�2iz0 ~!ÞAin

�ð1=2� ið ~!��!lÞÞ�ð1=2� i½ð2z0�1Þ ~!��!l�Þ
�
;

Bin¼�ð�2i�!lÞ
�

�ð1þ2iz0 ~!ÞAout

�ð1=2þ ið ~!��!lÞÞ�ð1=2þ i½ð2z0�1Þ ~!��!l�Þþ
�ð1�2iz0 ~!ÞAin

�ð1=2� ið ~!þ�!lÞÞ�ð1=2� i½ð2z0�1Þ ~!þ�!l�Þ
�
:

(28)

Black hole radiation is considered as a specific boundary condition when only an outgoing mode at the spatial infinity
exists, Bin ¼ 0. This condition determines the ratio of the coefficients Ain=Aout or the reflection coefficient R

R ¼ jAinj2
jAoutj2

��������Bin¼0
¼ j�ð1þ 2iz0 ~!Þj2j�ð1=2� ið ~!þ �!lÞÞj2j�ð1=2� i½ð2z0 � 1Þ ~!þ �!l�Þj2

j�ð1� 2iz0 ~!Þj2j�ð1=2þ ið ~!� �!lÞÞj2j�ð1=2þ i½ð2z0 � 1Þ ~!� �!l�Þj2
:

Complex conjugation and the Euler’s reflection formula
for the Gamma function give us the final result for the
reflection coefficient on the outer horizon

R ¼ coshð�ð ~!� �!lÞÞ coshð�ðð2z0 � 1Þ ~!� �!lÞÞ
coshð�ð ~!þ �!lÞÞ coshð�ðð2z0 � 1Þ ~!þ �!lÞÞ :

(29)

In the special case r� ¼ 0 ) z0 ¼ 1, we recover the
result of [9]

R ¼ cosh2ð�ð ~!� �!lÞÞ
cosh2ð�ð ~!þ �!lÞÞ

: (30)

For high frequencies ~! � lþ 1=2 ( ) �!l � ~!) and
~! � 1

z0�1 we obtain

N :¼ R

1� R
¼

�
coshð2� ~!Þ coshð2�z0 ~!Þ

coshð2�ðz0 � 1Þ ~!Þ � 1

��1

¼ 2

�
coshð2�ðz0 þ 1Þ ~!Þ
coshð2�ðz0 � 1Þ ~!Þ � 1

��1

¼ 2

�
e4� ~! 1þ expð�4�ðz0 þ 1Þ ~!Þ

1þ expð�4�ðz0 � 1Þ ~!Þ � 1

��1

� e�4� ~!: (31)

We identify the Hawking temperature from N �
e�4� ~! ¼ e

� !
TH which gives

TH ¼ 1

4�r0
: (32)

As one can see, the black hole temperature derived in
semiclassical approximation does not agree with the sur-
face gravity, i.e., TH � �

2� where the surface gravity � is

given by (9). Only for P ¼ 0 (r� ¼ 0) we have TH ¼ �
2� .

B. Hawking radiation of extremal black holes

The extremal case can formally be considered as a limit
of the nonextremal one, namely in the limit rþ ! r�, i.e.,
z0 ! 1. In this limit we have

R¼ limz0!þ1
coshð�ð ~!��!lÞÞcoshð�ðð2z0�1Þ ~!��!lÞÞ
coshð�ð ~!þ�!lÞÞcoshð�ðð2z0�1Þ ~!þ�!lÞÞ

¼coshð�ð ~!��!lÞÞe�2��!l

coshð�ð ~!þ�!lÞÞ : (33)

Since one could doubt the legality of this limit because of
the fact that r� ¼ rþ is a singularity in our initial sub-
stitution (15) for z, and also for completeness of our
investigation, we will consider this case separately.
In the extremal case, Eq. (14) becomes

d

dr
½ðr�rþÞ2 _R!lðrÞ�þ

�
~!2r2

ðr�rþÞ2
� lðlþ1Þ

�
R!lðrÞ¼0:

(34)

The smaller number of singular points is a significant
reason to require a separate investigation, so we cannot
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expect to obtain again hypergeometric equation. In the
extremal case, our new variable will be

q :¼ rþ
r� rþ

) d

dr
¼ � q2

rþ
d

dq
: (35)

So the equation for Q!lðqÞ :¼ R!lðrÞ takes the form
q2 €Q!lðqÞ þ ½ ~!2 � lðlþ 1Þ þ 2 ~!2qþ ~!2q2�Q!lðqÞ ¼ 0:

Here the same substitution �!l :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~!2 � ðlþ 1=2Þ2p

is
appropriate for recognizing the above equation as

Whittaker equation for W!lðzÞ :¼ Q!lðqÞ, where
z :¼ 2i ~!q

€W !lðzÞ þ
�
1=4� ði�!lÞ2

z2
þ�i ~!

z
� 1

4

�
W!lðzÞ ¼ 0:

(36)

The general solution can be represented in terms of
the confluent hypergeometric functions (Kummer func-
tions [10])

W!lðzÞ ¼ e�z=2z
1
2þi�!lðC1Mða; b; zÞ þ C2Uða; b; zÞÞ; where

��������� a ¼ 1=2þ ið ~!þ �!lÞ;
b ¼ 1þ 2i�!l:

(37)

The asymptotic solution on the horizon (r ! rþ þ 0 ) q ! þ1) follows the asymptotic expansion of the Kummer
functions [10]

Mða;b;zÞjjzj!þ1
�ðbÞ ’e

�i�az�a

�ðb�aÞ
"XR�1

n¼0

ðaÞnð1þa�bÞn
n!

ð�zÞ�nþOðjzj�RÞ
#
þezza�b

�ðaÞ
"XS�1

n¼0

ðb�aÞnð1�aÞn
n!

ð�zÞ�nþOðjzj�SÞ
#
;

where þi�a is for ��=2< argz < 3�=2 and �i�a is for �3�=2< argz <��=2. We also have

Uða; b; zÞjjzj!þ1 ’ z�a

�XR�1

n¼0

ðaÞnð1þ a� bÞn
n!

ð�zÞ�n þOðjzj�RÞ
�
;

�
� 3�

2
< argz <

3�

2

�
:

In our case the zero order terms in the sums (R ¼ 1, S ¼ 1) are sufficient again. Taking into account that argz ¼ �=2
and also the expressions (37), one can obtain the solution on the horizon

Qðq ! þ1Þ ’ C1�ð1þ 2i�!lÞ
�
ie��ð�!lþ ~!Þe�i ~!qð2i ~!qÞ�i ~!

�ð1=2� ið ~!� �!lÞÞ þ ei ~!qð2i ~!qÞi ~!
�ð1=2þ ið ~!þ �!lÞÞ

�
þ C2e

�i ~!qð2i ~!qÞ�i ~!:

Here the suitable substitution that transforms the general solution in terms of 1D wave modes in R is

2qeq :¼ e�x=r0 ) x ¼ �r0rþ
r� rþ

þ r0 ln
r� rþ
2rþ

; (38)

which gives

R!lðr ! rþÞ ’ Aoute
i!x þ Aine

�i!x; Aout :¼ C1

ie���!le�� ~!
2 ~!�i ~!�ð1þ 2i�!lÞ

�ð1=2� ið ~!� �!lÞÞ þ C2e
� ~!=2 ~!�i ~!;

Ain :¼ C1

�ð1þ 2i�!lÞe�� ~!
2 ~!i ~!

�ð1=2þ ið ~!þ �!lÞÞ :
(39)

For the asymptotic solution at the radial infinity (r ! þ1 ) q ! 0þ ) z ! 0), we will use the relation between
Mða; b; zÞ and Uða; b; zÞ [10]

Uða; b; zÞ ¼ �

sin�b

�
Mða; b; zÞ

�ð1þ a� bÞ�ðbÞ � z1�b Mðð1þ a� b; 2� b; zÞ
�ðaÞ�ð2� bÞ

�
:

After applying the upper relation for z ¼ 0whereMða; b; 0Þ ¼ 1we reach the asymptotic solution at the spatial infinity.
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Qðq ! 0Þ ’ ð2i ~!qÞ1=2
	�
C1 þ C2i�

sinhð2��!lÞ�ð1=2þ ið ~!� �!lÞÞ�ð1þ 2i�!lÞ
�
ð2i ~!qÞi�!l

� C2i�

sinhð2��!lÞ�ð1=2þ ið ~!þ �!lÞÞ�ð1� 2i�!lÞ ð2i ~!qÞ�i�!l



:

The substitutions (38) and k!l :¼ �!l=r0 again give the asymptotic solution in the form of 1D wave in R

R!lðr ! 1Þ ’
ffiffiffiffiffiffi
rþ
r

r
ðBoute

ik!lx þ Bine
�ik!lxÞ;

where

Bout ¼ �C2i�ð2i ~!Þ1=2ði ~!Þ�i�!l

sinhð2��!lÞ�ð1=2þ ið ~!þ �!lÞÞ�ð1� 2i�!lÞ ;

Bin ¼
�
C1 þ C2i�

sinhð2��!lÞ�ð1=2þ ið ~!� �!lÞÞ�ð1þ 2i�!lÞ
�
ð2i ~!Þ1=2ði ~!Þi�!l :

(40)

We should note that due to the time-reversal symmetry of wave equation it is permissible to work with the time-reversed
formulation of the radiation boundary condition. In the normal picture the radiation boundary condition means missing of
the ingoing mode at the spatial infinity Bin :¼ 0. The reflection coefficient in this case is R :¼ jAinj2=jAoutj2.

In the time-reversed picture the radiation mode becomes an ingoing mode so in this treatment Bout :¼ 0. Respectively on
the horizon the falling mode becomes an ingoing mode and the reflected mode becomes an outgoing mode. So, in this case
we should take R :¼ jAoutj2=jAinj2.

It is possible to turn out that

Ain

Aout

��������Bin:¼0
�

Aout

Ain

��������Bout:¼0
; but always

��������Ain

Aout

��������2

Bin:¼0
¼

��������Aout

Ain

��������2

Bout:¼0
:

In the work [9] the time-reversed picture is chosen despite the fact that there is no difference in the complexity of further
calculations between both approaches. It is the same for our nonextremal black holes. But one could see from the
expressions (39) and (40) that the time-reversed formulation gives a shorter way to R. All the results for R were made by
us using both approaches for checking the correctness of all previous calculations. Following the time-reversed picture
Bout ¼ 0 ) C2 ¼ 0 we find

R ¼ jAoutj2
jAinj2

¼
��������ie

���!le�� ~!
2 �ð1þ 2i�!lÞ ~!�i ~!

�ð1=2� ið ~!� �!lÞÞ
��������2

���������ð1=2þ ið ~!þ �!lÞÞ
�ð1þ 2i�!lÞe�� ~!

2 ~!i ~!

��������2¼ j�ð1=2þ ið ~!þ �!lÞÞj2
j�ð1=2� ið ~!� �!lÞÞj2

e�2��!l

¼ coshð�ð�!l � ~!ÞÞ
coshð�ð�!l þ ~!ÞÞ e

�2��!l : (41)

For high frequencies ~! � lþ 1=2 ( ) �!l � ~!)
we have

R � e�2� ~!

coshð2� ~!Þ � e�4� ~! ) N � e�4� ~!: (42)

Hence we find the Hawking temperature in the extremal
case in semiclassical approximation

TH ¼ 1

4�r0
: (43)

Contra-intuitively the temperature of the extremal case
is nonzero and, as in the nonextremal case, is independent
of the intrinsic characteristics of the black hole and
depends only on the background parameter r0.

III. DISCUSSION

In the present paper we studied the Hawking radiation of
asymptotically nonflat dyonic black holes in 4D Einstein-
Maxwell-dilaton gravity in semiclassical approximation. It
was shown that the problem can be solved exactly and we
computed exactly the semiclassical radiation spectrum of
both nonextremal and extremal black holes.
Our results show that the Hawking temperature, calcu-

lated in the semiclassical approximation, is not compatible
with the first law (10). The reason for this discrepancy is
that the spacetime is asymptotically nonflat. Other ex-
amples for discrepancy between the Hawking temperature
and the surface gravity in asymptotically nonflat space-
times can be found in Ref. [11] and references therein.
In principle, the relation between the Hawking radiation
and the first law in asymptotically nonflat spacetimes is
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controversial and depends on the particular case. In gen-
eral, the first law in asymptotically nonflat spacetime is not
directly connected to the temperature of the particle flux at
infinity. For example, the black holes considered in the
present work cannot emit massive particles because the
mass term in the wave equation (11) leads to the appear-
ance of confining potential (growing unboundedly to
infinity), which prevents the particles from escaping to
infinity. In other words, the Hawking temperature for
massive particles, measured by an asymptotic observer,
is zero.

The asymptotical nonflatness leads to ambiguous ther-
modynamical characteristics and thermodynamics as a
whole. For example, the surface gravity is given by the
formula

	�r�	
� ¼ �	�; (44)

on the horizon. The above definition, however, gives the
surface gravity up to a constant, because there is a freedom
to rescale 	 by a constant. In the asymptotically flat case

this rescaling freedom can be fixed by choosing a unit norm
for the Killing field at infinity. In linear dilaton spacetimes
there is no natural way to fix the rescaling freedom. The
choice 	 ¼ @=@t made in the papers devoted to the linear
dilaton black holes is thus ad hoc. The ambiguity in
choosing the time vector field is present also in the
Hamiltonian formalism for linear dilaton spacetimes [8],
where the time vector field is again 	 ¼ @=@t.
One possible way to overcome the problem of the

rescaling freedom in our case is to replace the Killing field

	 with the Kodama vector field K ¼
ffiffiffiffi
r0
r

q
@
@t , which has a

unit norm at infinity [12]. This investigation is in progress
and the results will be presented elsewhere.
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