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We analyze the stability of the Euclidean Witten black hole (the cigar soliton in mathematics literature)

under first-order renormalization group (Ricci) flow of the world-sheet sigma model. This analysis is from

the target space point of view. We find that the Witten black hole has no unstable normalizable perturbative

modes in a linearized mode analysis in which we consider circularly symmetric perturbations. Finally, we

discuss a result from mathematics that implies the existence of a nonnormalizable mode of the Witten black

hole under which the geometry flows to the sausage solution studied by Fateev, Onofri and Zamolodchikov.
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I. INTRODUCTION

Black hole solutions in dimensions less than four are
important as tractable models for understanding black hole
physics. One such example, the Witten black hole, arises
while studying the world-sheet sigma model in closed
string theory on a two-dimensional target space. This
geometry also arises in mathematics as the fixed point of
a flow equation called the Ricci-de Turck flow—it is
termed the ‘cigar soliton’. In the physics of the world-sheet
sigma model, ‘classical’ solutions (exact string back-
grounds) are obtained by setting the � functions of this
theory to zero—thus, they are fixed points of the renormal-
ization group (RG) flow of the sigma model. The beta
functions are obtained in an expansion in powers of an
appropriate coupling constant �0 (square of string length)
in the sigma model. In the case where the fields other than
the metric are set to zero, to first order in �0, this coincides
with the vacuum Einstein equation. Upon considering both
the metric and the dilaton and setting the � functions to
zero, an interesting solution that has been obtained is the
metric exterior to the horizon of a two dimensional black
hole (see Ref. [1], Ref. [2] and references therein). This
solution is a fixed point of the first order RG flow of the
metric and dilaton (which is incidentally the same as the
Ricci de Turck flow of mathematics mentioned above).
Due to RG scale invariance, there is a natural expectation
that the sigma model with this target space should be
a conformal field theory (CFT). Witten has shown that
starting from the SLð2; RÞ=Uð1Þ gauged Wess-Zumino-
Witten (WZW) model, which is an exactly solvable CFT,
one could obtain the sigma model corresponding to this
Wick-rotated (Euclidean) black hole [2]. This strongly
suggests that the physics of string propagation in this black
hole can be inferred from this WZW CFT—this has been

discussed (particularly extending to results valid for the
Lorentzian black hole) first in Ref. [3].
In this paper, we perform a target-space study of the

(Euclidean) Witten black hole—specifically, of the stabil-

ity of this black hole under world-sheet RG flow. There are

many related motivations for this problem. If the Euclidean

Witten black hole is unstable under RG flow—then the

natural question to investigate is the end-point of the flow.

Does the flow lead us to another geometry described by a

world-sheet CFT, or does it lead to a singular geometry

that is indicative of a nontrivial (nonperturbative) IR fixed

point? If there are no unstable normalizable modes, then

since the black hole geometry is described by a CFT, this

analysis would provide a complementary target space pic-

ture to the usual analysis of relevant deformations of the

CFT. In a separate section, we also discuss a result from

mathematics that could be interpreted as the existence of

a particular type of nonnormalizable mode of the Witten

black hole. We suggest that this mode leads to a geometry

change from the black hole to the (uncompactified) sausage

solution—the sausage is an exact solution to RG flow

discussed first by Fateev, Onofri and Zamolodchikov [4].

The sausage solution (called Rosenau solution [5] in math

literature) is believed to be described by a sigma model

which is integrable. The curvature of this solution increases

along RG flow, and thus it has a nontrivial IR limit which

needs to be described nonperturbatively. In Ref. [4], certain

scattering theories which are candidates for a nonperturba-

tive IR limit are discussed. It would be interesting to under-

stand the world-sheet interpretation of this unstable mode.
There are ideas motivated by closed string field theory,

that the RG flow parameter could play the role of a dy-
namical time (in a certain approximation) in string field
theory—a review of these ideas can be found in Ref. [6].
Other authors have discussed instabilities of black holes
under RG flows and argued using these ideas, that this
could be a dynamical instability mediated by tachyons—
see, for instance Refs. [7,8]. Thus, in the context of these
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ideas, the issue of stability of the Witten black hole is of
interest. One could also consider a gravity-dilaton path
integral, where the action is the string low energy effective
action in the presence of a dilaton. The Witten black hole is
a stationary point of this action. The first variation of this
action gives a term that depends on beta functions and
vanishes on a stationary point. The second variation of the
action, evaluated at the stationary point is crucial, because
it determines the stability of the stationary point in the path
integral formulation of quantum gravity. This is similar to
the analysis of Gross, Perry and Yaffe (GPY) [9] for the
Euclidean Schwarzschild instanton. If we find an instability
in our analysis, this will probably be indicative of an insta-
bility in the path integral due to the fact that we effectively
compute the second variation of a part of the action—one
major difference however is that the dilaton is not varied
freely. Rather, the dilaton is used to fix conformal gauge. In
another context, constraining the dilaton corresponding to a
different gauge fixing choice for this action was done in
Ref. [10]. Our main result is that we rule out unstable modes
when the perturbations are circularly symmetric, which
seems to indicate dynamical stability of the black hole in
the sense we have mentioned (under such perturbations).

Lastly, we would like to mention a related result in
mathematics [11] which proves that the only solution to
RG flow that is nonsingular both in the UV and IR and
satisfies some other conditions is the Witten black hole. In
physics, however, we are not interested only in solutions
that are nonsingular both in the UV and IR. In fact, many
well-studied quantum field theories either require a UV
completion or have nontrivial IR limits under RG flow.
Thus this result is not directly of relevance here. A different
question, the stability of the Witten black hole-tachyon
system due to on-shell perturbations (i.e., those solving
equations obtained by setting the � functions of this sys-
tem to zero) has been addressed in Refs. [12–14].

In the next section, we briefly introduce the Witten black
hole and the RG flow of which it is a fixed point (Ricci-de
Turck flow). Section III has the main computation of
linearized analysis of stability of the Witten black hole
and details of gauge fixing. In this section, we show that the
Witten black hole is stable under RG flow in a linearized
mode analysis for (circularly symmetric) normalizable
perturbations. In Sec. IV, we discuss a result from mathe-
matics that implies the existence of a nonnormalizable
mode under which we speculate that the Witten black
hole flows to the sausage metric.

II. AN INTRODUCTION TO FIRST-ORDER RG
(RICCI) FLOWAND SOME SPECIAL SOLUTIONS

The Ricci flow is a partial differential equation in mathe-
matics that describes a flow through Riemannian metrics
on a manifold. It was used recently in the proof of the
Poincare conjecture [15]. The flow is

@~gab
@�

¼ ��0 ~Rab: (2.1)

This flow arises in physics as the simplest lowest-order
(in square of string length �0) RG flow of the world-sheet
sigma model for closed strings. In this context, the Ricci
flow is the flow of the metric of the target space with
respect to the RG flow parameter �. Both in physics and
mathematics, what is of interest is a flow of metrics mod
diffeomorphisms. In the mathematics literature, �0 ¼ 2.
Henceforth, to make contact with existing results in mathe-
matics, we will consider Ricci flow with respect to a

parameter t ¼ �0
2 � which is the ‘Ricci flow time’ in mathe-

matics (this is not the time coordinate of a physical space-
time). The Ricci/RG flow with respect to this parameter is

@~gab
@t

¼ �2 ~Rab: (2.2)

A metric which changes only by a t-dependent diffeo-
morphism along the flow does not lead to new physics.
Therefore all flows related to each other by t dependent
diffeomorphisms generated by a vector field V are equiva-
lent; and it is more useful to consider the generic flow in
this class—the Ricci-de Turck flow:

@gab
@t

¼ �2ðRab þraVb þrbVaÞ: (2.3)

The solution to (2.3), gab is related to the solution to
(2.1), ~gab by a t dependent diffeomorphism generated by V.
This flow describes a flow of geometries on the manifold
(target space). When Va ¼ ra� (gradient of a function),
then the Ricci-de Turck flow is precisely the RG flow of the
world-sheet sigma model for a closed string in the presence
of a dilaton, the dilaton being�. Fixed points of the flow in
this case, which satisfy

Rab þ 2rarb� ¼ 0 (2.4)

are ‘exact string backgrounds’, in which the associated
sigma model is expected to be described by a CFT. In the
mathematics of Ricci flow, the solutions to (2.4) are called
gradient steady solitons. It is known that the only such
solitons on compact manifolds are Einstein metrics. On
noncompact manifolds, there are many solitons known on
Rn andCn (see Ref. [16] for an extensive review). The most
exciting of these (for physics) is the cigar soliton or the
Euclidean Witten black hole. The Witten black hole is
described by a known CFT (the WZW model) and an
interesting question is whether the other solitons known
can also be described by CFTs. The Euclidean Witten
black hole (cigar soliton) is the following metric on
R2 (r and � are the usual polar coordinates):

ds2 ¼ 1

1þ r2
ðdr2 þ r2d�2Þ: (2.5)

On analytically continuing the metric by letting � ¼ it
where t is to be thought of as a time coordinate, this
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becomes the (Lorentzian) metric of a black hole (as dis-
cussed in Ref. [2]). In this paper, we will be concerned only
with the metric (2.5). This metric is asymptotically cylin-
drical as r ! 1. It solves (2.4) with the dilaton� ¼ � 1

2 �
lnð1þ r2Þ (we can add an arbitrary constant to the dila-
ton—the exponential of this constant is related to the mass
of the corresponding Lorentzian black hole). The metric
(2.5) is a fixed point of the flow (2.3) with Va ¼ ra� (and
� as above), but is also a solution to the Ricci flow (2.2) or
(2.1) after the diffeomorphism ~r ¼ e�2tr. This solution is

ds2 ¼ 1

e4t þ r2
ðdr2 þ r2d�2Þ: (2.6)

So from the point of view of geometry, the gradient of the
dilaton merely generates t dependent diffeomorphisms.

III. LINEARIZED STABILITYANALYSIS OF THE
CIGAR SOLITON/EUCLIDEAN WITTEN

BLACK HOLE

Let us consider a small perturbation of the Witten black
hole metric, the perturbed metric being gpab ¼ gWitten

ab þ
�hab, where 0< �< 1 is a parameter indicating the small-
ness of the perturbation. We would like to study the evo-
lution of the perturbation under RG flow. We set up the
linearized stability problem below and demonstrate stabil-
ity of the black hole under a wide class of perturbations.
We can rewrite all the results of this section in terms of the

RG flow parameter � by using t ¼ �0
2 �.

Since the metric is two-dimensional, without loss of
generality, we can choose a gauge so that the perturbed
metric gpab is conformal to the flat metric. We consider

circularly symmetric perturbations, and the corresponding
perturbed metric is the initial condition for the flow (2.3).
With a suitable choice of gauge (V), we can easily see that
the flow preserves isometries. By choosing gauge appro-
priately (conformal gauge), the evolving perturbed metric
is of the form

ds2 ¼ Gðr; tÞðdr2 þ r2d�2Þ; (3.1)

where GðrÞ ¼ ½ 1
1þr2

þ �Fðr; tÞ�.
One motivation for choosing the perturbations to be �

independent is that on Lorentzian continuation, � becomes
the Lorentzian time and these would correspond to static
perturbations. But from the computational point of view,
the gauge fixing procedure we do below becomes much
harder when perturbations are � dependent.

The right gauge choice is found as follows: Consider the
flow (2.3) with Va ¼ ra�,

@gab
@t

¼ �2ðRab þ 2rarb�Þ: (3.2)

For the metric (3.1), gr� ¼ 0 and g�� ¼ r2grr. Recall
that in two dimensions, Rab ¼ 1

2gabR where R is the scalar

curvature. For consistency of (3.1) as a solution to (3.2), we
must therefore first satisfy rrr�� ¼ r�rr� ¼ 0. If we

consider�ðr; tÞ to be independent of �, then for the metric
(3.1), rrr�� ¼ rr@�� ¼ 0.

�r
r� ¼ 1

2Gðr; tÞ
@Gðr; tÞ

@�
¼ 0: (3.3)

Then it is easy to see thatr�rr� ¼ 0. For consistency of
(3.1) as a solution to (3.2), we also needr�@�� ¼ r2rr@r�.
For the metric (3.1), this leads to the following equation:
�
rþ

�
@rG

2G

�
r2
�
ð@r�Þ ¼ r2

�
@2r��

�
@rG

2G

�
ð@r�Þ

�
; (3.4)

Let @r� ¼ Pðr; tÞ. Then (3.4) implies

@rP

P
¼ @rG

G
þ 1

r
: (3.5)

We integrate this equation and fix the integration constant
by demanding that when G ¼ 1

1þr2
, � ¼ � 1

2 lnð1þ r2Þ.
This yields

P ¼ @r� ¼ �rGðr; tÞ: (3.6)

This gauge choice preserves conformal gauge and when
the metric (3.1) is that of the Witten black hole, this is the
gauge choice under which the Witten black hole is a fixed
point of the flow (3.2). Therefore,

rr@r� ¼ @rð@r�Þ �
�
@rG

2G

�
ð@r�Þ ¼ �G� 1

2 rð@rGÞ

¼ � 1

ð1þ r2Þ2 � �

�
Fþ 1

2
rð@rFÞ

�
: (3.7)

Note, if we think of� as the dilaton, we are not varying
the dilaton independently—the variation in the dilaton
from the background value is dependent on the metric
variation, and merely to do gauge fixing.
The linear stability problem of the Witten black hole

under the flow (3.2) can be set up by just substituting the
ansatz (3.1) into the flow (3.2) and retaining only terms
to Oð�Þ. Rather than do this, for completeness, we will
first write the standard linearization of the flow (3.2). as
follows: The perturbed metric gpab ¼ gab þ �hab, where
henceforth gab ¼ gWitten

ab (the background metric). The

linearization of the flow (3.2) arises from a standard com-
putation of the linearization of the Ricci tensor (derived in
many books; see for instance Ref. [17]). Choosing confor-
mal gauge defined by (3.7), the linearized flow of the
perturbation hab is

@hab
@t

¼ ½�ð�LhÞab þrarbH �raðrchcbÞ
� rbðrchcaÞ þ 2Qab�: (3.8)

Here and in what follows, all covariant derivatives are
taken with respect to the background metric g.H ¼ gabhab
is the trace of the perturbation. From the ansatz (3.1),
H ¼ 2ð1þ r2ÞF. Qab is the appropriate piece proportional
to � in the linearization of the gauge piece �2ra@b�.
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From (3.7), we can read off that Qrr ¼ 2½Fþ 1
2 rð@rFÞ�,

and consequently Q�� ¼ r2Qrr.

ð�LhÞab ¼ ��hab þ 2Rd
abch

c
d þ Rc

ahbc þ Rc
bhac (3.9)

is the Lichnerowicz laplacian acting on symmetric 2-tensors
(all curvature tensors being those of the background Witten
black hole metric). The convention we follow for the
Lichnerowicz laplacian is that of the physics literature,
and differs from the mathematics one by a negative sign.

All we need in this linearized approximation is the flow
of the function Fðr; tÞ. To obtain this, we take the trace of
the flow (3.8). This yields

@H

@t
¼ ½�H þ 2gabQab�: (3.10)

We now substitute H ¼ 2ð1þ r2ÞF. Recall that the metric
and Laplacian that appear in (3.10) are those of the back-
ground Witten black hole metric. Then, we obtain the
following flow for F:

@F

@t
¼ 2

�ð1þ r2Þ
2

@2F

@r2
þ ð7r2 þ 1Þ

2r

@F

@r
þ 4F

�
: (3.11)

Now, we first want to investigate if there are unstable
perturbations of the sort we have considered (radially
symmetric) under the flow. We pick the ansatz

Fðr; tÞ ¼ e2qt ~FðrÞ: (3.12)

Here q > 0 is a real number. If we are able to find physi-
cally reasonable perturbations ~FðrÞ solving (3.11) for some
q > 0, then these perturbations would be unstable modes
under the flow (they would grow exponentially in t).
A physically reasonable perturbation must have ~FðrÞ
bounded (and it must fall off faster than the background
Witten black hole metric)—otherwise we cannot use line-
arized perturbation theory. Another (related) requirement
that could be imposed is that

R1
0
~F2dr is finite (square

integrable perturbation). Similar stability studies, such as
that of Gross, Perry and Yaffe [9] define a normalizable
perturbation as one for which the ‘energy’ of the perturba-
tion,

R
~F2dV is finite (the integral being on the Witten

black hole manifold and dV is the measure with respect
to the Witten black hole metric). We substitute the ansatz
(3.12) into the equation (3.11) and investigate whether
there are unstable modes for which the perturbation is
reasonable from these various points of view (bounded,
and either square integrable or having finite energy). If we
do find unstable modes, this would conclusively tell us that
the Witten black hole is unstable under first-order RG
(Ricci) flow. If we do not find any unstable modes of the
type (3.12), this would be very interesting. However, a
caveat is that this would still not completely guarantee
stability of the Witten black hole under the flow—we
cannot rule out unstable modes that are not circularly
symmetric, or do not satisfy this ansatz, and we could

also have some unstable finite norm superposition of
non-normalizable modes of the type (3.12).
Substituting ansatz (3.12) in (3.11), we get

ð1þ r2Þ
2

d2 ~F

dr2
þ ð7r2 þ 1Þ

2r

d ~F

dr
þ ð4� qÞ ~F ¼ 0: (3.13)

This equation can be solved exactly, and we are very
grateful to the referee for pointing this out in an earlier
version where we had discussed the approximate solutions
to (3.13). To solve the equation, we define a new variable
z ¼ �r2. In terms of this, the equation (3.13) reduces to a
hypergeometric equation

zð1� zÞ d
2 ~F

dz2
þ ð1� 4zÞ d ~F

dz
� ð4� qÞ

2
~F ¼ 0: (3.14)

From the standard form of the hypergeometric equation

zð1� zÞ d
2 ~F

dz2
þ ½c� ðaþ bþ 1Þz� d ~F

dz
� ab ~F ¼ 0;

(3.15)

we can read off that for (3.14), the parameter c¼1,

ðaþbÞ¼3, and ab ¼ ð4�qÞ
2 . Let q ¼ 2kðk� 1Þ. Then,

since q > 0, k > 1. ab ¼ �k2 þ kþ 2. We can pick
a ¼ 2� k, b ¼ kþ 1.
The two linearly independent solutions around z ¼ 0,

denoted by ~F1ð0Þ and ~F2ð0Þ, are (jzj< 1)

~F1ð0Þ ¼Fða;b;1;zÞ;
~F2ð0Þ ¼Fða;b;1;zÞ lnzþ�1

n¼1

ðaÞnðbÞn
n!2

zn½c ðaþnÞ�c ðaÞ
þc ðbþnÞ�c ðbÞ�2c ðnþ1Þþ2c ð1Þ�: (3.16)

Here Fða; b; 1; zÞ is the Gauss hypergeometric function
(sometimes written as F2

1ða; b; 1; zÞ), c is the Digamma
function and the notation ðaÞn ¼ aðaþ 1Þ . . . ðaþ n� 1Þ
refers to the Pochhammer symbol. The general solution to
(3.14) is a linear combination of the two solutions in (3.16).
For the special case k ¼ 2 (q ¼ 4), the solution is much
simpler, and we will discuss this later.
By replacing z ¼ �r2, these are the solutions near r¼0.

Clearly ~F2ð0Þ is not finite in the limit r ! 0 (and not square
integrable in a neighbourhood of r ¼ 0 with respect to the
measure dr). So for physical reasons, we will only consider
the solution ~F1ð0Þ ¼ Fða; b; 1; zÞ. By a standard linear

transformation valid for j argð1� zÞj<�, we can analyti-
cally continue this solution for jzj> 1. Rewriting in terms
of the r variable, the transformation we will consider is
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Fða;b;1;�r2Þ¼ ð1þr2Þ�a �ðb�aÞ
�ðbÞ�ð1�aÞ

�F

�
a;1�b;a�bþ1;

1

1þr2

�

þð1þr2Þ�b �ða�bÞ
�ðaÞ�ð1�bÞ

�F

�
b;1�a;b�aþ1;

1

1þr2

�
: (3.17)

This is valid except when the Gamma functions appearing
above have poles. Let us first assume that a, b are such that
the Gamma functions have no poles. Then we see that as
r ! 1, 1

1þr2
! 0. Substituting for a and b in terms of k,

since k > 1, the leading behavior of this solution is of the
form ð1þ r2Þ�2þk. Let k > 2. Then, clearly the solution
diverges, and cannot be considered as a perturbation of the
Witten black hole metric—this solution would change the
asymptotics of the geometry and we do not consider it.
Therefore there are no finite solutions to (3.13) when
k > 2, or equivalently when q > 4. When 1< k< 2, or
equivalently, 0< q< 4, the solution does not diverge, but
its leading behaviour is ð1þ r2Þ�2þk and this falls off
asymptotically slower than the Witten black hole metric
(which goes to zero as ð1þ r2Þ�1Þ. Thus we cannot con-
sider this solution as a perturbation.

We now consider the cases when the Gamma func-
tions in (3.17) have poles, for k > 1. Recall that if a or b
is a negative integer, the hypergeometric series for
Fða; b; 1;�r2Þ terminates to give a polynomial (which is
not finite as r ! 1). As can be checked, this includes the
cases when c� a and c� b are integers (we assume k � 2,
and will consider this case separately since the solution
then simplifies). The last possibility is if b� a is an integer
and c� a and c� b are not integers. In this case, as
r ! 1, Fða; b; 1;�r2Þ � ðr2Þ�a (see, for instance,
Ref. [18]). Again, as before, either the solution is not finite,
or it is finite, but changes asymptotics.

For the one possibility we left out, k ¼ 2 (q ¼ 4)—the
equation (3.13) can be easily integrated once to give

�
rð1þ r2Þ3 d ~F

dr

�
¼ C1: (3.18)

C1 is an integration constant. Integrating once more yields

~F ¼ C1

�
1

4ðr2 þ 1Þ2 þ
1

2ð1þ r2Þ þ
1

2
ln

r2

1þ r2

�
þ C2:

(3.19)

This is not finite everywhere unless C1 ¼ 0. But the
constant mode C2 is not normalizable, and changes the
asymptotics of the geometry.

We conclude that there is no finite solution to (3.13) for
any q > 0 with the right asymptotic fall-off conditions for a
perturbation. Thus the Witten black hole has no unstable
modes for circularly symmetric perturbations, and is linearly
stable under the class of perturbations of the form (3.12).

In the next section, we discuss one possible unstable
perturbation of the Witten black hole which would be
nonnormalizable in a linearized analysis. Discussing such
a perturbation would normally not make sense physically.
However, there are many studies of specific nonnorma-
lizable modes under world-sheet RG flow ([7,8]) and in
quantum gravity ([9]) which mediate a transition to another
geometry, in some cases, accompanied by a topology
change. We suggest that this specific nonnormalizable
mode leads to geometry change—to a solution to world-
sheet RG flow, the sausage metric [4].

A NONNORMALIZABLE MODE
OF THE WITTEN BLACK HOLE

Consider the metric which is a solution to first order RG
flow of the sigmamodel, defined on the cylinder (of radius 2),

ds2 ¼ uðx; �tÞðd~�2 þ dx2Þ; (4.1)

where

uðx; �tÞ ¼ sinhð��tÞ
coshxþ cosh�t

: (4.2)

�t is the flow parameter of the Ricci flow, x 2 R and
~� 2 R=4�Z.
This is called the Rosenau metric ([5])—and was inci-

dentally found much earlier in the context of sigma models
in Ref. [4]. The curvature obtained from this metric is
positive, becoming singular at �t ¼ 0—so in the metric
(4.2), �t < 0. We can think of the cylinder topologically as
the sphere with the two poles removed. By compactifying
the cylinder to a two-sphere (putting back the poles), we
can extend this to a metric defined on the (topological)
two-sphere (see Ref. [17] for the details). In fact, the
distance from the ‘equator’ x ¼ 0 to any of the poles at
x ¼ �1 is bounded for �t < 0. Around x ¼ 0, taking a
limit as �t ! �1, this metric starts to look like a flat
cylinder metric—but around the poles, i.e., x ! �1, this
is not true. For finite �t, the geometry is shaped like a
sausage (cylinder-like in the middle and like a cigar tip
near each of the poles). The sigma model corresponding to
this metric, called the sausage model was studied in detail
by Fateev, Onofri and Zamolodchikov [4]. The curvature
corresponding to this metric is

R ¼ cosh�t coshxþ 1

sinhð��tÞðcoshxþ cosh�tÞ : (4.3)

Thus the curvature becomes singular as �t ! 0. Geomet-
rically, the sausage becomes rounder and also shrinks as
�t ! 0. The nonperturbative IR limit of this quantum field
theory is therefore nontrivial—possible candidates for this
IR limit are discussed in Ref. [4].
It can be shown that a certain backward limit (scaling of

x followed by the limit �t ! �1) of this solution yields the
Witten black hole (cigar) metric [17]. Geometrically, this
corresponds to zooming in a neighbourhood of the poles of
the sausage solution. We first discuss this backward limit,
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and then suggest, motivated by this, that a specific pertur-
bation of the Witten black hole should lead to the sausage
metric.

(4.1) can be considered as a metric on the plane by
removing one of the poles (or adding a point to the cylin-

der). We define � ¼ ~�=2, so that � 2 R=2�Z. Further we

let r ¼ ex=2. Then the metric in these new coordinates is

ds2 ¼ 8 sinhð��tÞ
1þ r4 þ 2r2 cosh�t

ðdr2 þ r2d�2Þ: (4.4)

For small r (i.e., near the pole) and fixed �t, this metric
reduces to a constant multiple of the flat metric. We now do

a scaling r ! re�t=2. This �t dependent diffeomorphism is
generated by the vector field �X with �Xr ¼ r=2, �X� ¼ 0.
We now get the metric

ds2 ¼ 8 sinhð��tÞe�t
1þ e2�tr4 þ 2e�tr2 cosh�t

ðdr2 þ r2d�2Þ: (4.5)

Let us now define �t ¼ 4t and divide the metric (4.5) by a
factor of 4. Then the metric

ds2 ¼ 2 sinhð�4tÞe4t
1þ e8tr4 þ 2e4tr2 cosh4t

ðdr2 þ r2d�2Þ; (4.6)

solves the RG flow equation, with flow parameter t instead
of �t:

@gab
@t

¼ �2ðRab þraXb þrbXaÞ; (4.7)

and ð�2XÞ is the vector field that generated the scaling
r ! re2t—because of taking the factor of (� 2) out in the
right hand side of (4.7), Xr ¼ �r and X� ¼ 0. Note that we
parametrize the integral curves of �2X by t, not �t. Now
we consider the metric (4.6) in the limit t ! �1. We get

ds2 ¼ 1

1þ r2
ðdr2 þ r2d�2Þ; (4.8)

which is precisely the Witten black hole metric. Xr¼
grrX

r, and when t ! �1, Xr ! �r
1þr2

. Setting Xi ¼ ri�,

this implies � ! � 1
2 lnð1þ r2Þ, which is precisely the

dilaton corresponding to the Witten black hole metric.
This explicitly shows that after a scaling, the backward
(in t) limit of the Rosenau metric is the Witten black hole
which is a fixed point of (4.7). Now let us find the t ! �1
limit of (4.6) by expanding to the next order: we obtain that
as t ! �1,

ds2 �
� ð1� e8tÞ
1þ r4e8t þ r2e8t þ r2

þ . . . . . .

�
ðdr2 þ r2d�2Þ;

(4.9)

which, when r2e8t < 1 becomes

ds2 �
�

1

1þ r2
� e8t þ . . . . . . ::

�
ðdr2 þ r2d�2Þ: (4.10)

We can view (4.10) as a small perturbation of the Witten
black hole metric (where the terms denoted by ellipses are
smaller than the leading term displayed, when r2e8t < 1).

This is then some expansion in various modes of the form
e2qt with q � 4—note that from the results of the previous
section, these are precisely those values of q for which no
normalizable mode exists. The leading term in the pertur-
bation would then be a constant mode with q ¼ 4 (refer-
ring to the previous section). A constant mode would be
a nonnormalizable mode in the sense we discussed in
the previous section, but of course, the form of the metric
(4.10) is only true when r2e8t < 1. However, taking the
difference between the metric in (4.9) and the Witten black
hole metric, we get a ‘‘perturbation’’ that is not normal-
izable at any finite t (the reason why we write it within
quotes). This result leads us to speculate that there is a
superposition of nonnormalizable modes of the Witten
black hole metric that leads to the sausage metric.
Geometrically, this suggests that the perturbation changes
the cigar metric asymptotically—curving the cylindrical
end. This geometry change is reminiscent of Gross, Perry
and Yaffe’s nonnormalizable mode for the Schwarzschild
instanton in quantum gravity [9] which changes the mass at
infinity. We can rewrite the above mode in terms of the RG

flow parameter by replacing t ¼ �0
2 �.

V. DISCUSSION

In this paper, we have set up a linearized stability prob-
lem for the Witten black hole under world-sheet RG flow.
Our conclusion is that there are no unstable modes in a
standard linearized mode analysis for circularly symmetric
perturbations of the Witten black hole under RG flow. It
would be interesting to cast this target-space result as a
statement for the deformations of the world-sheet CFT.
This stability result may also imply a stability of the black
hole in a path integral formulation with the string low
energy effective action. We hope to explicitly show this
in future work. We also hope to extend our result to
perturbations which are not circularly symmetric (in this
case, the gauge fixing is more tedious). We also discuss a
result from mathematics, which deals with the sausage
solution to RG flow. Upon scaling and taking a backward
limit in t, the solution tends to the Witten black hole. It can
be pictured as zooming in on one of the poles of the
sausage. However, this leads to a few speculative ideas.
In the usual sigma model approach, the target space metric
is expanded about a point. This suggests that expanding
the sausage sigma model metric about one of the poles
should correspond to the sigma model with the scaling
described in the previous section. The natural inter-
pretation for the backward limit is the UV limit of the sigma
model, which should then be the CFT corresponding to the
Witten black hole. Under a specific ‘‘perturbation’’ (which
we describe in linearized theory as a superposition of non-
normalizable modes), the sigma model would then flow to
the sausage—however, the flow would change the asymp-
totics. We do not have a proof for this set of speculative
ideas. In fact, it would be a very hard problem to address in
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the target space picture. We think this would be an interest-
ing question to attempt in the world-sheet picture, since the
black holeCFT is known, and aswell, the sausage is believed
to be described by an integrable quantum field theory [4].
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