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I. INTRODUCTION

The classical black hole no hair conjecture states that any
realistic gravitational collapse reaches a final stationary
state characterized by a small number of parameters. A
part of this conjecture has been proven mathematically
rigorously by taking different matter fields, known as the
no hair theorem, (see e.g., Refs. [1–4] and references
therein) and deals with the uniqueness of stationary black
hole solutions characterized only by mass, angular momen-
tum, and charges corresponding only to long range gauge
fields. If a stationary black hole spacetime supports in its
exterior any nontrivial field configuration other than long
range gauge fields, the former one is called as ‘‘hair.’’ Thus
proving no hair theorems means to show that there cannot
exist any nontrivial and physically reasonable field configu-
ration other than long range gauge fields in the exterior of
the black hole spacetime. In particular, it has been shown
that static, spherically symmetric black hole spacetimes do
not support hair corresponding to scalars in convex poten-
tials, Proca-massive vector field [5], or even gauge fields
corresponding to the Abelian Higgs model [6,7].

However, all the above proofs assume asymptotic flat-
ness, i.e., one can reach spatial infinity and sufficiently
rapid fall-off conditions can be imposed upon the matter
fields there. But recent observations suggest that there is a
strong possibility that our universe is dominated by some
exotic matter exerting negative pressure such as a positive
cosmological constant � [8,9]. It is expected in that case
that the spacetime in its stationary state would possess an
outer or cosmological Killing horizon [10]. For known and
exact stationary solutions with a positive � [11], the cos-
mological Killing horizon acts in general as a causal
boundary (see e.g., Ref.[12]) so that no observer can
communicate with regions beyond this horizon along a
future directed path. If there is a black hole, the black
hole event horizon will be located inside the cosmological

horizon and the spacetime is then known as a de Sitter
black hole spacetime. The observed value of � is tiny, of
the order of 10�52 m�2, and for such a small value the
known solutions show that the cosmological horizon has a

length scale �Oð��1
2Þ. This is of course large, but not

infinite. Since no physical observer can communicate be-
yond the cosmological horizon, in a de Sitter black hole
spacetime the cosmological horizon serves as a natural
boundary along with the black hole horizon. So in general
one cannot impose any precise asymptotic fall off for the
matter fields in the vicinity of the cosmological horizon,
nor can set Tab ¼ 0 there. Therefore, the generalization of
the no hair theorems for de Sitter black holes are expected
to be different from the � � 0 cases.
In fact, considerable progress has been made in this topic

for static deSitter black holes. Price’s theorem, a perturbative
no hair theorem [13], was proved in Ref. [14] for massless
perturbations in the Schwarzschild-de Sitter background.
Later the nonperturbative black hole no hair theorems were
extended for a general static de Sitter black hole spacetime in
Ref. [15]. Notably a violation of the standard no hair theorem
was found—a spherically symmetric electrically charged
solution sitting on the false vacuum of the complex scalar
of the Abelian Higgs model was obtained which has no� �
0 analogue. In fact this charged solution suggests that even
though� is tiny, the existence of the cosmological horizon as
an outer boundary of the spacetime, because of the nontrivial
boundary conditions, may change local physics consider-
ably. For some more aspects on no hair theorems in such
spacetimes we refer our reader to Refs. [16,17].
So it is an interesting task to generalize the no hair

theorems for stationary de Sitter black holes. For an
asymptotically flat spacetime, the no hair proofs for a
rotating black hole for scalar and Proca fields were given
in Ref. [18]. The �> 0 coordinate independent general-
ization of these proofs can be found in Ref. [19]. For a
discussion on the (2þ 1)-dimensional no hair theorem see
Ref. [20]. See also Ref. [21] for a scalar no hair theorem in
stationary axisymmetric asymptotically flat spacetimes
with non-minimal matter-gravity coupling.
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In this paper we shall give a proof of the classical no hair
theorems corresponding to massive Pauli-Fierz spin-2 [22]
and spin-1=2 fields for stationary axisymmetric de Sitter
black hole spacetimes. For static asymptotically flat spheri-
cally symmetric spacetime, a proof of spin-2 no hair can be
found in Ref. [18]. It was shown later by constructing Wu-
Yang’s magnetic monopole in such spacetimes that
although classical spin-2 hair is ruled out, quantum hair
is not, which can be detected via a stringy generalization of
the Bohm-Aharonov effect [23,24]. We shall also address
briefly this phenomenon for these spacetimes. It was shown
in Ref. [14] that the Schwarzschild-de Sitter spacetime
does not support massless SL(2, C) spinor hair with van-
ishing frequency. For demonstration of the spin-1=2 no hair
theorem via time dependent perturbation technique we
refer our reader to Refs. [25–27]. We further refer our
reader to e.g., Refs. [28–31] and references therein for
recent developments including observational aspects of
the no hair theorem.

The paper is organized as follows. In the next section we
outline all the necessary assumptions and the geometrical
set up we work in. In Secs. III and IV we give, respectively,
the proofs of the classical no hair theorems for the massive
spin-2 and spin-1=2 fields. Finally we discuss our results.

We shall set c ¼ G ¼ ℏ ¼ 1 throughout. We shall take
mostly negative signature ðþ;�;�;�Þ for the spacetime
metric. For an orthonormal basis ebðaÞ, the index in paren-

thesis will always correspond to local Lorentz frame.

II. ASSUMPTIONS AND THE
GEOMETRICAL SET UP

In the following we outline the assumptions and the
geometrical set up of the spacetime we work in, details
of which can be found in Ref. [10].

The spacetime is a (3þ 1)-dimensional, smooth, con-
nected, orientable, Hausdorff and paracompact stationary
axisymmetric manifold with a Lorentzianmetric gab, admits
a spin structure, satisfies Einstein’s equations and is en-
dowed with two commuting Killing vector fields f�a;�ag,

rða�bÞ ¼ 0 ¼ rða�bÞ; (1)

½�;��a ¼ L��
a ¼ �brb�

a ��brb�
a ¼ 0: (2)

�a is locally timelike with norm �a�a ¼ þ�2 and generates
the stationarity, whereas �a is locally spacelike with closed
orbits with parameter 0 � � � 2� and norm�a�a ¼ �f2

and hence generates the axisymmetry. We assume that the
spacetime connection ‘‘r’’ is torsion free, i.e., for any at
least twice differentiable spacetime function "ðxÞ we have
identically,

r½arb�"ðxÞ ¼ 0: (3)

A basis for this spacetime can be chosen as f�a;�a;�a; �ag,
where f�a; �ag are spacelike basis vectors orthogonal to

both �a and �a. We assume that the spacelike 2-’’planes’’
spanned by f�a; �ag form integral submanifolds, i.e., �a

and �a form the basis of a Lie algebra.
For a stationary axisymmetric spacetime in general

�a�a � 0, so the basis f�a;�a;�a; �ag is not orthogonal.
Thus unlike static spacetimes, there exists no family of
spacelike hypersurfaces which is both tangent to �a and
orthogonal to �a. Let us then first construct a family of
spacelike hypersurfaces tangent to �a, which will be con-
venient for our calculations. Let us define �a as

�a ¼ �a þ 1

f2
ð�b�

bÞ�a � �a þ ��a; (4)

so that we have �a�
a ¼ 0 everywhere. Also,

�a�
a ¼ ð�2 þ �2f2Þ ¼ 	2; (5)

so that �a is timelike when 	2 > 0. The basis
f�a;�a;�a; �ag thus serves as an orthogonal basis for the
spacetime. However, we note that �a is not a Killing field

rða�bÞ ¼ �arb�þ�bra�: (6)

We also note the following vanishing Lie derivatives which
follow immediately from Eqs. (1) and (2),

L�	 ¼ 0 ¼ L�	; L�� ¼ 0 ¼ L��;

L�f ¼ 0 ¼ L�f: (7)

In other words the 1-forms ra	, ra� and raf are all
orthogonal to both �a and �a. This will prove useful later.
Our assumption that f�a; �ag span an integral 2-

submanifold and Eqs. (7) imply that �a satisfies the
Frobenius condition of hypersurface orthogonality [10],

�½arb�c� ¼ 0: (8)

Thus �a is orthogonal to the spacelike f�a;�a; �ag hyper-
surfaces, say �. Using Eqs. (6) and (8), we get a useful
expression

ra�b ¼ 	�1�½bra�	þ 1

2
�ðarbÞ�: (9)

We are dealing with a stationary axisymmetric spacetime
with two Killing horizons. One is the black hole horizon
and the larger one which surrounds the black hole is the
cosmological horizon. Let us now locate the horizons in
terms of the orthogonal basis f�a;�a;�a; �ag. A stationary
axisymmetric spacetime with a black hole is in general
rotating and in that case �a becomes spacelike within the
ergosphere [32], so for such spacetimes the surface �2 ¼ 0
does not in general define a horizon. It was shown in
Ref. [10] by considering the null geodesic congruence
tangent to a ‘‘closed’’ 	2 ¼ 0 hypersurface H that the
function � is a constant on H and the orthogonal vector
field �a coincides with a null Killing field there. Thus
any such surface H is essentially a Killing or true
horizon. Accordingly, we define the black hole and the
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cosmological event horizons to be the two closed 	2 ¼ 0
surfaces, the former being located inside the second, such
that �a is timelike in the region between them, becoming
null on the surfaces. An example of this is the Kerr-
Newman-de Sitter family of spacetimes [12].

We note that there could be a Cauchy horizon too,
located inside the black hole event horizon. This is another
closed 	2 ¼ 0 surface on which �a is Killing and null,
however the vector field �a is spacelike between this
surface and the event horizon. The existence of the
Cauchy horizon makes the black hole singularity timelike,
resulting in interesting consequences in analytically ex-
tended charts [33]. Perturbative studies show that the
Cauchy horizon can be unstable. We refer our readers to
Ref. [33] (also references therein) for an excellent account
on this for � ¼ 0. For �> 0, this result was generalized
later in Ref. [34]. We further refer our reader to Ref. [12]
for maximal analytic extension of the Kerr-Newman-de
Sitter spacetime including the Cauchy horizon. However
it is sufficient for our present purpose to consider only the
region between the black hole event horizon and the cos-
mological horizon, and we can safely ignore the inner
Cauchy horizon if it exists.

For convenience of our calculation, we shall specify �a

now. On any of H we know that

ra	
2 ¼ 2
�a; (10)

where 
 is a constant on H known as the respective
surface gravity. Keeping in mind that ra	

2 is orthogonal
to both �a and �a [Eqs. (7)], we define

�a :¼ 1

2
ðxÞ ra	
2; (11)

where 
ðxÞ is a function which smoothly reaches 
 when
we reach H . With this choice �a is itself Killing and null
onH and vanishes there asOð	2Þ. When the black hole is
extremal, i.e., 
 ¼ 0, we simply write �a ¼ 1

2ra	
2.

The projector ha
b which projects tensors onto the space-

like hypersurfaces � is defined as

ha
b ¼ �a

b � 	�2�a�
b: (12)

LetDa be the spacelike induced connection defined via the
projector as Da � ha

brb. Then we can project the deriva-
tive of a tensor Ta1a2���

b1b2��� onto � as

Da
~Ta1a2...

b1b2... :¼ ha
bha1

c1 . . . hb1d1 . . .rbTc1c2...
d1d2...;

(13)

where ~T is the projection of T onto �, given by
~Ta1a2���

b1b2��� :¼ ha1
c1 � � �hb1d1 � � �Tc1c2���

d1d2���. It is easy

to verify that the induced connection Da on � defined in
Eq. (13) satisfies the Leibniz rule and is compatible with
the induced metric hab. For our purpose we shall also need
to act ‘‘D’’ on a full spacetime tensor T by

DaTa1a2...
b1b2... :¼ ha

brbTa1a2...
b1b2...; (14)

in which it is clear that Da is merely the spacelike direc-
tional derivative associated with the full metric.
We shall also need to project tensors onto the integral

2-planes orthogonal to both �a and �a and spanned by �a

and �a, say ��. The projection tensor is given by

�a
b ¼ �a

b � 	�2�a�
b þ f�2�a�

b: (15)

The projected derivative ‘‘ �D’’ on �� can be defined exactly
in the same way as above.
Using the fact that the 2-planes spanned by �a and �a

are integral submanifolds, we can derive the following
expression for the derivative of the Killing field �a [10],

ra�b ¼ f�1�½bra�fþ 1

2
�½arb��: (16)

We assume that there is no naked curvature singularity
anywhere in our region of interest, i.e., anywhere between
the two horizons including both of them. The Einstein
equation Gab þ�gab ¼ 8�Tab then implies that the in-
variants constructed from the energy-momentum tensor
Tab are bounded everywhere in our region of interest.
We assume that any physical matter field, or any ob-

servable concerning the matter field also obeys the sym-
metries of the spacetime, be it continuous or discrete,
because otherwise the matter field may itself break those
symmetries. In other words, if X is a physical matter field
or a component of it, or an observable quantity associated
with it, we must have

L �X ¼ 0 ¼ L�X: (17)

Apart from the existence of the cosmological horizon as an
outer boundary and regularity, no asymptotics on space-
time or matter fields will be imposed. However unlike the
spin-2 field, we shall ignore backreaction of the spinor on
the spacetime since spinors do not obey any classical
energy condition [35]. We shall not consider any coupling
of the spinor with gauge fields. We shall not explicitly
solve Einstein’s equations but shall only examine the ex-
istence of solutions of matter fields.
Being equipped with all this, we are now ready to go into

the no hair proofs.

III. MASSIVE SPIN-2 FIELD

Let us begin with the massive and real spin-2 field Mab.
An equation of motion for Mab can be written as [18,22]

rcrc

�
Mab � 1

2
Mgab

�
þm2

�
Mab � 1

2
Mgab

�
¼ 0: (18)

Mab is symmetric in its two indices, M ¼ Mabg
ab and m

can be interpreted as the rest mass of the field.Mab satisfies
the condition: raM

a
b ¼ 0. We note here that unlike the

gravitational perturbation equation, a pure spin-2 field
theory has some ambiguities in its coupling with spacetime
curvature. In particular, Eq. (18) might have contained
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terms like RacbdM
cd. However, under the reasonable as-

sumption that the Compton wavelength of the field is small
compared to the size of the black hole horizon, the mass
term always dominates over such terms outside the horizon
[18]. So, we shall not consider nonminimal coupling of the
field with curvature.

We take the trace of Eq. (18) and note that since M is
a scalar, L�M ¼ L�Mþ �L�M ¼ 0. Using this and

Eq. (12), we find

raraM ¼ 1

	h
@c½	hgcd@dM� ¼ 1

	h
@c½	hhcd@dM�

¼ 1

	
Dað	DaMÞ; (19)

where h is the determinant of the induced metric hab. Thus
the trace of Eq. (18) is equivalent to

Dað	DaMÞ þm2	M ¼ 0; (20)

which we multiply with M and integrate by parts on �
between the two horizons. The total divergence term is
converted to a surface integral on H ð	 ¼ 0Þ and goes
away leaving with us the vanishing volume integral,

Z
�
	½�ðDaMÞðDaMÞ þm2M2� ¼ 0; (21)

which shows M ¼ 0 throughout.
In four spacetime dimensions Mab has ten components,

Mab ¼ �ð1Þ�a�b þ�ð2Þ�a�b þ�ð3Þ�a�b þ�ð4Þ�a�b

þ�ð5Þ�ða�bÞ þ�ð6Þ�ða�bÞ þ�ð7Þ�ða�bÞ
þ�ð8Þ�ða�bÞ þ�ð9Þ�ða�bÞ þ�ð10Þ�ða�bÞ; (22)

where �ðiÞ’s are scalars. To simplify our calculations, we
shall now use the discrete symmetry of the spacetime to get
rid of some of these components of Mab. The metric for a
stationary axisymmetric spacetime under consideration is
invariant under the simultaneous reflections �a ! ��a

and�a ! ��a. Equation (4) then shows these are equiva-
lent to �a ! ��a and �a ! ��a. Since we are not
ignoring backreaction, any physical matter field must
obey these symmetries [18,36]. Noting that all the scalars
in Eq. (22) are independent of parameters along �a and�a,
we find that the invariance under the discrete symmetry

implies �ð6Þ ¼ �ð7Þ ¼ �ð8Þ ¼ �ð9Þ ¼ 0.
Thus we are left with six components of Mab:

f��;��;��;��; ��;��g. For simplicity of notation,
we shall denote the orthogonal directions ð�;�;�; �Þ as
(0, 1, 2, 3), respectively.
SinceMab is a physical matter field, by Eq. (17) we have

L�Mab ¼ 0 ¼ L�Mab. This gives

L�Mab ¼ �crcMab þMcbra�
c þMcarb�

c

¼ �cMcðbraÞ�: (23)

Using Eq. (9), we find from the above equation

�crcMab ¼ 1

2
�cMcðbraÞ�� 1

2
ðrc�ÞMcðb�aÞ

þ 	�1ðrc	ÞMcðb�aÞ � 	�1�cMcðbraÞ	

¼ Hab ðsayÞ: (24)

Using this and the fact that M ¼ 0 we now find from
Eq. (18),

Z
H

MabrcMabdH c þ
Z
½dX�½�	�2H2

ab � ðDcMabÞðDcMabÞ þm2M2
ab� ðno sum ona; bÞ; (25)

where [dX] is the full spacetime volume measure and the
direction ‘‘c’’ in the horizon integral directs along �a. By
our choice�a coincides with�a onH [Eqs. (10) and (11)],
so that the integrand in the horizon integral coincides with
MabHab. Let us first set a ¼ 0, b ¼ 1 in the above integrals.
Using the fact thatra� andra	 are both orthogonal to �a

and�a [Eqs. (7)], and four of the ten components ofMab are
already zero, we find from Eq. (24) that H01 ¼ 0. Then
Eq. (25) shows thatM01 ¼ 0 throughout. Similarly we can
show that all the other components of Mab vanish also.

Thus all the six components ofMab vanish identically in

the region between the black hole and cosmological hori-

zon. This is the expected classical no hair result for this

field. For asymptotically flat or anti-de Sitter spacetimes

(� � 0), the boundary integral at the cosmological horizon

is replaced by an integral at spacelike infinity. By imposing

sufficiently rapid fall-off condition on the matter field, we

can make the integral vanishing and the desired no hair
result follows.
It was shown in Refs. [23,24] for static spherically

symmetric spacetimes that although classical spin-2 hair
is ruled out, quantum hair is not. The idea is the following.
A Stückelberg field Ab was introduced to write Mab as

Mab ¼ M̂ab þraAb þrbAa: (26)

Then Mab is invariant under the local gauge transfor-

mations: Ab ! Ab � �b, M̂ab ! M̂ab þrða�bÞ. Since

Mab ¼ 0, one has M̂ab ¼ �ðraAb þrbAaÞ. Then a mag-
netic monopole solution for Fab ¼ r½aAb� was constructed
and it was shown that the magnetic charge can be detected
via a stringy generalization of the Bohm-Aharonov effect
in the asymptotic region. In this work we have shown that
Mab vanishes also for general stationary axisymmetric
spacetimes. Following this, we can break Mab into two
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gauge fields, from one of which we can construct a mag-
netic monopole solution. It is clear that the solution will
not be spherically symmetric in this case. However, if the
black hole is small compared to the cosmological horizon
size, spacetime will be spherically symmetric at large
distance from the black hole, and the solution will asymp-
totically reach the usual spherically symmetric monopole
solution. Accordingly, we can detect in this region a mag-
netic charge of the black hole. It remains as an interesting
task to construct explicitly such monopole solutions, for
example for the Kerr-de Sitter spacetime.

IV. MASSIVE SPIN-1=2 FIELD

Let us now consider the case of a massive spin-1=2 field.
The detailed formalism of such fields in curved spacetime
can be found in e.g., Refs. [32,35,37]. The Lagrangian is
given by

L ¼ i

2
½ ��ara�� ðra

��Þa�� �m ���; (27)

where� is a 4-component spinor. The covariantly constant
matrices a’s can be expanded in an orthonormal basis

a ¼ eaðbÞ
ðbÞ. Using the well-known anticommutation

relation, ½ðaÞ; ðbÞ�þ ¼ 2�ðaÞðbÞI, where I is the 4� 4
identity matrix, we find

½a; b�þ ¼ 2gabI: (28)

The adjoint spinor �� is defined as �� ¼ �yð0Þ. The matrix

ð0Þ is Hermitian whereas ðiÞ, i ¼ 1, 2, 3, are anti-
Hermitian. The spin covariant derivative ‘‘r’’ in Eq. (27)
is defined as

ra� ¼ @a�þ 1

8
!aðbÞðcÞ½ðbÞ; ðcÞ��;

ra
�� ¼ @a ���

��

8
!aðbÞðcÞ½ðbÞ; ðcÞ�;

(29)

where !aðbÞðcÞ are the Ricci rotation coefficients given by

!aðbÞðcÞ ¼ edðbÞraeðcÞd. It is easy to show using Eq. (29) that

[32,35,37],

½ra;rb�� ¼ � 1

8
RabðcÞðdÞ½ðcÞ; ðdÞ��

¼ � 1

8
Rabcd½c; d��; (30)

using the fact that contraction is independent of basis. The
equations of motion are given by

iara��m� ¼ 0; iðra
��Þa þm �� ¼ 0: (31)

We consider the conserved current 1-form Ja,

Ja ¼ ��a� : raJ
a ¼ 0; (32)

by Eqs. (31). Let us define a 2-form Sab,

Sab :¼ r½aJb�; (33)

so that

raSab ¼ rarað ��b�Þ � Rb
að ��a�Þ: (34)

Since we ignore backreaction in this case, we have Rab ¼
�gab. Then setting b ¼ 0 above and noting 0 ¼ 	ð0Þ in
our orthogonal basis, we find the following

raSa0 ¼ rarað	�y�Þ ��	�y�: (35)

Integrating the above equation using the full spacetime
volume element [dX] and converting the total divergences
into surface integrals on H we getZ

H
Sa0dH a�

Z
H

rað	�y�ÞdH aþ
Z
½dX��	�y�

¼0; (36)

where the unit normal ‘‘a’’ as before directs along �a. It is
clear that the measures onH are non-divergent. Since Sab
is antisymmetric in its indices and by our choice �a

coincides with �a on H [Eqs. (10) and (11)], the first
integral vanishes in Eq. (36). Let us now evaluate the
second boundary integral. Eq. (17) implies L�Ja ¼ 0 ¼
L�Ja, which gives

�arað ��b�Þ ¼ ð ��a�Þ
2	2

½�arb	
2 � �bra	

2�

þ 1

2
ð ��a�Þ½�arb���bra��; (37)

where we have used Eq. (9). Setting b ¼ 0 and using
Eqs. (7) we get

�arað	�y�Þ ¼ � ð ��a�ra	2Þ
2	2

�0: (38)

Since�a coincides with �a onH , the second integrand in
Eq. (36) is given by the above expression. Then from the

fact that ��0� ¼ 	�y�, it is clear that the above quan-
tity isOð	Þwhen evaluated onH . This implies the second
integral in Eq. (36) also vanishes. This shows that � ¼ 0
throughout. For �< 0 the outer boundary is infinity and
suitable fall-off condition for the massive field recovers the
no hair result.
The above simple proof is however not valid for � ¼ 0.

Unfortunately we have been able to do the proof for such
spacetimes only under stronger assumption than the above.
It is the following.
We multiply the first of Eqs. (31) by ibrb and use

Eqs. (28) and (30) to get

rara�� 1

32
Rabcd½a;b�½c;d��þm2�¼0: (39)

We shall now simplify the second term. Denoting ½a; b�
by ~�ab, we compute

~� a½b ~�cd� ¼ 2½~�ab ~�cd þ ~�ac ~�db þ ~�ad ~�bc�: (40)

Contracting both sides by Rabcd, recalling the identity
Ra½bcd� ¼ 0, and the symmetries of the Riemann tensor

we find
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Rabcd ~�
ab ~�cd ¼ 2Rabcd ~�

ac ~�bd: (41)

Using the anticommutation relations for the ’s we find
from the above

Rabcd ~�
ab ~�cd ¼ 8½Rabcd

acbd � R�: (42)

The first term can be written as

Rabcd
acbd ¼ Rabcd

að2gbc � bcÞd

¼ �2R� Rabcd
abcd

¼ �2R� 1

4
Rabcd ~�

ab ~�cd; (43)

using the fact that Rabcdðab � baÞcd ¼
Rabcdð2ab � 2gabÞcd ¼ 2Rabcd

abcd. Putting
in all this we have from Eq. (42)

Rabcd ~�
ab ~�cd ¼ �8R: (44)

Thus Eq. (39) now simplifies to [37],

rara�þ
�
R

4
þm2

�
� ¼ 0: (45)

It can be seen from Eq. (29) that ðra�Þy ¼ ra�
y, so that

�y satisfies the same equation as above. From Einstein’s
equations we get

R ¼ 4ð�� 2�TÞ: (46)

Multiplying Eq. (45) by �y and using the projector �a
b

defined in Eq. (16) we now compute

�Da
�Dað�y�Þ :¼ �abrarbð�y�Þ

¼ 2ðra�
yÞðra�Þ � 2

�
m2 þ R

4

�
�y�

þ ½f�2�arað�brbð�y�ÞÞ
� 	�2�arað�brbð�y�ÞÞ�
� ½f�1ð �DafÞð �Dað�y�ÞÞ
þ 	�1ð �Da	Þð �Dað�y�ÞÞ�; (47)

where we have used equations of motion for� and�y and
the fact thatra	 ¼ Da	 ¼ �Da	 andraf ¼ Daf ¼ �Daf,
which follow from Eqs. (7). The above can be rewritten as

�Da½f	 �Dað�y�Þ� ¼ 2f	ð �Da�
yÞð �Da�Þ

� 2f	

�
m2 þ R

4

�
�y�

þ f	½f�2½�arað�brb�
yÞ�

þ�y�arað�brb�Þ�
� 	�2½�arað�brb�

yÞ�
þ�y�arað�brb�Þ��: (48)

Let us now simplify the last four terms of this equation
using symmetry arguments. Our assumption in this case
will be L�� ¼ 0 ¼ L��, which is of course much

stronger than the previous one made on the conserved
current 1-form.
The definition of the Lie derivative of a spinor requires

the notion of Lie derivative on a fiber bundle. We refer our
reader to Ref. [38] for a detailed discussion on this includ-
ing an exhaustive list of references. The Lie derivatives of a

spinor� and its adjoint �� along any Killing vector field X
is given by

LX� ¼ Xara�� 1

8
r½aXb�ab�;

LX
�� ¼ Xara

��þ 1

8
��r½aXb�ab:

(49)

It is easy to see that in a local coordinate system in which
Xa ¼ ð@xÞa, where x is the coordinate along Xa, the above
formula reduces to the directional partial derivative along
Xa. This is compatible with our common intuition about
Lie derivatives. Thus for the customary dependence

eið!t�m�Þ, the above conditions simply mean ! ¼ 0 ¼ m.
Such condition was used previously in Ref. [14] for spheri-
cally symmetric static spacetime.
Using Eqs. (49), (9), and (16), we have

�ara� ¼ 	�1

4
½�bra	� �arb	�ab�

þ 1

4
�arb�

ab�;

�ara� ¼ f�1

4
½�braf��arbf�ab�

þ f2

8	2
½�arb�� �bra��ab�: (50)

The corresponding expressions for the derivatives of �y
can be found from the second of Eqs. (49) by multiplying it

by ð0Þ from right and using the anticommutation relations
for the gamma matrices. We note that since ra	, raf and
ra� are orthogonal to �a and �a, in contractions like
�aðrb	Þab, �aðrb�Þab, the gamma matrices must
anticommute. Using this and Eq. (28), we find from
Eqs. (50) after a lengthy but straightforward computation,

�arað�brb�
yÞ�þ�y�arað�brb�Þ

¼�1

2
ðra	Þðra	Þ�y�þf2

8
ðra�Þðra�Þ�y�;

�arað�brb�
yÞ�þ�y�arað�brb�Þ

¼1

2
ðrafÞðrafÞ�y�� f4

8	2
ðra�Þðra�Þ�y�: (51)

Substituting these into Eq. (48) we get
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�Da½f	 �Dað�y�Þ� ¼ 2f	ð �Da�
yÞð �Da�Þ � 2f	

�
m2 þ R

4

�
�y�

þ f	

2

�
	�2ðra	Þðra	Þ þ f�2ðrafÞðrafÞ � f2

2	2
ðra�Þðra�Þ

�
�y�; (52)

which we integrate to find

Z
d�	

�
2ð �Da�

yÞð �Da�Þþ1

2

�
	�2ðra	Þðra	Þþf�2ðrafÞðrafÞ� f2

2	2
ðra�Þðra�Þ�4

�
m2þR

4

��
�y�

�
¼0; (53)

where we have used the fact that
R
fd �� ¼ 1

2�

R
d�, since none of the integrand depends on the Killing parameter� and by

definition it ranges from 0 to 2�. All but the fourth and the last term in the above equation are negative definite. The fourth
term is positive and can naively be interpreted as the repulsive effect of the spacetime rotation on matter field. If we set
� ¼ 0 in Eq. (53), we recover the static spacetime equation.

We shall now examine whether the term due to rotation can dominate the integral (53). To do this, let us consider the
Killing identity for �a,

rbrb�a ¼ �Ra
b�b; (54)

which we contract by �a and use Eq. (16) to get

raraf ¼ f�1ðrafÞðrafÞ � f3

2	2
ðra�Þðra�Þ � f�1Rab�

a�b: (55)

We project this equation onto � using the techniques described earlier, use Einstein’s equations without backreaction and
multiply by f�1�y� to find

Da½	f�1�y�Daf� ¼ 	

��
� f2

2	2
ðra�Þðra�Þ þ�

�
�y�þ f�1ðDað�y�ÞÞðDafÞ

�
; (56)

which we integrate between the two horizons. The boundary integrals go away and we combine the vanishing volume
integral with Eq. (53) to getZ

d�	

�
ð �Da�

yÞð �Da�Þ þ 1

2

�
	�2ðra	Þðra	Þ þ f�2

2
ðrafÞðrafÞ � 4

�
m2 þ 5

4
�

��
�y�

þ
�
�Da�� f�1

2
� �Daf

�y�
�Da�� f�1

2
� �Daf

��
¼ 0; (57)

where we have used the fact that raf ¼ Daf ¼ �Daf [Eqs. (7)]. All the terms are negative definite now, which shows that
� ¼ 0 throughout our region of interest, which is the desired no hair result. This result clearly holds for � ¼ 0 provided
we impose suitable fall-off condition at spatial infinity. This also holds for an asymptotically anti-de Sitter spacetime if in
addition to the fall-off condition, we assume that m2 � 5

4 j�j, which means that the Compton wavelength of the spinor is
small compared to the AdS length scale.

V. SUMMARY

In this work we have proved no hair theorems for massive spin-2 and spin-1=2 fields for general stationary axisymmetric
de Sitter black hole spacetimes. The existence of quantum hair for the spin-2 field was also discussed. Since spinors do not
satisfy any classical energy condition, the no spinor hair could only be proved upon imposition of weakness condition. The
backreaction of spinors should involve renormalization of the energy-momentum tensor, which seems an interesting
problem in stationary axisymmetric spacetime. It will be interesting to investigate the situation when the spinor gets
coupled to a gauge field, a Maxwell field for example.
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