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We present a Chern-Simons-like action for the general massive gravity model propagating two spin-2

modes with independent masses in three spacetime dimensions (3D), and we use it to find a simple

Hamiltonian form of this model. The number of local degrees of freedom, determined by the dimension of

the physical phase space, agrees with a linearized analysis except in some limits, in particular that yielding

topologically new massive gravity, which therefore suffers from a linearization instability.
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I. INTRODUCTION

Massive gravity models have been intensively investi-
gated over the past few years, partly motivated by the idea
that some infrared modification of general relativity (GR)
could provide an alternative to dark energy; see e.g.,
Ref. [1] for an overview. As for many other issues in GR,
it is useful to consider how things simplify in the context of
a 3D spacetime. Although the long-standing topologically
massive gravity (TMG) model [2] shows that a massive
graviton is possible in 3D, this is achieved by the intro-
duction of the parity violating, Lorentz-Chern-Simons
(LCS) term, which is the action for 3D conformal gravity
[3]. In contrast, the more recent new massive gravity
(NMG) model [4,5] achieves a similar effect without
breaking parity through the introduction of a particular
curvature-squared term; this model exhibits in simplified
form some of the features of ghost-free higher-dimensional
models of massive gravity (see e.g., Refs. [6–8] for dis-
cussions of this point). The inclusion of both the LCS term
and the curvature-squared term of NMG leads to the gen-
eral massive gravity (GMG) model [4].

Allowing for a cosmological term, and omitting an over-
all factor proportional to the inverse 3D Newton constant,
the Lagrangian density for GMG, with spacetime metric
g�� (�; � ¼ 0, 1, 2), takes the form

L ¼
ffiffiffiffiffiffi
jgj

q �
�R� 2�0 þ 1

m2
G��S��

�
þ 1

�
LLCS; (1.1)

where the tensors G and S are, respectively, the Einstein
and (3D) Schouten tensors,m and � are two mass parame-
ters, � is a dimensionless constant and �0 is the cosmo-
logical parameter. In a maximally symmetric vacuum we

have G�� ¼ ��g��, where the cosmological constant �

is given by

� ¼ �2m2½��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �

p
�; � ¼ �0=m

2: (1.2)

Notice that �0 ¼ 0 allows a Minkowski vacuum, in which
case perturbative unitarity requires� � 0; in other vacua it
is useful to allow for arbitrary � (although for � � 0 one
may rescale fields such that �2 ¼ 1). Linearization about
the Minkowski vacuum leads to a generalization of the 3D
Fierz-Pauli equations that propagates two spin-2 modes of
independent masses; NMG corresponds to the equal mass
case, and TMG to the case in which one mode is decoupled
by taking its mass to infinity. Linearization about other
vacua leads to modified versions of these equations that
depend on the ratios of the masses ð�;mÞ to the scale set by
the cosmological constant.
While a linear approximation usually allows a reliable

count of the number of local degrees of freedom, there are
cases in which it gives misleading results. A Hamiltonian
formulation provides a way to count the number of local
degrees of freedom without resort to linearization: this
number may be defined as half the dimension per space
point of the physical phase space (i.e., taking into account
all constraints and gauge invariances). For example, using
the standard Arnowitt-Deser-Misner Hamiltonian formal-
ism for GR in a spacetime of dimension D, this definition
tells us that there are DðD� 3Þ=2 degrees of freedom,
which coincides with the number of polarization states of
a massless graviton. An extension of the Arnowitt-Deser-
Misner formalism to higher-derivative gravity theories in
any spacetime dimension was worked out in Ref. [9] but it
is not applicable to parity-odd 3D theories like TMG and
GMG. The Hamiltonian formulation of TMG has been
studied in many papers, e.g., Refs. [10–12], but of most
relevance here is the formulation that we shall refer to as
the minimal formulation of Carlip [13], some aspects of
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which were clarified by Blagojevic and Cvetkovic [14] via
an implementation of Dirac’s general procedure [15].

More recently, Dirac’s procedure was used to find a
Hamiltonian formulation of NMG [16], which was subse-
quently applied to the case in which � ¼ ��2 [17]. This
case is special for many reasons [5] but the one of rele-
vance here is that linearization yields equations with an
accidental gauge invariance that describes a partially mass-
less graviton with only one local degree of freedom
[18,19]. The gauge invariance is a linearized Weyl invari-
ance, which is accidental in the sense that it does not
extend beyond the linearized approximation, and for this
reason one should suspect the reduction in the number of
local degrees of freedom to be an artefact of the linear
approximation. Indeed, it turns out that there is no reduc-
tion in the number of local degrees of freedom if this
number is counted using the Hamiltonian formulation of
NMG. This implies that NMG suffers from a linearization
instability at partially massless vacua. This result has been
extended to GMG in Ref. [20].

There is one other case in which linearization leads to an
accidental gauge invariance, which is again a linearized
Weyl invariance; it is accidental because the nonlinear
theory is definitely not Weyl invariant [4]. This is the
case in which �0 ¼ 0 and � ¼ 0. The special subcase in
which � ¼ 1 was first analyzed by Deser [21], who
showed that it propagates a single massless mode; we shall
call this model massless NMG. The generic case was
analyzed in Ref. [22], where it was called topologically
new massive gravity (TNMG); this model was studied
independently (under a different name) in Ref. [23].
Linearized TNMG propagates a single spin-2 mode of
mass m2=�, which becomes the massless mode of mass-
less NMG in the � ! 1 limit. There is therefore an
apparent reduction in the number of local degrees of free-
dom1 but, as in the partially massless case, we should
expect this reduction to be an artefact of the linearized
approximation. One of the aims of this paper is to use a
Hamiltonian formulation to verify this.

Implementation of Dirac’s procedure for 3D massive
gravity models leads to a rather large phase space with a
correspondingly large number of constraints of both first
class and second class in Dirac’s terminology (first-class
constraints being those that generate gauge transforma-
tions). Another purpose of this paper is to present a simple
Hamiltonian formalism of NMG and GMG which, like
Carlip’s Hamiltonian formulation of TMG [13], is minimal

in the sense that (i) the only first-class constraints are the
six that generate 3D diffeomorphisms and local Lorentz
transformations, and (ii) the number of second-class con-
straints is minimized.
Our starting point is a new action for GMG and its TMG

limit that is Chern-Simons-like in the sense that it is the
integral of a Lagrangian 3-form constructed by taking
exterior products of independent 1-form fields and their
exterior derivatives, and so does not require a metric for its
construction. As in Chern-Simons (CS) gravity models, the
1-form fields include the Lorentz frame, or dreibein,
1-forms ea (a ¼ 0, 1, 2) which can be used to construct a
metric if we assume that its matrix of coefficient functions
e�

a is invertible. In a decoupling limit in which all prop-

agating modes become infinitely massive, the action re-
duces to the Einstein-Cartan (EC) formulation of 3D GR,
which is a CS gravity model [24,25]. In the partial decou-
pling limit that yields TMG, the action reduces to the sum
of the EC action and the CS action for 3D conformal
gravity of Horne and Witten [26].
It might seem superfluous to say that the Hamiltonian

formulation of massive gravity models breaks the manifest
spacetime diffeomorphism invariance of the covariant ac-
tion because the Hamiltonian formulation involves a dis-
tinction between time and space. However, the Hamiltonian
form of the action for a CS theory is just the covariant action
rewritten in a noncovariant way by performing a time/space
decomposition of all fields. In contrast, the Hamiltonian
form of the action of a CS-like massive gravity model
cannot be obtained in this way; there are necessarily addi-
tional secondary-constraint terms that break this manifest
spacetime covariance. While one such constraint is required
for TMG [13], two are required for GMG.
Using our Hamiltonian formulation of GMG, we are

able to compute the dimension of the physical phase space
and see how this depends on the parameters of the model.
In particular, we are able to show that the number of local
degrees of freedom changes only in a decoupling limit and
is therefore not discontinuous in any of the special limits
discussed above, except in the limit that yields conformal
3D gravity. This means, in particular, that both the mass-
less NMG limit of NMG and the TNMG limit of GMG
suffer from linearization instabilities.

II. PRELIMINARIES

As our covariant starting point for a Hamiltonian for-
mulation of massive 3D gravity models is a Chern-Simons-
like action for these models, we review here the aspects of
the Chern-Simons gravity models that will be of relevance
to us. This will also serve to introduce our conventions and
terminology.

A. Einstein-Cartan

In the EC formulation of 3D gravity, the independent
fields are the dreibein ea (a ¼ 0, 1, 2), a Lorentz-vector

1The natural extension of TNMG to adS vacua is chiral GMG,
which occurs for � ¼ �3�2 þ 2�ð�� 3�Þ � 2ð�� 2�Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�� 2�Þ�p

, where � ¼ m2=�2; this is the GMG analog of
the perturbative unitary limit � ¼ �3�2 of NMG [5]. Although
there are discontinuities in the spectrum of linearized GMG at
the chiral point, the linearized approximation does not lead to
any reduction in the number of local degrees of freedom, except
in the Minkowski limit where it degenerates to TNMG.
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valued 1-form and an adjoint-valued local Lorentz connec-
tion 1-form which we may trade for the vector-valued
1-form !a. From these one may construct the Lorentz-
covariant torsion and curvature 2-forms

Ta ¼ Dea � dea þ �abc!bec;

Ra ¼ d!a þ 1

2
�abc!b!c;

(2.1)

where �abc is the antisymmetric invariant tensor of
SOð1; 2Þ, with �012 ¼ 1. Here, and henceforth, products
of forms should be understood as exterior products. The
torsion and curvature 2-forms satisfy the Bianchi identities

DTa � �abcRbec; DRa � 0: (2.2)

This formalism allows the 3D Einstein-Hilbert action with
cosmological term to be written in a first-order form as an
integral of the EC Lagrangian 3-form

LEC ¼ ��eaR
a þ�0

6
�abceaebec: (2.3)

As explained in the Introduction, the constant� is included
for later convenience; � ¼ 1 is the standard choice in 3D
GR for our mostly plus metric signature convention. The
EC action is already first order in time derivatives and so
constitutes a simple starting point for the Hamiltonian
formulation of GR [27].

The field equation for !a is Ta ¼ 0. If we assume that
the dreibein matrix e�

a is invertible with inverse ea
�, then

we can solve for !a:

!�
a ¼ �e�1"���

�
e�

ae�b � 1

2
e�

ae�b

�
@�e�

b

� !�
aðeÞ; ðe ¼ dete�

aÞ; (2.4)

where "��� is the totally antisymmetric invariant tensor
density. Let us note here for future use that

e�1"��� ¼ �abcea
�eb

�ec
� � ����: (2.5)

Under the same assumption of invertible dreibein, we have
that

1

2
"���R��

a ¼ �ee�
aG��; (2.6)

where G�� is the Einstein tensor constructed from the

metric g�� :¼ e� � e� � e�
ae�

b�ab and the affine con-

nection

���
� ¼ !�a

be�
aeb

� þ ea
�@�e�

a; (2.7)

which becomes the standard Levi-Civita connection for the
metric g�� when ! ¼ !ðeÞ. Using the fact that

2g��G�� ¼ �R in 3D, where R is the Ricci scalar, we

see that elimination of !a yields the Lagrangian density

L ¼ 1

2
e½�R� 2�0�: (2.8)

The identity (2.6) may also be used to show that the ea

equation is, given !a ¼ !aðeÞ, the Einstein equation
�G�� ¼ ��0g��, from which we see that �0=� is the

cosmological constant for the EC model.
A variant of the EC action, which will be useful for later

purposes, is defined by the Lagrangian 3-form

~L EC ¼ LEC þ haT
a; (2.9)

where the new Lorentz-vector-valued 1-form ha is a
Lagrange multiplier for the constraint Ta ¼ 0. The equiva-
lence of this action to the standard one can be seen by
rewriting it in terms of ea and�a ¼ !a � ha=�; one finds
that

~L EC ¼ LECðe;�Þ þ 1

2�
�abceahbhc: (2.10)

In this action the field ha can be trivially eliminated (given
invertibility of the dreibein) whereupon the action reduces
to the standard EC action.

B. Horne-Witten

Now consider the Lagrangian 3-form

LHW¼1

2
!ad!

aþ1

6
�abc!

a!b!cþhaðTa�beaÞþ1

2
bdb:

(2.11)

This is the CS theory for the 3D conformal group con-
structed by Horne and Witten [26]. In addition to the
1-form gauge potentials ðea; !aÞ of the EC model, we
have an additional Lorentz-vector-valued 1-form potential
ha associated to proper conformal gauge transformations,
and a Lorentz-scalar 1-form potential b associated to local
scale (Weyl) transformations. The relative coefficients are
fixed, up to field redefinitions, by the requirement of local
SOð2; 2Þ gauge invariance.
The ðha;!aÞ fields are auxiliary fields in the

Horne-Witten (HW) model in the sense that they may be
eliminated by their field equations, which are jointly
equivalent to

Ta ¼ bea; Ra þ �abcebhc ¼ 0: (2.12)

Assuming invertibility of e�
a, these equations imply that

!�
a ¼ !�

aðe; bÞ � !�
aðeÞ þ ��

a�b�;

h�� ¼ �S��ðe; bÞ;
(2.13)

where S��ðe; bÞ is the Schouten tensor for the connection

!�
aðe; bÞ. Recall that in 3D,

S�� ¼ R�� � 1

4
g��R; (2.14)

where R�� is the Ricci tensor and R the Ricci scalar.

Substituting for ! using the first of Eq. (2.13), one finds
that
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S��ðe; bÞ ¼ S��ðeÞ þ �D�b� þ
�
b�b� � 1

2
g��b

2

�
;

(2.15)

where S��ðeÞ is the (symmetric) Schouten tensor for the

standard torsion-free connection, and �D indicates a cova-
riant derivative with respect to this connection. Observe
that

S½���ðe; bÞ ¼ @½�b��; (2.16)

from which we see that the second of Eq. (2.13) implies
that

h½��� ¼ �@½�b��: (2.17)

This is also the b equation of motion. Finally, the ea

equation is

ðDþ bÞha ¼ 0: (2.18)

Upon substituting the expressions for ðha;!aÞ, one finds
that all b dependence cancels and we are left with the
equation C�� ¼ 0, where the left-hand side is the symmet-

ric and traceless Cotton tensor

C�� ¼ ��
�� �D�S��ðeÞ: (2.19)

This is the standard field equation of 3D conformal gravity.
Off-shell equivalence of the HW model to conformal grav-
ity can also be shown by using (2.13) to eliminate ðha;!aÞ
from the HWaction. One finds that the b field drops out and
the resulting action is the Lorentz-Chern-Simons term for
the composite connection !ðeÞ.

III. MASSIVE 3D GRAVITY

Consider the following CS-like Lagrangian 3-form:

LGMG ¼ ��eaR
a þ 1

6
�0�

abceaebec þ haT
a

þ 1

2�

�
!ad!

a þ 1

3
�abc!a!b!c

�

� 1

m2

�
faR

a þ 1

2
�abceafbfc

�
: (3.1)

In the limit in which both � ! 1 and m ! 1 we get the
variant EC Lagrangian 3-form of (2.9). In the limit that
m ! 1 for finite � we get the Lagrangian 3-form

LTMG ¼ ��eaR
a þ 1

6
�0�

abceaebec þ haT
a

þ 1

2�

�
!ad!

a þ 1

3
�abc!a!b!c

�
; (3.2)

which is known to describe TMG [12,13].
In the generic case of finite � and finite m the above

Lagrangian 3-form is equivalent to the one proposed for
GMG in Refs. [16,20] if one assumes an invertible dreibein
field, but it seems not to have been previously appreciated
that the GMG Lagrangian can be written in the above way.

Let us first confirm that it does indeed describe GMG. The
ðha;!a; faÞ equations are jointly equivalent to

Ta ¼ 0; � 1

m2
Dfa þ 1

�
Ra þ �abcebhc ¼ 0;

Ra þ �abcebfc ¼ 0;
(3.3)

which imply that

!�
a ¼ !�

aðeÞ;
f�� ¼ �S��ðeÞ;
h�� ¼ � 1

�
S��ðeÞ � 1

m2
C��ðeÞ;

(3.4)

and hence that

h½��� ¼ 0; f½��� ¼ 0: (3.5)

Back substitution yields the Lagrangian density

L GMG ¼ 1

2
e

�
�R� 2�0 þ 1

m2
G��ðeÞS��ðeÞ

�
þ 1

�
LLCS;

(3.6)

whereLLCS is the standard Lorentz-Chern-Simons term of
3D conformal gravity. For � ¼ �1 this defines GMG, and
NMG is obtained in the � ! 1 limit.

A. Hamiltonian preliminaries

The action defined by integration of (3.1) over a
3-manifold with a Cauchy 2-surface is a starting point for
a Hamiltonian formulation of GMG and its various limits.
Observe that the Lagrangian density corresponding to the
Lagrangian 3-form (3.1) takes the general form

L ¼ 1

2
grsa

r � das þ 1

6
frsta

r � as � at; (3.7)

where ar (r ¼ 1; . . . ; N) are N flavors of three-vector
1-forms, and we use a 3D Lorentz-vector algebra notation
in which, e.g.,

ap � aq ¼ �abapaa
q
b; ðas � atÞa ¼ �abcasba

t
c; (3.8)

where � is the Minkowski metric (of mostly-plus signa-
ture) and � is the antisymmetric Lorentz-invariant tensor
such that �012 ¼ 1. The constant coefficients grs, frst are
defined such that they are symmetric under exchange of
any two indices. We can view grs as a metric on the flavor
space if we assume (as is the case for the models of
interest) that it is invertible. We need the N ¼ 3 case for
TMG and the N ¼ 4 case for GMG. The time/space de-
composition

ar ¼ dtar0 þ d	iari ði ¼ 1; 2Þ (3.9)

yields a Lagrangian density of the form

L ¼ � 1

2
�ab"ijgrsa

r
ia _a

s
jb þ ar0a


a
r ; (3.10)
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where "ij � "0ij. The phase space has dimension 6N. The
time components ar0 impose 3N (primary) constraints


r ¼ 0.
At this point we can anticipate how the Hamiltonian

formulation will lead to the conclusion that GMG de-
scribes two local degrees of freedom, realized in the linear
theory as two massive spin-2 modes. We can see from (3.5)
that the equations h½ij� ¼ 0 and f½ij� ¼ 0 are additional

secondary constraints, since they are conditions on canoni-
cal variables that are not imposed by Lagrange multipliers
but which are a consequence of the equations of motion.
Following Carlip’s analysis of TMG [13], we are led to
consider the modified Lagrangian

L GMGþ ¼ LGMG þ b0"
ijhij þ c0"

ijfij: (3.11)

The phase space is spanned by the 2-space components of
the four three-vector 1-form fields and hence has dimen-
sion per space point of 4� 3� 2 ¼ 24. The time compo-
nents of the fields impose 4� 3 ¼ 12 primary constraints,
to which we must add the two secondary constraints im-
posed by the new variables ðb0; c0Þ, making a total of 14
constraints. Of these we expect six to be first class, corre-
sponding to the built-in local Lorentz and 3-space diffeo-
morphism invariance. The physical phase space will then
have dimension per space point of 24� 14� 6 ¼ 4, cor-
responding (by our earlier definition) to two local degrees
of freedom.

We shall fill in the details later. First we wish to address
two other important questions:

(i) Is the modified Lagrangian, with the extra secondary
constraints, equivalent to the original unmodified
Lagrangian?

(ii) Is the modified Lagrangian still invariant under
3-space diffeomorphisms? Although these terms
respect manifest 2-space diffeomorphism invariance
they break manifest 3-space diffeomorphism
invariance.

Notice that we could restore manifest 3-space diffeo-
morphism invariance by starting from the Lagrangian
3-form LGMG � be � h� ce � f, so that the secondary con-
straints are imposed by the time components of the new
1-form fields b and c. There is still the issue of equivalence
of the new field equations to the original GMG field
equations; in fact, equivalence is lost in making this modi-
fication but it can be restored (subject to a reservation to be
discussed below) by adding kinetic terms for ðb; cÞ to arrive
at the new Lagrangian 3-form

LGMGþþ ¼��eaR
aþ1

6
�0�

abceaebecþhaðTa�beaÞ

þ 1

2�
bdbþ 1

m2
cðdb�e �fÞþ 1

2�

�
!ad!

a

þ1

3
�abc!a!b!c

�
� 1

m2

�
faR

aþ1

2
�abce

afbfc
�
:

(3.12)

Observe that

L GMGþþjbi¼ci¼0 ¼ LGMGþ : (3.13)

In other words, setting to zero the space components of the
ðb; cÞ fields yields the minimal modification of (3.11).
Whether we choose to consider the GMGþ or the

GMGþþ modification of the GMG action, we still need
to address the issue of whether the modified field equations
are equivalent to those of GMG. This is not obvious even
for TMG; it was observed in Ref. [14] that Carlip’s
Hamiltonian formulation of TMG (which amounts to using
TMGþ) was incomplete because it did not include a proof
of equivalence to TMG. We provide a proof here that the
field equations of both TMGþ and TMGþþ are equivalent
to those of TMG. As we shall see, the analogous equiva-
lence proof for GMG is more involved and does not apply
without qualification. We shall begin our analysis by con-
sidering the 3-space covariant ‘‘þþ’’ modifications since
this is simpler and the analysis is easily adapted to the
noncovariant ‘‘þ’’ modifications.
(i) TMGþþ. By takingm ! 1 in (3.12) we arrive at the

following Lagrangian 3-form in terms of the 1-form
fields of the HW model:

L ¼ ��eaR
a þ 1

6
�0�abce

aebec þ haðTa � beaÞ

þ 1

2�
bdbþ 1

2�

�
!ad!

a þ 1

3
�abc!a!b!c

�
:

(3.14)

In the limit that � ! 0 we must also set �0 ¼ 0 in
order to get consistent field equations, and in this
case we recover the HW model after a rescaling of
ha. In other words, the model under consideration is
essentially defined by an action that is the sum of the
EC and HW actions. We shall now show that this is
another description of TMG.
Consider first the ðh;!Þ equations, which are jointly
equivalent to

Ta ¼ bea;
1

�
Ra þ �abcebhc � �bea ¼ 0:

(3.15)

These may be solved to give

!�
a ¼ !�

aðe; bÞ;
h�� ¼ � 1

�
S��ðe; bÞ þ �����b

�:

(3.16)

The second of these equations implies that

h½��� þ 1

�
@½�b�� ¼ �����b

�: (3.17)

However, the b equation is equivalent to the vanish-
ing of the left-hand side, from which we deduce
(assuming � � 0) that b ¼ 0. Therefore, the
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combined ðha;!a; bÞ field equations can be solved
for these fields to give

!�
a ¼ !�

aðeÞ; h�� ¼ �S��ðeÞ; b� ¼ 0:

(3.18)

Back substitution then yields the standard TMG
action. Alternatively, we may observe that since the
field equations that follow from (3.14) imply that
b ¼ 0, the remaining equations are equivalent to
those of TMG; specifically, those that follow from
the TMG limit of the GMG Lagrangian 3-form (3.1).

(ii) GMGþþ. We now turn to the general case of the
Lagrangian 3-form (3.12). The ðh; fÞ equations

Ta ¼ bea; Ra þ �abcebfc ¼ cea; (3.19)

can be solved to give

!�
a ¼ !�

aðe; bÞ;
f�� ¼ �S��ðe; bÞ þ ����c

�;
(3.20)

and hence

f½��� þ @½�b�� ¼ �����c
�: (3.21)

On the other hand, the c equation implies that
f½��� þ @½�b�� ¼ 0, and hence that c ¼ 0.

Let us now consider the ! equation; this is equiva-
lent, given (3.19) and c ¼ 0, to

1

m2
Dfa � �abceb

�
hc � 1

�
fc

�
þ �bea ¼ 0; (3.22)

which has the following solution2:

m2

�
h�� � 1

�
f��

�

¼ C��ðeÞ þ 1

2
g��ð����b�@�b�Þ

þ ��
��b�S��ðeÞ þ ��

��b� �D�b�

þ 1

2
����b

�ðb2 � 2�m2Þ: (3.23)

However, the b and c equations combined tell us,
given c ¼ 0, that the antisymmetric part of the left-
hand side is zero. So the antisymmetric part of the
right-hand side is zero, and this is equivalent to the
equation

���b�¼0;

����G��� �D�b��g��ð2�m2þ �D �b�b2Þ:
(3.24)

Although b ¼ 0 solves this equation, there are
other possible solutions, so GMGþþ is not strictly

equivalent to GMG. Instead, it appears that GMG is
equivalent to one branch of the model defined by the
GMGþþ action.
This branch equivalence goes beyond the statement
that the field equations of GMGþþ reduce to those
of GMG when we choose the b ¼ 0 solution of
(3.24). An analysis of fluctuations about any solu-
tion of GMGþþ with b ¼ 0 leads to the linear
equation ½G�� � 2�m2g����b� ¼ 0, which im-

plies that �b ¼ 0, generically, and hence that a
linear stability analysis for solutions of GMGþþ
with b ¼ 0 is equivalent to a linear stability analysis
in the context of GMG. An exception to this state
of affairs occurs when we consider fluctuations
about a maximally symmetric vacuum with G�� ¼
2�m2g��. This is precisely the case in which the

massive gravitons become partially massless [4]. In
this case b is undetermined at the linear level, so
there must be an accidental gauge invariance of the
linear theory that allows it to be gauged away. At the
nonlinear level it is still present but we may also still
choose the b ¼ 0 solution.

Recall that we introduced the GMGþþ Lagrangian
3-form (3.12) in an attempt to restore the manifest
3-covariance that is lost when considering the minimal
modification of GMGþ. However, if we were to take this
as our starting point for a Hamiltonian formulation we
would need to include the noncovariant conditions bi ¼
ci ¼ 0 as new secondary constraints because these are
constraints on canonical variables that are either implied
by the field equations or imposed consistently with them.
As a check we observe that we would then have a phase
space of dimension 4� 3� 2þ 2� 2 ¼ 28 per space
point, and 12þ 2þ 4 ¼ 18 constraints. Given that six of
these constraints are first class we then get a physical
phase space of dimension 28� 18� 6 ¼ 4, as expected.
However, this would give us a nonminimal Hamiltonian
formulation that has no obvious advantage over the mini-
mal formulation provided by GMGþ.
We therefore return to the GMGþ Lagrangian density of

(3.11). Although the inclusion of the secondary constraint
terms, with Lagrange multipliers b0 and c0, breaks mani-
fest 3-space covariance, the field equations will still be
3-space covariant if they can be shown to be equivalent to
those of GMG, so we now need to address this issue, which
we can do by adapting our analysis above for GMGþþ. We
shall again consider the TMG case separately.
(i) TMGþ. As bi ¼ 0 the b equation is now h½ij� ¼ 0.

The ðha;!aÞ equations are just those of TMGþþ
but with bi ¼ ci ¼ 0. This applies in particular to
(3.17) from which we see that �b0 is proportional
to h½ij�, and is therefore zero. As long as � is

nonzero this implies that b0 ¼ 0, and hence b ¼ 0.
Using this, the remaining equations become those of
TMG.

2It is useful to use here the fact that ðDþ bÞfa is b indepen-
dent given (3.19). To see this, compare with the equation of
motion (2.18) of the HW model.
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(ii) GMGþ. By setting bi ¼ ci ¼ 0 in (3.21) we deduce
that f½ij� is proportional (for finite m) to c0, but the

c0 equation is f½ij� ¼ 0, so we deduce that c0 ¼ 0,

and hence that c ¼ 0. So now we have equations
that are equivalent to those of GMG except for
possible b0 dependence.

The combined ðb0; c0Þ equations imply the symmetry of
�hij � fij. Using this in (3.23) and setting bi ¼ 0 we

arrive at the equation

�00jbi¼0b0 ¼ 0; (3.25)

where � is the tensor of (3.24). This equation has b0 ¼ 0
as a solution, and choosing this solution we get equivalence
with GMG.

We see that the branching of possibilities for b that we
found in our previous analysis of GMGþþ has not been
entirely eliminated. Equation (3.25) has b0 ¼ 0 as one
solution but there are other possibilities, at least one of
which coincides with the b0 ¼ 0 solution at partially
massless vacua. A similar branching of possibilities at
these vacua was found in the analysis of Afshar et al.
[20]. From our perspective, it appears necessary to insist
on b0 ¼ 0 because otherwise the field equations are not
those of GMG.

IV. HAMILTONIAN FORMULATION

Following the discussion of the previous section, we
take as our GMG Lagrangian 3-form

LGMGþ ¼ ��eaR
a þ 1

6
�0�

abceaebec þ haT
a

þ 1

2�

�
!ad!

a þ 1

3
�abc!a!b!c

�

� 1

m2

�
faR

a þ 1

2
�abceafbfc

�

� �be � h� 1

m2
�ce � f; (4.1)

where

�b ¼ b0dt; �c ¼ c0dt: (4.2)

The ðb0; c0Þ fields are now Lagrange multipliers for the
constraints

h½ij� ¼ 0; f½ij� ¼ 0: (4.3)

We shall call these the secondary constraints since they are
secondary in the context of the GMG action (3.1).

The Lagrangian density still takes the general form (3.7)
except that we must now add the secondary constraints.
After a time/space decomposition we then arrive at the
Lagrangian density

Lþ ¼ � 1

2
"ijgrsa

r
i � _asj þ ar0 �
r þ bI0c I; (4.4)

with I ¼ 1; . . . n, and n ¼ 1 for TMG and n ¼ 2 for GMG.
The constraint functions are


r ¼ "ijð@iasjgrs þ
1

2
frsta

s
i � atjÞ; c I ¼ 1

2
fI;pq�

pq;

(4.5)

where fI;pq ¼ �fI;qp is a new set of constant coefficients,

and

�pq ¼ "ijapi � aqj : (4.6)

Observe that �pq ¼ ��qp. The quadratic term of (4.4)
gives us the Poisson brackets (PBs)

fariað	Þ; asjbð�ÞgPB ¼ �abg
rs"ij�

ð2Þð	� �Þ; (4.7)

which we may use to compute the matrix of PBs of the
constraint functions. To this end, it is convenient to first
define


ðÞ ¼
Z

d2	r
að	Þ
a

r ð	Þ; (4.8)

where the test functions r
a are arbitrary except that we

choose them such that no surface terms arise upon integra-
tion by parts. A calculation using (4.7) yields the result

f
ðÞ; 
ð�ÞgPB
¼ 
ð½;��Þ þ ftq½rfs�pt

Z
d2	r � �s�pq

þ 2ftr½sfq�pt
Z

d2	r
a�

s
bðVabÞpq; (4.9)

where

½;��ct ¼ �abcr
a�

s
bfrst; Vpq

ab ¼ "ijapiaa
q
jb: (4.10)

As we discuss in the following subsections, it turns out that
for the models of interest the � terms in these PBs are all
zero as a consequence of the secondary constraints. It
follows that on the constraint surface,

f
a
r ð	Þ; 
b

s ð�Þg ¼ Pab
rs ð	� �Þ; (4.11)

where

Pab
rs ð	� �Þ ¼ ftr½sfq�ptðVabÞpq�ð2Þð	� �Þ: (4.12)

This 3N � 3N matrix P plays a crucial role in the analysis
to follow. However, we will also need to take into account
the PBs of the primary with the secondary constraints. A
calculation for the generic model shows that

f
ðÞ; c IgPB ¼ "ij½@iraqj fI;rq � rasi � aqj frs
pfI;pq�:

(4.13)

For NMG and GMG we also need the Poisson bracket of
the two secondary constraints; we shall see that these two
constraints are in involution.
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A. TMG

Separating the quadratic from the cubic terms in (3.2),
we find that

LTMG ¼ ��ead!
a þ hade

a þ 1

2�
!ad!

a

þ �abc

�
ha!bec � �

2
ea!b!c

þ 1

6�
!a!b!c þ�0

6
eaebec

�
: (4.14)

We can simplify the quadratic term by setting

!a ¼ �a þ ��ea; ha ¼ ka þ 1

2
�2�ea: (4.15)

In terms of ðe; k;�Þ the Lagrangian 3-form is

LTMG ¼ kade
a þ 1

2�
�ad�

a

þ �abc

�
ka�bec þ 1

6�
�a�b�c

þ ��kaebec þ 1

6
~�0e

aebec
�
; (4.16)

where

~� 0 ¼ �0 þ �3�2: (4.17)

Apart from differences in notation, this result differs from
the analogous result of the HW model only in the �- and
�0-dependent cubic terms.

We are now in a position to write down a Hamiltonian
form of the action, by performing a time/space split in
(4.16) and adding the secondary constraint. This gives us

LTMGþ ¼ �"ij
�
ki � _ej þ 1

2�
!i � _!j

�
þ e0 �
e

þ!0 �
! þ k0 �
k þ b0�
ek; (4.18)

where


! ¼ "ij
�
1

�

�
@i!j þ 1

2
!i �!j

�
þ ei � kj

�


e ¼ "ij
�
Dikj þ 2��ki � ej þ 1

2
~�0ei � ej

�

k ¼ "ijfDiej þ ��ei � ejg:

(4.19)

These constraint functions are, of course, just the special-
ization to the case in hand of those given by the general
formula (4.5). We see from this result that the phase space
spanned by the space components of the Lorentz three-
vectors ð!; e; kÞ has dimension 18 per space point, and that
there are ten constraints.

We actually have no need for the above explicit expres-
sions for the primary constraint functions
r since we may
use the general result for their PBs that we have already
computed in terms of the various coefficients that define

the model. To do this we first read off from (4.16) the
nonzero components of g and f, which are

gek ¼ 1; g�� ¼ ��1; (4.20)

and

fk�e ¼ 1; f��� ¼ ��1;

fkee ¼ 2��; feee ¼ ~�0;
(4.21)

from which it follows that

f�ke ¼ �; f��� ¼ fe�e ¼ fk�k ¼ 1;

fkee ¼ ~�0; feee ¼ fkke ¼ 2��:
(4.22)

Using these results we find that the 9� 9 P matrix of
(4.11) takes the following form in the ð�; k; eÞ basis:

ðPabÞrs ¼ 0 0
0 Q

� �
(4.23)

where Q is the antisymmetric 6� 6 matrix3

Q ¼ ��1�ð2Þð	� �Þ �Vee
ab Vek

ab

Vke
ab �Vkk

ab

 !
: (4.24)

Note that this matrix is independent of both � and �0. The
zeros of the first row and column of P (actually three rows
and three columns because we suppress Lorentz indices)
are expected from the built-in local Lorentz invariance,
which ensures that the Poisson bracket of 
� with any
other constraint is zero on the constraint surface, i.e., that
the constraints 
a

� are first class. We may use this built-in

local Lorentz invariance to choose a local frame for which
ea1 ¼ ð010Þ, ea2 ¼ ð001Þ, in which case the secondary con-
straint implies that k21 ¼ k12. It can then be easily verified
using MATHEMATICA that the matrix Q (and hence P) has
rank 2.
However, we still have to take into account the one

secondary constraint with constraint function c ¼ �ek.
From the general result (4.13) we find, in this instance, that

f
ðÞ; c gPB ¼ "ijðDi
ekj �Di

kejÞ
þ ð2��k þ ~�0

eÞ"ijei � ej (4.25)

where we use the shorthand

Di
rasj � @i

rasj � r�i � asj: (4.26)

The absence of any term involving� is expected from the
fact that the secondary constraint function is a Lorentz
scalar, but both 
e and 
k have nonzero PBs with c :

3It is antisymmetric because �ðVek
abÞT ¼ Vke

ab.
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f
eð	Þ;c ð�ÞgPB ¼�"ijfkj@i�ð2Þð	� �Þ
� ½�i � kj � ~�0ei � ej��ð2Þð	� �Þg

f
kð	Þ;c ð�ÞgPB ¼ "ijfej@i�ð2Þð	� �Þ
þ ½�i � ej þ 2��ei � ej��ð2Þð	� �Þg:

(4.27)

This shows that the 10� 10matrix P of PBs of constraints
takes the form

P ¼ 0 0
0 Q

� �
; (4.28)

where Q is a 7� 7 antisymmetric matrix of the form

Q ¼ Q v
�vT 0

� �
; v ¼ f
k; c gPB

f
e; c gPB
� �

: (4.29)

All dependence on � and �0 enters through the column
vector v. If this column vector is in the column space of Q
then the rank ofQ equals the rank of Q, i.e., 2. This would
imply that there are eight first-class constraints and hence
18� 10� 8 ¼ 0 local degrees of freedom. This special
case is realized if and only if � ¼ �0 ¼ 0 as expected
because this is the limit in which TMG degenerates to
conformal gravity, which has no local degrees of freedom.
The eight gauge invariances are what remain of the local
conformal invariance in the gauge in which bi ¼ 0. In all
other cases v is not in the column space of Q, and the rank
of Q is then 2 greater than the rank of Q, i.e., 4. This
implies that there are six first-class constraints per space
point corresponding to six gauge invariances that can be
identified as those of 3-space diffeomorphisms and local
Lorentz invariance [13]. The dimension per space point of
the physical phase space is therefore 18� 10� 6 ¼ 2, as
expected for TMG.

B. NMG

For a reason that will become clear, we develop the
Hamiltonian formalism for NMG separately from that of
GMG. Taking the � ! 1 limit in (3.1) we arrive at the
NMG Lagrangian 3-form:

LNMG ¼ ��eaR
a þ 1

6
�0�

abceaebec þ haT
a

� 1

m2

�
faR

a þ 1

2
�abceafbfc

�
: (4.30)

Separating the quadratic and cubic terms, and then sim-
plifying the former by defining the new variable

�a ¼ � 1

m2
fa � �ea; (4.31)

we arrive at the Lagrangian 3-form

LNMG ¼ hade
a þ �ad!

a þ �abc

�
ha!bec þ 1

2
�a!b!c

�

þ �abc

�
�m2

2
ea�b�c �m2�eaeb�c

þ 1

6
�̂0e

aebec
�
; (4.32)

where

�̂ 0 ¼ �0 � 3m2�: (4.33)

Making a time/space split, and then adding the two sec-
ondary constraints, we arrive at the NMG Lagrangian
density in Hamiltonian form

L NMGþ ¼ �"ijfhi � _ej þ �i � _!jg þ b0�
eh þ c0�

e�

þ!0 �
! þ e0 �
e þ h0 �
h þ �0 �
�;

(4.34)

where


!¼"ijfDi�jþei�hjg; 
h¼"ijDiej;


e¼"ij
�
Dihj�m2

2
�i��j�2m2�ei��jþ1

2
�̂ei�ej

�


�¼"ij
��
Di!jþ1

2
!i�!j

�
�m2ei��j�m2�ei�ej

�
;

(4.35)

The phase space now has dimension per space point of 24
but there are a total of 14 constraints. Our next task is to
determine the dimension of the subspace of first-class
constraints and hence the number of gauge invariances.
As for TMG, we do not need to use directly the above

explicit expressions for the primary constraint functions
because we may instead use the general result for the PBs
of the constraint functions that we computed earlier. For
this we need the expressions for the coefficients g and f in
the ð!;�; h; eÞ basis, which we may read off from (4.32).
The nonzero components of g and f are

feh ¼ g�! ¼ 1; fh!e ¼ f�!! ¼ 1;

fe�� ¼ �m2; fee� ¼ �2m2�; feee ¼ �̂0;

(4.36)

from which it follows that

fe!e ¼ fh!h ¼ f!!! ¼ f�eh ¼ f��! ¼ 1;

fh�� ¼ f!e� ¼ �m2;

fhe� ¼ f!ee ¼ �2m2�;

fhee ¼ �̂0:

(4.37)

Using these results we find that the Pmatrix of (4.11) in the
ð!;�; h; eÞ basis again takes the form (4.23) but now with a
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9� 9 antisymmetric submatrix Q; suppressing Lorentz
indices, we have

Q¼m2�ð2Þð	��Þ
0 Vee �Veh

Vee 0 �Ve�

�Vhe �V�e Vh�þV�h

0
BB@

1
CCA: (4.38)

Note that this matrix is independent of both � and �0. It is
antisymmetric because, for example, the transpose of Vee

is�Vee. For the same choice of frame for ei
a that we used

for TMG, we have h21 ¼ h12 and �2
1 ¼ �1

2, and a
MATHEMATICA calculation can then be used to show that

Q has rank 4.
Now we must take into account the two secondary

constraints with constraint functions

c 1 ¼ �eh; c 2 ¼ �e�: (4.39)

It is easily verified that fc 1; c 2gPB / c 2, so this PB is zero
on the constraint surface. The nontrivial PBs are

f
ðÞ; c 1gPB
¼ "ij½Di

ehj �Di
hej �m2��i � ej�

þ "ij½ðe þ �Þ�̂ei � ej � 2m2�e�i � ej�;
f
ðÞ; c 2gPB

¼ "ij½Di
e�j �Di

�ej þ ehi � ej þ hei � ej�;
(4.40)

where we again use a shorthand notation:

Di
rasj � @i

rasj � r!i � asj: (4.41)

This gives us a 14� 14 P matrix of the general form
(4.28) but now with an 11� 11 antisymmetric submatrix
Q of the form

Q ¼
Q v1 v2

�vT
1 0 0

�vT
2 0 0

0
BB@

1
CCA; vI ¼

f
�; c IgPB
f
h; c IgPB
f
e; c IgPB

0
BB@

1
CCA;
(4.42)

where the PBs f
r; c IgPB can be read off from (4.40).
Observe that the components of these column vectors are
sums of terms that are either linear or quadratic in canoni-
cal variables, and that all dependence on � and �0 is
contained in the quadratic terms.

For a matrix Q of the above form, its rank equals the
rank ofQ (i.e., 4) if both v1 and v2 are in the column space
ofQ, and it equals the rank ofQ plus 4 (i.e., 8) if v1 and v2

are linearly independent and no linear combination of them
is in the column space of Q. In all other cases the rank of
Q is the rank of Q plus 2 (i.e., 6). If the quadratic terms
of vI were absent, then both these vectors would be in
the column space of Q so that Q would have rank 4.

However, the most we can do to eliminate these quadratic
terms is to set � ¼ �0 ¼ 0 and this still leaves some
quadratic terms, which are sufficient to ensure that the
column vectors vI are both independent and that no linear
combination of them is in the column space of Q, so the
rank ofQ is 8 independently of the values of � or�0. This
means that six of the 14 constraints are first class, as
expected, and hence that the dimension of the physical
phase space per space point is 24� 14� 6 ¼ 4. This is
consistent with the linearized analysis of the generic NMG
model, which shows that there are two propagating modes,
and with the Hamiltonian results of Blagojevic and
Cvetkovic [16], but it also applies in the � ¼ �0 ¼ 0 limit
that yields massless NMG, and in that case it is not con-
sistent with the linearized analysis of Deser [21]. We
conclude that massless NMG suffers from a linearization
instability.

C. GMG

For GMG we proceed initially as for NMG, separating
the quadratic from the cubic terms of the GMG Lagrangian
3-form (3.1) and then making the change of variable (4.31)
to get to

LGMG¼hade
aþ 1

2�
!ad!

aþ�ad!
a

þ�abc

�
ha!becþ 1

6�
!a!b!cþ1

2
�a!b!c

�

þ�abc

�
�m2

2
ea�b�c�m2�eaeb�cþ1

6
�̂0e

aebec
�
:

(4.43)

To further simplify the quadratic term we now set

!a ¼ �a � �

m2
�a; (4.44)

where �a is a new independent connection. This gives us
the Lagrangian 3-form

LGMG ¼ hade
a þ 1

2�
�ad�

a ��

2
�ad�

a

þ �abc

�
ha�bec þ 1

6�
�a�b�c ��

2
�a�b�c

�

þ �abc

�
�2

3
�a�b�c ��ha�bec �m2

2
ea�b�c

�m2�eaeb�c þ 1

6
�̂0e

aebec
�
: (4.45)

Observe that all� terms in the cubic term covariantize the
quadratic terms with respect to local Lorentz transforma-
tions, so local Lorentz invariance is still manifest. The
flavor space metric is simple in the new ð�; �; e; hÞ basis,
but it is no longer simple to consider the � ! 1 limit that
yields NMG. This is why we first dealt separately with the
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NMG case; having done so we may now assume that � is
finite.

Making a time/space split and adding the two secondary
constraints, we arrive at the following Hamiltonian form of
the GMG Lagrangian density:

LGMGþ ¼ �"ij
�
hi � _ej þ 1

2�
�i � _�j ��

2
�i � _�j

�
� b0�

eh � co�
e� þ!0 �
! þ e0 �
e

þ h0 �
h þ �0 �
�; (4.46)

where


� ¼ "ij
�
1

2�

�
@i�j þ 1

2
�i ��j

�
þ ei � hj

��

2
�i � �j

�
;


h ¼ "ijfDiej ���i � ejg;


e ¼ "ij
�
Dihj ��hi � �j �m2

2
�i � �j

� 2m2�ei � �j þ 1

2
�̂ei � ejg;


� ¼ "ij
�
��

2
Di�j þ�2�i � �j �m2ei � �j

�m2�ei � ej

�
: (4.47)

Again, we do not need to use these expressions directly
because we may instead use the general result for the PBs
of the constraint functions that we computed earlier in
terms of the coefficients g and f that define the model.
From (4.45) we see that the nonzero coefficients in the
ð�; e; �; hÞ basis are

geh ¼ 1; g�� ¼ ��1; g�� ¼ ��; (4.48)

and that the nonzero components of frst are

fh�e ¼ 1; f��� ¼ ��1; f��� ¼ ��;

f��� ¼ 2�2; fh�e ¼ ��; fe�� ¼ �m2;

fee� ¼ �2m2�; feee ¼ �̂0: (4.49)

It follows that

fe�e ¼ fh�h ¼ f��� ¼ f��� ¼ 1; f�he ¼ �;

f��� ¼ ��2; f�he ¼ 1; f��� ¼ �2�;

f�e� ¼ m2=�; f�ee ¼ 2m2�=�;

fe�e ¼ fh�h ¼ ��; fh�� ¼ �m2;

fhe� ¼ �2m2�; fhee ¼ �̂0:

(4.50)

Using these results we find that the Pmatrix of (4.11) in the
ð�; �; h; eÞ basis again takes the form (4.23) but the 9� 9
antisymmetric submatrix Q is now

Q ¼ m2

�
�ð2Þð	� �Þ

m2Vee �Vee ��Veh �m2Ve�

�Vee 0 ��Ve�

��Vhe �m2V�e ��V�e �ðV�h þ Vh�Þ þm2V��

0
BB@

1
CCA: (4.51)

Once again, this matrix is independent of both � and �0. Using the same choices for eai as before, we can now use
MATHEMATICA to evaluate the rank of this matrix. We assume that neither m2 nor � is zero or infinity. The result is that Q
has rank 4.

Now we consider the secondary constraints; the constraint functions are again

c 1 ¼ �eh; c 2 ¼ �e�; (4.52)

and it is again straightforward to verify that fc 1; c 2gPB / c 2, so this PB is zero on the constraint surface. Next, we
compute

f
ðÞ; c 1gPB ¼ "ij½Di
ehj �Di

hej þ�e�i � hj þ ð�̂e � 2m2��Þei � ej�
þ "ij½��ei � hj � ðm2� þ�h þ 2m2�eÞ�i � ej�;

f
ðÞ; c 2gPB ¼ "ij½Di
e�j �Di

�ej þ�e�i � �j þ ehi � ej� þ "ij
��

m2

�
e ���

�
ei � �j

þ
�
h þ 2m2�

�
e þm2

�
�

�
ei � ej

�
; (4.53)

where, as for TMG,

Di
rasj � @i

rasj � r�i � asj: (4.54)
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This again gives us a 14� 14 Pmatrix of the general form
(4.28) with an 11� 11 antisymmetric submatrix Q that is
of the general form (4.42), but with column vectors vI that
we now read off from (4.53).

Once again all dependence on both � and �0 is con-
tained in those terms in vI that are quadratic in canonical
variables. In the absence of these quadratic terms both
vectors vI would be in the column space of Q and the
rank ofQ would then be the same as the rank ofQ (i.e., 4).
However there are quadratic terms, and however we
choose � and �0 the vectors vI are linearly independent
and no linear combination of them is in the column space
of Q. The rank of Q is therefore 8, independently of the
values of � or �0. As for NMG, this implies that the
dimension of the physical phase space per space point is
24� 14� 6 ¼ 4. This is consistent with the linearized
analysis of the generic GMG model, and with the
Hamiltonian results of Blagojevic and Cvetkovic [16],
but it also applies in the � ¼ �0 ¼ 0 limit that yields
TNMG, and in that case it is not consistent with the
linearized analysis of Refs. [22,23]. We conclude that
TNMG suffers from a linearization instability.

V. DISCUSSION

We have shown that the action for the 3D GMG model
incorporating both TMG and NMG [4] can be written as
the integral of a Lagrangian 3-form constructed from
1-form fields (including a three-vector dreibein) and their
exterior derivatives. The action is then defined without the
need for a metric, or even a density. We should stress that
this reformulation of 3D massive gravity models depends
on the special combination of curvature-squared invariants
that appear in the NMG/GMG action, which is remarkable
because this combination was not invented for this
purpose. It would be interesting to see if a similar metric-
independent formalism is possible for 3D massive super-
gravity [22,28,29].

We have called these metric-independent actions
Chern-Simons-like because of their similarity to CS theo-
ries of gravity. Strictly speaking, they define a general-
ization of 3D massive gravity models because equivalence
to the usual actions can be established only if the dreibein
field is assumed to be invertible. This is also how CS
theories of gravity become equivalent to standard metric
theories of gravity. The difference, from the perspective of
this paper, is that CS theories require special coefficients
for the various terms in the action, with the result that there
are no local degrees of freedom.

The absence of local degrees of freedom in CS gravity
models is also apparent from their Hamiltonian formula-
tion, which can be found directly by a time/space decom-
position; the phase space dimension per space point is
exactly twice the number of local phase space constraints,
all of which are first class, so the dimension per space point
of the physical phase space is zero. In contrast, additional

constraints are needed for the Hamiltonian formulation of
Chern-Simons-like models. A single additional secondary
constraint suffices for TMG [13,14], and this leads to what
we have called the minimal Hamiltonian form of this
model. We have used the Chern-Simons-like formulation
of NMG and GMG to find an analogously minimal
Hamiltonian formulation requiring two additional
constraints.
Secondary constraints are needed in the Hamiltonian

formulation whenever the field equations imply constraints
on the canonical variables that are not already imposed by
the time components of the 1-form fields used to construct
the Lagrangian. Since these are constraints on the space
components only, imposing them via Lagrange multipliers
leads to an action that is no longer manifestly invariant
under 3-space diffeomorphisms in the sense that (in con-
trast to the CS case) it is not the time/space decomposition
of a manifestly covariant Lagrangian. This is not a problem
if the new field equations imply the vanishing of the new
Lagrange multipliers because the new field equations are
then equivalent to the original ones. For TMG it is easy
to show that this is precisely what happens. In the NMG/
GMG case, however, the new Lagrange multipliers are
zero only on one branch of the solution space of the new
equations, with other branches meeting it at partially
massless vacua, as has also been found in the
Hamiltonian approach of Afshar et al [20]. Our investiga-
tions led us to conclude that equivalence to NMG/GMG
holds only on this one branch.
Fortunately, this branch equivalence of our Hamiltonian

formulation of NMG and GMG is sufficient for our main
purpose, which is a determination of the number of local
degrees of freedom of these models. The results of this
computation for all of the models considered in this paper
are summarized in the following table, where each model
is defined by the combination of invariants that it includes;
these are the EC action for 3D GR, the LCS term of 3D
conformal gravity and the NMG curvature squared-
invariant which, by itself, defines massless NMG:

LEC LLCS LmNMG Name Degrees of Freedom

x Einstein-Cartan 0

x Conformal Gravity 0

x x TMG 1

x x NMG 2

x Massless NMG 2

x x x GMG 2

x x TNMG 2

These results confirm those of Refs. [16,17,20], in par-
ticular the absence of any discontinuity in the number of
local degrees of freedom in the special case in which a
linearized analysis yields partially massless gravitons.
There are other special cases, however, and we have fo-
cused on the limit of GMG that yields TNMG, where a
linearized analysis also exhibits an apparent reduction in
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the number of local degrees of freedom. Our results show,
as expected, that this is an artefact of the linearized
approximation and hence that TNMG suffers from a lin-
earization instability.

Our result for TNMG also applies to its parity-
preserving massless NMG limit. This model was argued
in Ref. [21] to be renormalizable but the argument depends
on the accidental linearized invariance of the linearized
theory. This gauge invariance is accidental because the
nonlinear theory is certainly not Weyl invariant, although
it does have a conformal covariance property [4] that
explains why the linearized theory is linearized Weyl
invariant [30]. Similar considerations explain why linear-
ized TNMG also has an accidental linearized Weyl
invariance.

From this discussion, it should be clear why the number
of local degrees of freedom of interacting massive gravity
theories does not change discontinuously in most of the
limits in which the linearized theory is discontinuous. We
should expect discontinuities in decoupling limits: the
number of local degrees of freedom is reduced in the
TMG limit of GMG, and the EC limit of TMG, because
we are taking a limit in which one degree of freedom
becomes inaccessible; this is not a physical discontinuity.
The only real discontinuity occurs when the nonlinear
theory acquires an enhanced gauge invariance, and this
occurs only in limits that yield 3D conformal gravity.
These considerations explain the results of the above table.

Another result of this paper is an alternative Chern-
Simons-like form of the action for TMG and GMG in
which the Lagrange multipliers for the secondary con-
straints are promoted to new 1-form fields. In the TMG
case, this action is just the sum of the CS actions for 3D GR
and 3D conformal gravity. As for our Hamiltonian form of
NMG and GMG, there is only a branch equivalence to the
original CS-like actions, but this just means that we have a
slightly new 3D massive gravity model that is known to be
unitary at least when linearized about one branch of its
solutions. One might think that a time/space decomposi-
tion of this alternative action would lead to a Hamiltonian

formulation that preserves the manifest 3-space covariance
in the same way as CS models. However, since the space
components of the new 1-form fields are zero as a conse-
quence of the field equations we now need new noncovar-
iant secondary constraints, leading to a Hamiltonian
formulation that is now nonminimal but otherwise equiva-
lent to the minimal formulation.
Following the work of Bergshoeff et al. [4] on 3D

massive gravity models, progress has been made towards
the construction of a nonlinear and ghost-free 4D theory of
massive gravity, e.g., Refs. [31,32]. The model presented in
the latter paper has received much attention although it was
for a while a challenging technical problem to prove that it
is ghost free; see e.g., Ref. [33] and references therein. In
recent work [34], this 4D massive gravity model has been
reformulated in a vielbein language that is reminiscent of
our CS-like formulation of 3D massive gravity models, so
it would be interesting to see whether the methods that we
have used here could also be used to simplify its
Hamiltonian formulation.
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Note added in proof.—Following the posting of the

original version of this paper to the arXiv, a revised version
of arXiv:1208.0339 was posted, with a revised title, in
which a Hamiltonian analysis of the model referred to
here as massless NMG is included [35], with conclusions
that are in accord with ours.
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