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We study a retarded potential solution of a massless scalar field in curved space-time. In a special ansatz

for a particle at rest whose magnitude of the (scalar) charge is changing with time, we found an exact

analytic solution. The solution indicates that the phase velocity of the retarded potential of a nonmoving

scalar charge is position-dependent and may easily be greater than the speed of light at a given point. In

the case of the Schwarzschild space-time, at the horizon, the phase velocity becomes infinitely faster than

the coordinate speed of light at that point. Superluminal phase velocity is a relatively common

phenomenon, with the phase velocity of the massive Klein-Gordon field as the best known example.

We discuss why it is possible to have modes with superluminal phase velocity even for a massless field.
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I. INTRODUCTION

The speed at which fields (e.g., scalar, vector, and gravi-
tational) propagate is a very subtle question. According to
special relativity, energy (and mass) cannot travel with
speed greater than the speed of light, but there is nothing
restricting the speed of auxiliary fields like potentials.
Potentials describe interactions, and interactions are medi-
ated by virtual particles, which are off-shell and do not
have any a priori preferred speed.

For example, one is tempted to assume that the field of
the nonmoving source is frozen and does not propagate,
until the source or charge moves and the field rearranges its
distribution. This would effectively mean that a static field
is infinitely rigid and propagates with infinite speed. This
may make sense classically; however, quantum mechani-
cally, interactions are fluctuations in space induced by
virtual particles. Therefore, the situation is dynamical. To
find the speed at which some interaction propagates, one
has to calculate explicitly the effects of retardation in the
Green’s function of the field that mediates that interaction.

It is well known that the QED vacuum structure can
affect the propagation of light even in flat space. The so-
called Scharnhorst effect is a phenomenon in which light
signals travel faster in between the two closely spaced
conducting plates than outside of the plates [1]. The reason
is the Casimir effect, i.e., the vacuum polarization effect, is
suppressed in between the plates, so the photon loses less
time propagating in between the plates than outside. This
gives a hint that massless particles do not always propagate
at the speed of light in vacuum.

There is an even more counterintuitive example in
curved space-time. Namely, Drummond and Hathrell dem-
onstrated in Ref. [2] that vacuum polarization is sensitive
to the curvature of space-time. For example, for a photon
propagating in a curved space, vacuum polarization can
induce a modification of the wave equation in such a way

so that in some cases photons travel at speeds greater than
unity. The effect seems to be dispersive, and the phase
velocity approaches the speed of light at high frequencies.
Since the high-frequency limit of the phase velocity deter-
mines causality, it seems like causality is preserved in this
case. An extensive discussion of this effect can be found in
Refs. [3–7].
These examples imply that propagation of quantum

fields in curved space-time is a very subtle question, with
many potential surprises.
The simplest and perhaps the most instructive case to

study will be the case of the scalar field. The reason is that
the scalar field potential is not gauge-dependent. The only
freedom we have is to add an extra constant, i.e., c !
c þ const, which in turn has no dynamical effect and can
be fixed by setting c ¼ 0 at infinity. The best way to find
out the propagation velocity is perhaps to study the Green’s
function of a field. Once the Green’s function is found, we
can analyze the retarded potential for a given field and infer
the speed at which the signal propagates from a point
to a point. However, the difficulty of finding the general
Green’s function for a field in a curved space-time makes
this approach very difficult. Fortunately, the full space
Green’s function is not absolutely necessary to study the
propagation phenomena. A case in which an observer
observes a modulated source will be sufficient to study.
Therefore, we will consider a massless scalar field poten-
tial for a stationary (nonmoving) but time-dependent
source. Our result shows that the phase velocity of the
retarded potentials is position-dependent and may easily
be faster than the speed of light. In the case of the
Schwarzschild space, this phase velocity at the horizon
can even be infinitely greater than the speed of light at
the horizon. Though our solution in the linear ansatz is
analytic, our analysis of the general form of the source is
numerical. We therefore do not have an analytic form
for a complete Green’s function for an arbitrary source.
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However, the fact that the phase velocity of the scalar field
varies locally is important. Among other things, it implies
that gravity must affect the path of the massless scalar field,
which, for example, should lead to the gravitational lensing
effect for the massless scalar field.

We would like to emphasis at the very beginning that
throughout the paper we will use the term signal in a loose
sense. We will call any change in the field a signal. While a
nonmoving source does not emit any real particles, the
phase of the field will change, and the speed of that change
(phase velocity) we will call the speed of the signal. While
this is not a real signal or information in a strict sense
(i.e., transmitted by the group velocity), it will have some
important consequences.

II. RETARDED GREEN’S FUNCTION FOR
A MASSLESS SCALAR FIELD IN A

CURVED SPACE-TIME

As a referent point, we first show the retarded Green’s
function for a massless scalar field in the flat space-time.
The speed at which the signal propagates through space
can be read off the retarded solution. Consider a point
particle in Minkowski space carrying a massless-scalar-
field charge at the origin. Let the magnitude of its charge
increase (or decrease) in time as gðtÞ. The equation of
motion is

@2t c � @2xc � @2yc � @2zc ¼ 4��ð ~xÞgðtÞ: (1)

The solution for the function c is

c ¼ gðt� j~rjÞ
j~rj ; (2)

where ~r ¼ ðx; y; zÞ. The scalar field potential falls off with
distance in flat space as 1=r. From the numerator, we see
that the signal travels from a point to a point with the speed
of light c; i.e., if we increase the magnitude of the charge at
the origin, the potential at a point ~r will be affected after
time t ¼ j~rj. So, it takes some time for a signal to propa-
gate even if the source is static. This is best understood in
terms of virtual particles. A static source emits the sea of
virtual particles which modify the space around it. The
result in Eq. (2) implies that in flat space virtual ( just like
real massless) particles propagate with the speed of light, at
least as long as they are in vacuum.

III. GREEN’S FUNCTION FOR A MASSLESS
SCALAR FIELD IN A CURVED SPACE-TIME

There are very few examples of exact Green functions in
curved space-times [8–11]. The reason is that it is notori-
ously difficult to find an exact solution without any ap-
proximations [12,13]. However, we will demonstrate that
the particular case with a great degree of symmetry, i.e., a
charge located at the center of a spherical symmetric
curved space, is directly solvable. We will then use the

explicit solution to discuss the speed at which scalar field
potentials propagate in such space-times.
We fix again a point scalar charge at the origin of a

spherically symmetric space. Fixing the charge at the
origin rather than at an arbitrary point in space will provide
the required symmetry and greatly facilitate the problem.
We let its magnitude change as gðtÞ. The geometry of the
space-time can be written as

d�2 ¼ gttdt
2 þ grrdr

2 � r2ðd�2 þ sin2�d�2Þ: (3)

The equation that we will try to solve is

DtDtc þDrDrc þD�D�c þD�D�c ¼ �ðrÞ gðtÞffiffiffi
h

p ;

(4)

where h ¼ �gttgrrr
4.

We note here that our definition of the scalar charge
slightly differs from the definition in Eq. (2.2) in Ref. [10].
The difference is the time component of the four-velocity
ut, which in our static case (charge is not moving) is just a
constant and can be absorbed in gðtÞ. Furthermore, strictly
speaking, we are dealing with geometries without hori-
zons, so we will not discuss the no-hair theorems.
We will first try to find the time-independent solution,

which will correspond to a static scalar charge of constant
magnitude. In that case, Eq. (4) reduces to

1ffiffiffi
h

p @rðgrr
ffiffiffi
h

p
@rc Þ ¼ �ðrÞgðtÞffiffiffi

h
p : (5)

Without loss of generality, we can set gðtÞ ¼ 1. The
solution can be found by applying volume integration

over the element
ffiffiffi
h

p
dtd3x. The static solution c s is

c sðrÞ ¼
Z 1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�grrðRÞ
gttðRÞ

s
1

R2
dR: (6)

It is easy to verify that this is a solution by substituting
Eq. (6) back into Eq. (4). Since this solution depends on
both gtt and grr, it is different from the result from the flat
space, but it will reduce to the flat space solution at large
radius r.
We will now try to find the time-dependent solution

which corresponds to gðtÞ. Since we a priori expect a
massless particle to propagate with the speed of light, we
may expect this solution to have the following form:

c ðt; rÞ ¼ g

0
@t� Z r

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�grrðRÞ
gttðRÞ

s
dR

1
Ac sðrÞ; (7)

where the expression in parentheses on the right-hand side
is the argument of the function g. This form is a straight-
forward curved space generalization of the flat space solution

given by Eq. (2). The term
ffiffiffiffiffiffiffi�gtt
grr

q
is just the coordinate speed

of light in the radial direction (obtained from d� ¼ 0).
Though this appears to be a reasonable guess, this form is a
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solution only if grr ¼ �gtt. However, this requirement
brings us back to the flat space. We will therefore generalize
the form of the solution allowing for the possibility that the
propagation speed is not the speed of light. We now try a
more general form

c ðt; rÞ ¼ g

�
t�

Z r

0

1

vðRÞ dR
�
c sðrÞ; (8)

where vðrÞ is the coordinate speed at which the signal of the
retarded potential travels (not necessarily the speed of light).
This vðrÞ must asymptotically go into the speed of light at
large rwhere the space-time becomes flat. We do not expect
this form to always generate a solution. However, if g is a
linear function of its argument, one can find the suitable
solution. Therefore we consider the linear form of g:

g

�
t�

Z r

0

1

vðRÞdR
�
¼ A

�
t�

Z r

0

1

vðRÞdR
�
þ B; (9)

where A and B are two constants. If we plug this ansatz into
Eq. (4), we find a condition under which the solution is valid:

v ¼
ffiffiffiffiffiffiffiffiffiffi�gtt
grr

s
r2c 2

s ¼ r2c 2
scl: (10)

Here, cl ¼
ffiffiffiffiffiffiffi�gtt
grr

q
is the coordinate speed of light. Since v is

also a coordinate velocity of propagation, it will be different
for different observers, and it will change from point to point.
But it is clear that the retarded signal propagates at a speed
that is different from the speed of light for a given observer.

To make this more clear, we consider the Schwarzschild
space-time, i.e.,

gtt ¼ �g�1
rr ¼ 1� 2m

r
: (11)

We plug this condition into Eq. (6), and the static solution
becomes

c sðrÞ ¼
Z 1

r

1

1� 2m
R

1

R2
dR ¼ � lnð1� 2m

r Þ
2m

�
1

r
: (12)

We see that the static scalar field potential does not fall off
as 1=r, which was the case in flat space. However, in the
limit of r � 2m, we recover the usual 1=r behavior.

From Eq. (10), the coordinate propagation speed of the
retarded potential is

v ¼ r2c 2
scl > cl; (13)

which is not equal to the coordinate speed of light cl and, in
fact, is always greater than cl (for this particular example
of the Schwarzschild space-time). Our calculations will be
strictly valid as long as our space-time is not strictly a
black hole, but the conclusions will be valid even when
we are only slightly outside the horizon. In the extreme
limit, exactly at the horizon, r ¼ 2m, the propagation
speed v becomes infinitely faster than the speed of light
at that point.

In the context of the Schwarzschild black hole, the
coordinate speed of light, cl, vanishes at the horizon, and
any signal sent from the horizon gets infinitely redshifted.
Thus, in the standard description it remains unclear how
information about the black hole charge which is presum-
ably imprinted at the horizon can be communicated to the
region around the black hole. (If the scalar charge is
conserved, then formation of the black hole cannot violate
this conservation [14]). Let us check what happens when
the propagation speed of the retarded potential is taken into
account. We can calculate the time �t for a signal to
propagate from the horizon to some finite distance R:

�t ¼
Z R

2m

1

v
dr

¼
Z R

2m

1

1� 2m
r

dr

½r lnð1� 2m
r Þ�2

¼ �2m

lnð1� 2m=RÞ : (14)

This time is finite, and therefore the potential has no
problem to propagate from the horizon outside. Thus, a
charged particle (at least with the scalar charge) can keep
communicating its potential to the region outside the black
hole. We mention again that our results are not strictly
applicable to the black hole case, but we can always
consider a shell whose radius is just slightly outside its
own Schwarzschild radius and preserve the qualitative
conclusions drawn here. In the next section, we will reveal
that the propagating velocity v is the phase velocity. Thus,
this velocity refers to the change of phase, and it is not a
group velocity. The causal light cone for real particles
remains the same, the Green’s function does not have
support outside the light cone, and causality is preserved.

IV. GENERAL CASE

The discussion of the time-dependent source so far was
based on a solution found in the particular ansatz of Eq. (9).
We will now try to analyze the general form of gðtÞ (not
only the linear ansatz that we used). We will first decom-
pose the source gðtÞ into different frequency modes as

gðtÞ ¼
Z

~gð!Þ expði!tÞd!: (15)

The wave number of each frequency mode is !=v!ðrÞ,
where v! is the phase velocity of that mode. Then, the
scalar potential can be written as

c ðt; rÞ ¼
Z

�gð!Þ exp
�
i!

�
t�

Z 1

v!

dr

��
f!ðrÞd!; (16)

where f! is the amplitude of the mode labeled by the
frequency !. �gð!Þ and ~g can be found by matching the
boundary condition at r ¼ 0. By plugging the above equa-
tion into Eq. (4), we find that f! and v! must satisfy

GREEN’S FUNCTION OF A MASSLESS SCALAR FIELD . . . PHYSICAL REVIEW D 86, 084034 (2012)

084034-3



�!2

gtt
f! � !2

v2
!grr

f! þ 1ffiffiffi
h

p @r

� ffiffiffi
h

p
grr

@rf!

�

� i!

�
@rf!
v!grr

þ 1ffiffiffi
h

p @r

� ffiffiffi
h

p
grrv!

f!

��
¼ 0; (17)

except at r ¼ 0. Since both imaginary and real parts must
vanish independently, the above equation can be rewritten
as two equations

�!2

gtt
f! � !2

v2
!grr

f! þ 1ffiffiffi
h

p @r

� ffiffiffi
h

p
grr

@rf!

�
¼ 0; (18)

@rf!
v!grr

þ 1ffiffiffi
h

p @r

� ffiffiffi
h

p
grrv!

f!

�
¼ 0: (19)

Equation (19) can be easily solved by integrating with
respect to r:

f2!

ffiffiffi
h

p
grrv!

¼ const: (20)

In the limit of r ! 1, the space becomes flat, which
implies v! ! 1 and f! ! 1=r, as it should.

Equation (20) can be rewritten as

v! ¼ P2
!

ffiffiffiffiffiffiffiffiffiffi�gtt
grr

s
; (21)

where P! � f!r. If we substitute this relation into Eq. (18)
and replace f!r with P!, we get

@2rP! þ 1

2
@r ln

��gtt
grr

�
@rP! � 1

2
@r ln

��gtt
grr

�
P!

r

�!2grr
gtt

�
P! � 1

P3
!

�
¼ 0: (22)

The zero mode, ! ¼ 0, solution to this equation is
exactly f! ¼ c s, where c s is the time-independent g ¼
const solution given in Eq. (6). Moreover, the phase veloc-
ity v! in this case is the same as the propagation velocity
given by Eq. (10) in the ansatz solution we found. This then
reveals the meaning of the parameter v in Sec. III.

In the high-frequency limit, ! ! 1, the last term in
Eq. (22) dominates. In order to satisfy the equation, it has
to vanish, thus requiring P! ¼ 1. Equation (21) then im-
plies that v! becomes the speed of light cl. It is this feature
that ensures causality.

For the ! � 0 modes, we will again use the spherically
symmetric Schwarzschild geometry. The boundary condi-
tions are

r ! 1; P! ¼ 1; (23)

r ! 1; @rP! ¼ 0; (24)

�gtt
grr

¼ ð1� 1=rÞ2: (25)

In Fig. 1, we show P! as a function of r for several
values of the frequency!. We can see that P! grows as it is
approaching the origin. It is also apparent that higher !
modes increase slower than lower!modes. We do not plot
P! near the horizon, because the singularity will cause
numerical instabilities. Since P! � 1 for all values of r,
the phase velocity defined by Eq. (21),

v! ¼ P2
!

ffiffiffiffiffiffiffiffiffiffi�gtt
grr

s
� cl (26)

is greater than the speed of light everywhere.

V. COMMON FEATURES WITH OTHER
EXAMPLES WITH SUPERLUMINAL

PHASE VELOCITY

In this section, we discuss some other known examples
where the phase velocity is superluminal, which may have
something in common with our results.
Perhaps the best known example is that of a massive

Klein-Gordon field in flat space-time. The dispersion rela-
tion is simply !2 ¼ k2 þm2. The phase velocity

vp � !=k (27)

is always greater than unity as long as m � 0. Moreover,
superluminality is most pronounced for low frequencies!,
while for large frequencies we have ! � k, i.e., vp � 1.

However, the group velocity

FIG. 1. This figure shows P!ðrÞ for three different values of!,
i.e.,! ¼ 10�1,! ¼ 10�2, and! ¼ 10�3. We see that P! grows
as it is approaching the origin, higher ! modes increase slower
than lower ! modes, and P! � 1 everywhere. This behavior
implies that the phase velocity v! is always superluminal (for
this case of the Schwarzschild geometry) and that lower !
modes propagate faster than the higher ! modes.
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vg � d!=dk (28)

is always less than unity. Comparing this result with the
results we obtained in curved space, we might conclude
that the curvature of space induces an effective mass to
the massless scalar field, making it formally equivalent to
the massive Klein-Gordon field with superluminal phase
velocity.

The other, less known example is a massless scalar
field in a ð5þ 1Þ-dimensional flat space-time. The wave
equation is

@2t c � @2x1c � @2x2c � @2x3c � @2x4c � @2x5c ¼ �ð ~xÞ�ðtÞ:
(29)

The general solution can be found in most mathematical
physics textbooks (e.g., Ref. [15]) or papers [16]. The
Green’s function for this case is

G5þ1ðt; rÞ ¼ � 1

8�2

�
�0ðt� rÞ

r2
þ �ðt� rÞ

r3

�
; (30)

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22 þ x23 þ x24 þ x25

q
. If one considers the

following concrete source:

fðt; ~xÞ ¼ sinð!tÞ�ð ~xÞ; (31)

then the wave function can be easily found as

c ¼
Z

fðt0; ~x0ÞG5þ1ðt� t0; ~x� ~x0Þdt0d~x0; (32)

¼ � 1

8�2

�
! cosð!ðt� rÞÞ

r2
þ sinð!ðt� rÞÞ

r3

�
: (33)

Since this form includes two trigonometric functions, it is
hard to see how the phase changes. We will then combine
the two terms into a single trigonometric function:

c ¼ Sð!; rÞ sinð!ðt� RÞÞ; (34)

Sð!; rÞ ¼ � 1

8�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2!2

p

r3
; (35)

R ¼ r��ðrÞ=!; (36)

�ðrÞ ¼ sin�1

�
r!ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ r2!2
p

�
: (37)

This form is similar to the form we studied in the last
section. The phase velocity in this case is

vp ¼ 1

@rR
¼ 1þ 1

r2!2
: (38)

We can see that the phase velocity is infinite at the origin
(for fixed !) but equal to the speed of light at r ! 1. In

this case the solution is created by twowaves with different
phases. Since their amplitudes decay in different ways,
their combination makes the total phase velocity change
with location and, in fact, makes it infinitely faster than the
speed of light at some locations. These are the features
which are shared with our solution for the massless scalar
field in a curved space. Moreover, for a fixed finite r,
superluminality is again most pronounced for small !,
while for large frequencies we have vp � 1.

VI. CONCLUSIONS

In this paper we analyzed the question of the speed at
which potentials propagate in curved space-time. While
finding an answer is easy in flat space, it becomes highly
nontrivial in curved space-time. The difficulties range from
finding an exact solution for the Green’s function to choos-
ing the right definition of the propagation speed. To avoid
gauge and other ambiguities, we considered the massless
scalar potential. We located the scalar charge whose mag-
nitude was changing in time at the origin in a spherically
symmetric space-time and found the solution for different
frequency modes for this configuration. A nonmoving
particle does not emit real scalar field quanta, but what is
changing in the system is the phase of the field. We found
that the phase velocity is not constant but changes from
point to point. Moreover, in the specific case of the
Schwarzschild geometry, it is always greater than the
coordinate speed of light at any given point. In an extreme
limit, exactly at the horizon, the phase velocity becomes
infinity faster than the speed of light at that point (which is
actually vanishing). In fact, this feature is required if a
black hole is going to communicate information about its
potential which is presumably located at the horizon to the
outer world.
It is important to note that the phase velocities v! for

different frequency modes (labeled by the frequency!) are
different for each mode, and in general they are different
from the local speed of light. Also, the amplitudes of
different frequency modes (f! in the text) have different
r dependence. These two facts make the curved space case
quite different from the flat space and explain why it was
impossible to find a uniform propagation mode like in flat
space [see Eq. (2)]. Since the propagation is dispersive, the
high-frequency limit of the phase velocity will determine
causality. Since the phase velocity approaches the speed of
light at high frequencies, causality is preserved in our case.
The cases of the electromagnetic and gravitational

potentials are more complicated because of the nonzero
spin. However, they are also massless fields and will per-
haps have some similar properties. In particular, we expect
the retarded electromagnetic and gravitational potential
from a nonmoving source to propagate at a speed different
from the speed of light. In other words, the average veloc-
ities of virtual photons and gravitons should not be the same
as for real photons and gravitons in curved space-times.
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A related question can be asked in the context of gravi-
tational lensing. If the retarded gravitational potential of a
static source travels with a finite speed (not necessarily
the speed of light), it must experience the effect of the
gravitational lensing, just as the light does. This would
imply that the gravitational lensing effect on gravitons
should be able to amplify or reduce the strength of gravity
from a given static source [17]. In Ref. [18], several ex-
amples were constructed to emphasize that the gravitational
lensing could affect real gravitons but could not lens any
static gravitational field potential (though the static poten-
tial could be affected to some extent). However, the sources
used in these examples were infinite planes, and not point
sources, so the conclusions are perhaps not general.

If our conclusions for the scalar field hold for gravitons
as well, then the static gravitational potential could propa-
gate at any finite speed (except in the extreme case of the
black hole horizon, where it should be infinite) depending
on the curved background. Since this speed is finite and
position-dependent, the effect of gravitational lensing of
gravity should exist, though the magnitude of the effect
should be different from the gravitational lensing of the
light because of the different speed of propagation. It is
interesting that one of the possible explanations of the
Pioneer anomaly [19] is the focusing of gravity at around
25 AU [17], exactly where the Pioneer anomaly arises.
This could be a hint that gravity is bent near our Sun [20],
of course if the real explanation is not something more
conventional, like the thermal radiation pressure [21,22].

At the end we would like to compare our findings with
the existing similar results in the literature, e.g., Refs. [1,2].
In Ref. [1], using the Casimir effect, the authors showed
that vacuum polarization effects may lead to superluminal
propagation of photons in between the plates (since the
vacuum polarization effects are suppressed there). While
this is a flat space result, it is indicative that superlumin-
ality may arise in completely physical setups. In Ref. [2],

it was argued that the quantum corrections in curved
space-time are able to introduce tidal gravitational forces
on the photons which in general alter the characteristics of
propagation, so that in some cases photons travel at speeds
greater than unity. In that case it is actually the low-
frequency limit of the phase velocity that is superluminal.
This indicates that propagation of quantum fields in curved
space-time is a very nontrivial problem, and surprising
results may be derived. It should be noted that superlumin-
ality does not always lead to paradoxes, since in both of the
above mentioned cases it is impossible to send signals
backward in time. While work presented in Refs. [1,2] is
perturbative, our analysis is exact, since it based on the
exact solution of the Green’s function in curved space-
time. It is interesting that our analysis also indicates that
lower-frequency modes propagate faster than high-
frequency modes, in good agreement with Ref. [2].
Finally, we emphasize again that we found only the

phase velocity to be superluminal. If the group velocity is
not superluminal, then the Green’s function does not have
support outside the light cone, and causality is preserved.
Strictly speaking, a second-order linear wave equation
cannot have a wave front propagating faster than the speed
of light. However, this statement does not affect the veloc-
ity of an individual frequency component of the phase. It is
only when one takes into account all the frequencies
(where the higher frequencies give the dominant contribu-
tion) that one has to obey that statement.
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