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The bimetric variational principle is a subtle reinterpretation of general relativity that assumes the

spacetime connection to be generated by an independent metric. Unlike the so-called Palatini formalism

that promotes the connection into a fundamental field, the new variational principle results in a physically

distinct theory since the potential for the connection carries new degrees of freedom. Also, the connection-

generating metric naturally allows an antisymmetric component. This sets torsion propagating. It is also

shown here that while in the most straightforward generalization of the Einstein-Hilbert action the

nonmetric degrees of freedom become ghosts, there exists very simple actions which give rise to viable

theories at the linearized level when subjected to the bimetric variational principle. However, the nonlinear

interactions might bring unpleasant features like the Boulware-Deser ghost. This remains to be explored

since this new type of bimetric theories does not, in principle, lie in the class of usual bimetric theories

where nonlinear interactions inevitably come in with new ghost-like degrees of freedom.
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I. INTRODUCTION

Gravity is unique among the fundamental interactions of
nature because, while electroweak and strong interactions
occur between particles in a background spacetime, gravity
describes the dynamics of the spacetime itself. The relation
of gravity with the geometrical properties of spacetime
lies at the heart of one of the most successful theories of
physics, general relativity (GR). An issue of paramount
importance is then to identify the degrees of freedom
associated with the spacetime geometry.

In GR, the dynamics of spacetime is described solely by
its metric. However, from differential geometry we know
that spacetime, when described as a manifold, can be
endowed also with an affine structure. To formulate physi-
cal theories of gravitation, it is indeed necessary to intro-
duce both metric and affine structures [1]. Firstly, the need
for measuring distances between two spacetime points1 or,
equivalently, for measuring angles between vectors, forces
us to introduce a metric structure. The affine connection is
then needed to parallel transport vectors from one space-
time point to another. The concept of parallelicity is, in
principle, independent of the metric structure. In GR how-
ever, the following relation is postulated:

��
�� ¼ 1

2
g��ðg��;� þ g��;� � g��;�Þ: (1)

Thus, the connection is set to be the Levi-Cività, which
clearly is a very special choice. It is symmetric and metric-
compatible, i.e., r�g�� ¼ 0. When the latter condition is

violated, we have non-metricity, which in general corre-
sponds to D2ðDþ 1Þ=2 independent degrees of freedom in
a D-dimensional spacetime. If the connection has an anti-
symmetric component, we are said to have torsion, which
adds D2ðD� 1Þ=2 independent degrees of freedom.
Recently, it has been proposed that the spacetime con-

nection could be generated by an independent metric [2].
Then, if we call this new metric ĝ��, it acts as the potential

for the spacetime connection as

�̂ �
�� ¼ 1

2
ĝ��ðĝ��;� þ ĝ��;� � ĝ��;�Þ: (2)

In the C-theories of gravitation [3,4], a conformal relation
is assumed between the two metrics, ĝ�� ¼ CðRÞg��,

where R ¼ g��R̂��ð�̂Þ is the curvature of the spacetime.

The C-theories introduce completely new theories and
unify Einstein gravity and the so-called Palatini gravity
which correspond to specific choices of the conformal
relation CðRÞ. To sum up, Einstein’s GR imposes the
a priori rule (1) for the connection, and the C-theories
are a conformal generalization of this rule. An alternative
approach is not to prescribe a rule for the connection, but
consider the connection-generator ĝ�� as an independent

tensor field. This approach we call the (unconstrained)
bimetric variational principle. There the conformal degree
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1Actually, the existence of a metric in a space is a stronger

condition than the existence of a distance function, but we shall
assume that such a distance function is the one compatible with a
scalar product.
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of freedom adds effectively a massless scalar field [2]. This
already shows that the resulting theory is physically dis-
tinct from metric GR, but what happens to the other
degrees of freedom remain to be clarified. This is what
we pursue in this study.

However, it is first useful to briefly comment upon the
difference of our new approach to the standard metric-
affine variational principle [5]. The latter, often called the
Palatini variation, promotes the connection into a funda-
mental field. It is well known that for the Einstein-Hilbert
Lagrangians coupled to nonspinning matter the Palatini’s
device results in GR,2 whereas for many classes of
Lagrangians it generates underdetermined field equations
[7,8]. More recent studies have discovered more problem-
atical aspects of the resulting theories3 [10–13], though
they have some attractive properties in view of cosmology
and even quantum gravity phenomenology, see the review
[14]. From different viewpoints, the culprit for the prob-
lems has been identified as the nontensorial nature of the
connection field [3], the mixing of the metric-affine and
Riemannian frameworks [15,16], and the lack of dynamics
[17]. Adopting the bimetric variational principle removes
all these possible issues.

In Sec. II we will derive the connection from a general
tensor potential up to the leading order. In Sec. III we shall
analyze the antisymmetric sector of the theory. There
appears an interesting model with propagating torsion. In
Sec. IV we analyze the symmetric sector of the theory, and
find that when applied to an action that is linear in the
curvature, additional ghost degrees of freedom appear. This
rules out the bimetric variational principle when applied to
the simple Einstein-Hilbert-like action. This leads us to
consider a deformation of this action. Indeed, in Sec. V we
show that, by adding a standard Einstein-Hilbert term, the
transverse traceless ghosts can be exorcised, although then
the conformal mode becomes problematic. We conclude in
Sec. VI.

Throughout the paper a mostly plus signature of the
metric is used ð�;þ;þ;þÞ.

II. THE BIMETRIC VARIATIONAL PRINCIPLE

Our starting point is to imagine ĝ�� such that we need

not have �̂�
½��� ¼ 0, while according to (2) we have

r̂ �ĝ�� ¼ 0: (3)

The field ĝ�� should be nondegenerate in order to have a

well-defined inverse ĝ��. Since this field is nothing but the
potential for the geometric connection, we do not need to
impose further constraints on it. In particular, since it does

not correspond to physical distances, it does not need to
be symmetric ĝ�� � ĝ��. We are, thus, led to consider the

action

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

16�G
g��R̂��½�̂ðĝ��Þ�

þLm½c �; r̂c �; g���
�
; (4)

where c � denotes the matter fields. Apart from a couple of
hats added, this action is just the usual Einstein-Hilbert
action. However, the differences are profound, as we shall
find in the following. In order to proceed further we shall
split the metric potential into its symmetric and antisym-
metric components, namely:

ĝ �� ¼ �g�� þ ��� (5)

with �g�� ¼ ĝð��Þ and ��� ¼ ĝ½���, and we assume that

they are not degenerate. Then, if we insert this decompo-
sition into (3) we obtain the two sets of equations:

r̂ � �g�� ¼ 0; (6)

r̂ ���� ¼ 0: (7)

These equations determine the connection �̂�
�� in terms of

�g�� and���. Now, in order to give a more intuitive view of

the theory, we shall also split the connection as

�̂ �
�� ¼ ���

�� þ S��� (8)

with ���
�� ¼ �̂�

ð��Þ and S��� ¼ �̂�
½���. Then, Eqs. (6) and (7)

will give us �� and S in terms of �g and�. This completes the
exposition of the bimetric variational principle. It is clear
we can decompose the fundamental degrees of freedom in
gravity in this setup to the usual metric, plus the symmetric
and the antisymmetric pieces of the connection-generating
potential. We shall investigate each of the latter sectors
separately.
In the following we shall restrict to perturbative order.

A perturbative solution to the equations above is given
by [18]:

�� �
�� ¼ 1

2
�g��ð@� �g�� þ @� �g�� � @� �g��Þ; (9)

S��� ¼ 1

2
�g��ð �r���� þ �r���� � �r����Þ; (10)

where �r is the covariant derivative for the connection ��.
This perturbative solution has been obtained at first
order in �, assuming that it is small as compared to the
symmetric part.
The bimetric variational principle proposed here differs

from other bimetric theories of gravity in several aspects.
Concerning the theories in which one of the fields play
the role of background metric and it is nondynamical, the
difference is clear since we have the two metrics that are

2To be precise, one needs to assume further conditions on the
connection to uniquely recover GR in the Palatini formalism (see
for instance Ref. [6]).

3Some of the problems are cured when one considers a hybrid
metric-Palatini theory [9].
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dynamical. Thus, our variational principle could only be
equivalent to bimetric theories in which the two fields are
dynamical. Moreover, one of our fields carry a nonsym-
metric component, so it could only be equivalent to bimetric
theories with torsion. In any case, as we shall see later, when
the antisymmetric part of ĝ�� is small, it decouples from the

symmetric component at quadratic level and one could
expect the resulting action for the symmetric component
to be equivalent to existing bimetric theories. To show that
this is not necessarily the case, let us consider the usual
theories with two dynamical metrics f�� and g�� that

interact through a certain potential described by the action:

S½f��; g��� ¼ 1

M2
f

Z
d4x

ffiffiffiffiffiffiffi�f
p

RðfÞ

þ 1

M2
g

Z
d4x

ffiffiffiffiffiffiffi�g
p

RðgÞ þ Sint½f��; g���:

(11)

In this theory, the interaction term contains non-derivative
couplings between the two metrics. However, in our pro-
posed bimetric variational principle, the coupling between
the two spin-two fields is only through derivative interac-
tions. In particular, it seems apparent that one cannot re-
cover the Fierz-Pauli action for a massive spin-two field
from our variational principle for the linearized theory as
one would require for Sint. We shall explicitly show this
below. Thus, we do not expect the results obtained in those
theories to be directly applicable to our case.

Another difference appearing in our bimetric variational
principle is that the field ĝ�� only appears as an auxiliary

field, or in other words, it is a tensor potential for the
connection of the spacetime. In that sense, this field is
not physical and only the curvature generated by it can
have physical effects, i.e., it can only appear through its
associated curvature. This is crucially different from other
bimetric theories because there, both metrics are physical.
This can be used as a guiding principle to addmore terms in
the action since ĝ cannot appear directly, but only through

R̂�
��	 and its contractions with the spacetime metric g��.

III. THE ANTISYMMETRIC SECTOR

An interesting consequence of the restored dynamics is
propagating torsion. At the classical level, torsion proves to
be essential for total angular momentum conservation
when intrinsic spin angular momentum is relevant (for
reviews on torsion, see Refs. [19,20]). On the other hand,
at the quantum level, a covariant version of Dirac equation
also requires the presence of a torsion. This necessity roots
on the mass-reversal symmetry4 of the Dirac equation

when we want it to be a local symmetry, as required by
special relativity. This could arguably be seen as one of the
indications that torsion must be present in a fundamental
theory of gravity, as discussed in Ref. [21]. As we will
show below, and contrary to the metric-affine variation,5

the bimetric variation procedure naturally yields a dynami-
cal torsion field.
Let us now consider the decomposition in (8). As one

might expect, the symmetric component of the connection
is nothing but the Levi-Cività connection of �g��, i.e.,

6

�r� �g�� ¼ 0, and the torsion field is determined by the

antisymmetric component of the metric potential. An im-
portant constraint satisfied by S��� is that it is traceless

S��� ¼ 0, as can be directly seen from the above expres-

sion. Then, it is straightforward to write down the Ricci

tensor in terms of ���
��

and S���
:

R̂��ð�̂Þ ¼ R̂��ð ��Þ þ @�S
�
�� þ ���

��S
�
��

� 2 ���
�½�S

�
��� þ S���S

�
��; (12)

where we have used the traceless property of the torsion
tensor. Thus, when we plug this expression into the action,
we obtain the following:

S ¼ 1

16�G

Z
d4x

ffiffiffiffiffiffiffi�g
p

g��½R̂��ð ��Þ þ S���S
�
���: (13)

Once again, this action might not seem to be new in the
sense that it reproduces the usual Einstein-Hilbert action in
the presence of torsion. However, there is a crucial differ-
ence. The torsion field itself is not the fundamental field,
but it must be expressed in terms of �g and �, since it is
from them that the antisymmetric part of the spacetime
connection emerges. Thus, the fundamental fields of this
theory are g��, �g��, and ���. At first sight, the true

spacetime metric tensor g�� might not seem to be dynami-

cal because there is no kinetic term for it. This, however,
turns out to be wrong because the equations of motion for
�g�� will actually give evolution equations for g��. Another

interesting feature of the above action is that since S���

depends on first derivatives of ���, we indeed obtain a

propagating torsion field even for the simple Einstein-
Hilbert term. Indeed, Eq. (10) can be recast in the follow-
ing form:

S��� ¼ �g�

�
1

2
F
�� � �r
���

�
; (14)

where F��� is the strength field tensor of ��� (Kalb-

Ramond field), so that the gravitational action can also
be written as:

4The mass reversal symmetry of the Dirac equation for the
spinor field c with mass m consists of the combined trans-
formations: c ! ei��

5
c and m ! �m.

5The metric approach can be rendered equivalent by a slight
change of the Lagrangian [22].

6The reader should be careful not to get confused between r̂
and �r.
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S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p g��

16�G

�
R̂��ð ��Þ þ �g�
 �g��

�
�
1

2
F
�� � �r
���

��
1

2
F��� � �r����

��
; (15)

where the dynamical origin of the torsion field becomes
apparent. If we assume that the antisymmetric component
of the connection potential ��� can be derived from a

potential, i.e., � ¼ d
, then F ¼ 0 and we obtain a gauge-
fixing-like term for �. However, if we promote 
 into the
fundamental field instead of �, we will obtain higher order
equations of motion that could potentially introduce
Ostrogradsky instabilities. Another possibility would be
to make the torsion field be proportional to the Kalb-
Ramond field so that the effective action becomes nothing
but the standard Faraday action for a two-form. The stabil-
ity of the antisymmetric part may indeed require us to
impose this constraint [23]. This could, for instance, be
achieved by imposing a gauge symmetry on the torsion
sector, as it happens for instance, when one assumes that
the torsion is fully derived from a tensor potential [24]. In
any case, stability of each particular possibility should be
carefully studied.

IV. THE SYMMETRIC SECTOR

Next we study the stability of the symmetric piece. For
this purpose, in the following we shall consider the per-
turbed theory around GR so that:

�g�� ¼ g�� þ �h�� (16)

with �h�� a small perturbation. Since we focus on the

symmetric sector in this section, let us neglect the contri-
bution from ���. This allows us to extend some of the

results beyond linear perturbations.
To proceed, we first notice that the inverse metric can be

found as

�g�� ¼ ½ðgþ �hÞ�1��� ¼ ½ðIþ g�1 �hÞ�1���g��

¼
�X1
n¼0

ð�g�1 �hÞn
�
�

�
g��; (17)

where ð�g�1 �hÞ0 � I, the unit matrix, and demanding that
the series be convergent gives a precise meaning to the
smallness of �h.

Now, the connection coefficients read

���
�� ¼ 1

2
�g��ð@� �g�� þ @� �g�� � @� �g��Þ

¼ 1

2

�X1
n¼0

ð�g�1 �hÞn
�
�

�

� ð2��
�� þ g��ð@� �h�� þ @� �h�� � @� �h��ÞÞ: (18)

At the 0th order in �h it gives, of course, ��
��. At the n-th

order, n � 1, one has to use the n-th term of the sum with

the first term in the brackets on the right, and the (n� 1)-th
term in the sum with the second term in the brackets. It
yields

��
�
�� ¼ �

�
�� þ

�X1
n¼0

ð�g�1 �hÞn
�
�

�

�
1

2
g��ð@� �h��

þ @� �h�� � @� �h��Þ � g�� �h���
�
��

�
(19)

¼ �
�
�� þ 1

2

�X1
n¼0

ð�g�1 �hÞn
�
�

�

� g��ðr�
�h�� þr�

�h�� �r�
�h��Þ: (20)

An interesting feature is that

	��
�� ¼ 1

2
�g��ðr�

�h�� þr�
�h�� �r�

�h��Þ; (21)

where the matrix �g should be regarded as a function of
matrices g and �h. From the last expression we see that

	��
�� ¼ 1

2
�g��r�

�h�� (22)

due to the symmetry of the metric �g��. It also holds true at
the linear level in �h because the zeroth order approximation
to �g is equal to g which is also symmetric. Note that,
generically, if we approximate the series for ĝ only by
terms with 0 � n � N, then the sum would not be sym-
metric. However, its asymmetry is always next order in �h.
Indeed,

�XN
n¼0

ð�g�1 �hÞn
�
�

�
g��

¼
��X1

n¼0

ð�g�1 �hÞn
�
�

�
�

� X1
n¼Nþ1

ð�g�1 �hÞn
�
�

�

�
g��

(23)

¼ ½I� ð�g�1 �hÞNþ1�
�X1
n¼0

ð�g�1 �hÞn
�
g�1

¼ ½I� ð�g�1 �hÞNþ1���g��:
(24)

Next, it is necessary to evaluate the Ricci tensor,

�R�� ¼ @� ��
�
�� � @� ��

�
�� þ ���

��
���
�� � ���

��
���
��: (25)

Substituting ���
�� ¼ ��

�� þ 	��
��, where the tensor quan-

tity 	��
�� is already known from Eq. (19) in the form of

convergent (for small enough �h) power series, we easily get

�R�� ¼ R�� þr�	�
�
�� �r�	�

�
��

þ 	��
��	�

�
�� � 	��

��	�
�
��: (26)
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The derivative part of the Ricci tensor variation is purely a
surface term, and can be neglected.7 Then, the resulting
action is:

S¼ 1

16�G

Z
d4x

ffiffiffiffiffiffiffi�g
p ðRþg��ð	��

��	�
�
���	��

��	�
�
��ÞÞ

¼ 1

16�G

Z
d4x

ffiffiffiffiffiffiffi�g
p

Rþ 1

16�G

Z
d4x

ffiffiffiffiffiffiffi�g
p
4

�
�X1
n¼0

ð�g�1 �hÞn
�
�

�
g��

�X1
m¼0

ð�g�1 �hÞm
�
�

�

�g�
½r�
�h��ð2r�

�h
�

�r


�h
�
�Þ

�ðr�
�h��þr�

�h���r�
�h��Þ

�g��ðr�
�h�
þr�

�h�
�r

�h��Þ�: (27)

We see that the added ingredient is just a symmetric tensor
field �h possessing a quadratic in r �h action, although with
nonlinear in �h nonderivative coefficients. At the first
(quadratic) order the coefficient in front of the covariant
derivatives reduces simply to 1

4g
��g�
. (In general, this

coefficient is equal to 1
4
�g�� �g�
 as a function of g and �h.

And this is actually a nonperturbative result as long as ���

vanishes, valid at any, not necessarily small, values of �h.)
In this limit, the action in Eq. (27) is just equivalent to the
linearized Einstein-Hilbert action:

S¼ 1

16�G

Z
d4x

ffiffiffiffiffiffiffi�g
p �

Rþ1

4
ð@� �h��@

� �h���2@� �h��@
� �h

�
�

þ2@� �h��@� �h���@� �h��@
� �h��Þ

�
; (28)

where we have assumed that the metric g�� is the

Minkowski one, and therefore, all covariant derivatives
are substituted by the ordinary ones.

One of the two gravitons has inevitably ghost excitations.
Indeed, we were assuming the diagð�;þ;þ;þÞ-signature
of the metric throughout the paper which implies that the
�h-field is a tensor ghost. Of course, if we switch to the
opposite sign convention, then the �h-field is healthy. But
after separating it, we have the GR action / R

d4x
ffiffiffiffiffiffiffi�g

p
R

while with the new convention, it must have an opposite
sign. Let us demonstrate the problem explicitly by expand-
ing the metric g�� around the Minkowski spacetime g�� ¼
��� þ h��. The second order action for h acquires the form

Sð2Þ ¼ 1

16�G

Z
d4x½ ffiffiffiffiffiffiffi�g

p
g��ð	ð2ÞR��Þ

þ ð	ð1Þð ffiffiffiffiffiffiffi�g
p

g��ÞÞð	ð1ÞR��Þ�: (29)

The first term we already know from Eq. (26), 	ð2ÞR�� ¼
	��

��	�
�
�� � 	��

��	�
�
�� þ surface terms, and it gives pre-

cisely the same action for h as the action for �h in Eq. (28).

However, it is not yet the end of the story. With 	ð1ÞR�� ¼
@�	�

�
�� � @�	�

�
�� and 	ð1Þð ffiffiffiffiffiffiffi�g

p
g��Þ¼�h��þ1

2h
�
��

��,

we write the second term in (29) in the form

1

2

�
�h�� þ 1

2
h���

��

�
ð@2��h�� þ @2��h

�
�

� @2
�

�h�� � @2��h
�
�Þ; (30)

which after some integration by parts transforms to

� 1

2
ð@�h��@

�h�� � 2@�h��@
�h

�
�

þ 2@�h
��@�h

�
� � @�h

�
�@

�h��Þ (31)

and together with the first part, it gives the final result:

Sð2Þ ¼ � 1

64�G

Z
d4x½@�h��@

�h�� � 2@�h��@
�h��

þ 2@�h
��@�h

�
� � @�h

�
�@

�h���: (32)

We see that the tensor modes hðTTÞik are ghosts, where TT
stands for spatially transverse and traceless.
The total second order action for both types of pertur-

bations acquires the form

Sð2Þ ¼ 1

16�G

Z
d4x

�
1

4
ð@� �h��@

� �h�� � 2@� �h��@
� �h��

þ 2@� �h��@� �h�� � @� �h��@
� �h��Þ �

1

4
ð@�h��@

�h��

� 2@�h��@
�h

�
� þ 2@�h

��@�h
�
� � @�h

�
�@

�h��Þ
�
:

(33)

At this level we have two separate diffeomorphism invar-
iances (one of which is fake), and therefore, cannot judge
upon the scalar and vector degrees of freedom. However,
we definitely see that the two types of tensor modes do
have opposite signs of kinetic functions.

7Nevertheless, those derivatives can also be presented in a nice
convergent form. The only ingredient we need is the covariant
derivative of the power series

X1
n¼0

ð�g�1 �hÞn � X1
n¼0

ð�hÞn;

where the h-matrix simply denotes the �h
�
� -field. It is easy to see

that differentiating the ð�hÞn term one gets n terms with�rh in
all possible positions. If we differentiate the whole sum, but
consider only the terms with ð�hÞm to the right from �rh, then
there would be exactly one possible term with any fixed power of
�h to the left, where ð�hÞk comes from the differentiation of
ð�hÞmþkþ1 term in the initial sum. Therefore, it is easy to see
that

r�

�X1
n¼0

ð�hÞn
�
�

�
¼ �

�X1
m¼0

ð�hÞm
�
�

�
ðr�

�h
�

Þ
�X1
k¼0

ð�hÞk
�



�
:

Obviously, this formula generalizes the differentiation rule for a
function fðxÞ ¼ ð1þ gðxÞÞ�1.
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In summary, the theory is full of ghosts, at least in the
simplest version of this class of models which we have
just considered. After all, it is probably not that surprising.
Let us forget about the tensor nature of the metric fields.
We take two scalar variables instead, x for ĝ and y for g.
Suppose we have an action of the form S ¼ R

dtð €xþ _x2Þy,
somewhat analogous to our gravity model. Integrating
by parts we have S ¼ R

dtð� _x _yþ _x2yÞ. After diagonaliz-
ing this action we get S ¼ R

dtyðð _x� 1
2

_y
yÞ2 � 1

4
_y2

y2
Þ ¼R

dtez½ð _x� 1
2 _zÞ2 � 1

4 _z2�, where z � logy, and see that

one of the modes is always a ghost. Finally, it is interesting
to note that no mass terms appear at this level for any of the
metrics, as it was expected from our discussion above
pointing out the differences of this theory with usual bimet-
ric theories. The reason for the absence of the mass term is
that, even though the fields will interact at higher orders, all
the interactions will be through derivative couplings.

V. ON MORE ELABORATE THEORIES

To render the theory viable, we have to reconsider our
action. Avery simple way to extend the previous version of

the theory is to consider the curvature R ¼ g��R̂�� to be

added to the usual Einstein-Hilbert term R ¼ g��R��.

This way it loses some of the elegance, but we can use it
as a proof of concept. Let us say the relative coupling
strength of the nonmetric degrees of freedom is given by
the parameter 0< �̂ < 1. This adds one parameter to the
theory that can then, in principle, be constrained by the
experimental tests of gravity. So, we write the action as

S ¼ 1

16�G

Z
d4x

ffiffiffiffiffiffiffi�g
p

g��ðR�� � �̂R̂��Þ: (34)

Using the calculations of the previous section, it is easy to
see that at quadratic order and with Newton’s constant
renormalized by G ! G=ð1� �̂Þ, the action becomes:

Sð2Þ ¼ � 1

64�G

Z
d4x

�
ð@�h��@

�h�� � 2@�h��@
�h

�
�

þ 2@�h
��@�h

�
� � @�h

�
�@

�h��Þ þ
�̂

1� �̂

� ð@� �h��@
� �h�� � 2@� �h��@

� �h�� þ 2@� �h��@� �h��

� @� �h��@
� �h��Þ �

4�̂

1� �̂
S���S

�
��

�
; (35)

where now the two graviton fields are healthy as long as8

0< �̂ < 1. That is, we obtain two copies of a massless
spin-two field plus the two-form field determining the
torsion of the geometric connection. It is remarkable that
perturbations in both symmetric fields h�� and �h�� happen

to acquire the usual kinetic term of linearized GR, which is
well known to be precisely the only viable action for pure

massless spin-two fields9 [23]. Thus, at the leading order,
we have two sets of spin-two fields entering into the action
in a symmetric way. When matter is present, this symmetry
is broken. Standard bosonic matter fields couple only to the
spacetime geometry given by g��. This, for instance, is the

case for scalar fields with standard kinetic terms or gauge
(both Abelian and non-Abelian) fields constructed out of
their strength fields.10 Of course, when nonminimal cou-
plings are present, matter fields will also couple to ĝ��.

This will be, for instance, the case of scalar fields [26] with
higher order derivative terms, like K-essence or Galileon
fields, or vector fields with direct couplings to curvature.
On the other hand, fermionic matter like spinor fields are
nonminimally coupled to the spacetime connection, and
thus will also always act as a source for ĝ��. Since a Dirac

field only couples to the totally antisymmetric part of the
torsion field, such a coupling will be mediated by F���,

which is defined after (14). Of course, fermionic fields with
higher spin will couple to the other components of the
torsion field. Notice that, whereas nonminimal couplings
of bosonic fields will lead to classical effects, fermionic
matter can only give rise to effects at the quantum level.
However, since the geometric connection has a nonsym-
metric part, i.e., torsion, one could couple this connection
to fermionic fields, whereas bosonic fields would only
couple to the matter connection. Moreover, the considered
distinction between the metric and affine structures of
the physical spacetime resolves the covariantization of
the Dirac equation that leads to the need of a connection
with torsion, as explained above. One may even speculate
on making contact with supersymmetry by a possible
relation of ĝ�� with the supersymmetric partner of the

graviton that couples to fermions [27,28].
To end, let us mention one important issue. The

problematic part of quantizing Einstein gravity, and a
big obstacle on the way of deforming it classically, is
the conformal degree of freedom. There is indeed a
scalar mode with the negative sign of kinetic function.
Fortunately for classical GR, it is killed by the gauge
invariance. However, once you break it, you should expect
some problems to come about, such as the sixth mode or
the Boulware-Deser ghost. In this bimetric context, we
encounter the mirror image of this problem. Since the
conformal degree of freedom for the action (4) is a healthy
scalar field [2], it seems that by curing the other nonmetric
degrees of freedom in the theory (34), essentially by the

8This is true for the signature convention with
diagð�;þ;þ;þÞ.

9Though recently, the result was generalized to nonlocal
theories [25].
10This statement depends on how we decide to covariantize the
definition of the strength field. Let us consider the electromag-
netic field defined in flat spacetime as F�� ¼ @�A� � @�A�. If
we just replace partial derivatives by covariant derivatives, F��

will acquire a term involving torsion. However, if we define the
strength field as the exterior derivative of A�, we do not have
couplings to the connection.
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minus sign in front of the coupling �̂, we have flipped the
conformal mode into a ghost-like scalar. A simple way out
would be a prescription where the conformal difference
between the two metrics is not allowed to propagate.11

Whether this is actually necessary in order to construct
theories that are completely ghost-free to any order in
perturbation theory is a problem we cannot address within
the scope of the present study.

VI. CONCLUSIONS

The results presented here invite a study of the nonlinear
theory with the use of the bimetric variational principle.
The main difficulty to go beyond the linear regime is to
fully solve Eqs. (3) that give the connection in terms of the
potential metric fields expressed by means of �g�� and���.

Let us note that recently, in the context of ghost-free mas-
sive gravity, the nonlinear couplings of two metrics that
avoid the Boulware-Deser instability, have been discovered
[29–33]. Whether we can obtain those couplings from the
bimetric variational principle remains to be explored. Also,
because of the natural presence of propagating torsion in the
considered bimetric formalism, some relations with torsion
massive gravity, in which the torsion field provides the
graviton with a mass [34,35], would be interesting to study
further.

To conclude, in this paper we intended to present a new
variational principle in which the affine connection is

derived from a general tensor potential, which is different
from the spacetime metric. We have studied the linear
regime and found that the theory is equivalent to GR plus
an additional pure spin-two field and a two-form leading to
propagating torsion. However, the healthiness of the addi-
tional spin-two field forced us to consider a more compli-
cated action (34) than the one consisting merely of a term
linear in the curvature R. Unfortunately, having cured the
tensor modes, we rendered the conformal degree of free-
dom problematic. It remains to be seen whether it is
possible to construct a completely viable theory in this
formalism. In this respect, it is worth mentioning that the
proposed bimetric theory is, in principle, different from
those already existing in the literature so that the results
about their stability cannot be directly applied to the
present case.
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