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We investigate the evolution of the Universe filled with barotropic perfect fluid in Eddington-inspired

Born-Infeld gravity. We consider both the isotropic and the anisotropic universe. At the early stage when

the energy density is high, the evolution is modified considerably compared with that in general relativity.

For the equation-of-state parameter w> 0, the initial singularity is not accompanied as it was discovered

for radiation in earlier work. More interestingly, for pressureless dust (w ¼ 0), the initial state approaches

a de Sitter state. This fact opens a new possibility of the singularity-free nature of the theory. The

anisotropy is mild, and does not develop curvature singularities in spacetime contrary to general relativity.
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I. INTRODUCTION

Einstein’s theory of general relativity (GR) formulated
in 1916 is very successful in agreement with many phe-
nomenological and experimental results. However, it is
well-known that GR suffers from the singularity problem
which seems to be unavoidable in the beginning of big bang,
or at the center of black holes. Very recently, Bañados
and Ferreira suggested an alternative theory inspired by
Eddington’s theory of gravity [1]. This Eddington-inspired
Born-Infeld (EiBI) theory of gravity requires only onemore
parameter � other than the gravitational constant G, which
is reviewed below.

In Ref. [1], the authors showed that the EiBI theory in
vacuum is equivalent to GR, while it deviates from GR in
the presence of matter. Most interestingly, the Universe
driven by radiation is free from the initial singularity; the
Universe experiences a bouncing with a finite size for
� < 0, or there is a state of minimum size for which one
takes infinite time to reach from the present for � > 0. The
latter is interpreted as the ‘‘nonsingular initial state’’ of the
Universe.

In Ref. [2], the authors considered the modification of
the Poisson equation in EiBI gravity, and obtained
singularity-free solutions for the compact stars composed
of pressureless dust and polytropic fluids. In Refs. [3,4], the
cosmological and astrophysical constraints on the EiBI
theory were studied. In Ref. [5], the constraint on the value
of the coupling parameter � was investigated by using the
solar model; the result does not rule out the EiBI theory as
a possible alternative to GR. A number of subsequent
articles studied the tensor perturbation [6], bouncing cos-
mology [7], the five-dimensional brane model [8], the

effective stress tensor and energy conditions [9] in EiBI
theory, etc.
The EiBI action considered in Ref. [1] is given by

SEiBI ¼ 1

�

Z
d4x

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�jg�� þ �R��ð�Þj

q
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�jg��j

q �
þ SMðg;�Þ; (1.1)

where jg��j denotes the determinant of g��, � is a dimen-

sionless parameter which is related to the cosmological
constant, and 8�G was set to unity. Then this theory
becomes a one-parameter (�) theory. In this theory the
metric g�� and the connection �

�
�� are treated as indepen-

dent fields (Palatini formalism).1 The Ricci tensor R��ð�Þ
is evaluated solely by the connection, and the matter filed
� is coupled only to the gravitational field g��.

According to the Palatini formalism, one should con-
sider the equations of motion by varying the action (1.1)
with respect to (w.r.t.) the fields g�� and ��

�� individually.

Variation of the action w.r.t. g�� leads to the equation of

motion,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�jgþ �Rjp
ffiffiffiffiffiffiffiffiffiffi�jgjp ½ðgþ �RÞ�1��� � �g�� ¼ ��T��; (1.2)

where ½ðgþ �RÞ�1��� denotes the matrix inverse. The
energy-momentum tensor T�� is given by the usual sense,

T�� ¼ 2ffiffiffiffiffiffiffiffiffiffi�jgjp �LM

�g��

: (1.3)
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1In the original Palatini formalism [10], the matter action SM
depends on �

�
�� as well as g��, and the connection is not

symmetric (there exists a torsion �
�
½���). However, in EiBI

theory, SM is assumed to depend only on g�� and the torsion
is assumed to be absent.
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For the variation of the action w.r.t. �, one introduces an
auxiliary metric q�� defined by

q�� � g�� þ �R��: (1.4)

Then the variation of the action (1.1) w.r.t. the connection
�
�
�� gives

r�
�q

�� ¼ 0; (1.5)

where q�� � ðq�1Þ�� is the matrix inverse of q��, and r�

denotes the covariant derivative defined by the connection
�. This equation is the metric compatibility which yields

��
	
 ¼ 1

2
q��ðq	�;
 þ q
�;	 þ q	
;�Þ: (1.6)

Therefore, Eq. (1.4) can be regarded as the equation of
motion since the Ricci tensor is evaluated in terms of q��
through the relation (1.6). Using Eq. (1.4), the first equa-
tion of motion (1.2) can also be simplified,ffiffiffiffiffiffiffiffiffiffi�jqjp

ffiffiffiffiffiffiffiffiffiffi�jgjp q�� ¼ �g�� � �T��: (1.7)

We would like to mention a couple of properties of the
equation (1.7). First, when T�� ¼ 0, the metric satisfies the
relation g�� ¼ q��=�. Then Eq. (1.4) becomes R�� ¼
�g��, where � � ð�� 1Þ=�. This implies that the EiBI

theory reduces simply to GR in vacuum. Second, the matter
field in EiBI couples only with the metric g��, so the

conservation law rg
�T�� ¼ 0 is expected to hold. Here,

rg denotes the covariant derivative defined by the
Christoffel symbol based on g��. In Appendix A, we

show that this really holds from Eq. (1.7).
In this paper, we investigate the Universe filled with

perfect fluid in EiBI theory. The perfect fluid drives the
Universe in a different manner from that in GR, since the
effective energy-momentum tensor is different.2 We pre-
cisely investigate the evolution of the Universe case
by case depending on the equation-of-state parameter
w ¼ P=� for barotropic fluid. We also investigate the
Kasner-type anisotropic universe. We analyze differences
from as well as similarities to GR in the results.

II. FIELD EQUATIONS WITH PERFECT FLUID

In this work, we consider barotropic perfect fluid of
which the energy-momentum tensor is given by

T�� ¼ ð�þ pÞu�u� þ pg��: (2.1)

For the Kasner-type anisotropic universe, the general
metric ansatz can be

g��dx
�dx� ¼ �dt2 þ e2�½e2ð
þþ

ffiffi
3

p

�Þdx2

þ e2ð
þ�
ffiffi
3

p

�Þdy2 þ e�4
þdz2�; (2.2)

and the auxiliary metric can be

q��dx
�dx� ¼ �X2dt2 þ Y2½e2ð �
þþ

ffiffi
3

p
�
�Þdx2

þ e2ð �
þ�
ffiffi
3

p
�
�Þdy2 þ e�4 �
þdz2�; (2.3)

where �, 
�, �
�, X, and Y are functions of t only.
With the above metrics, the nonvanishing components of

the equation of motion (1.7) are

� Y3

e3�X
þ � ¼ ���; (2.4)

XY

e3�þ2ð �
þþ
ffiffi
3

p
�
�Þ

� �

e2�þ2ð
þþ
ffiffi
3

p

�Þ

¼ � �p

e2�þ2ð
þþ
ffiffi
3

p

�Þ

;

(2.5)

XY

e3�þ2ð �
þ�
ffiffi
3

p
�
�Þ

� �

e2�þ2ð
þ�
ffiffi
3

p

�Þ

¼ � �p

e2�þ2ð
þ�
ffiffi
3

p

�Þ

;

(2.6)

XY

e3��4 �
þ
� �

e2��4
þ
¼ � �p

e2��4
þ
: (2.7)

From Eqs. (2.5) and (2.6), we get

�
� ¼ 
� and
XY

e�
¼ ð�� �pÞe2ð �
þ�
þÞ: (2.8)

Plugging these relations into Eq. (2.7), we get

�
þ ¼ 
þ and XY ¼ ð�� �pÞe�: (2.9)

From Eqs. (2.4) and (2.9), we have

X ¼ ð�� �pÞ3=4
ð�þ ��Þ1=4 and Y ¼ ½ð�� �pÞð�þ ��Þ�1=4e�:

(2.10)

With Eqs. (2.8) and (2.9), the nonvanishing components
of the equation of motion (1.4) become

�X2þ1¼3�

�
� d

dt

� _Y

Y

�
�
� _Y

Y

�
2þ _X

X

_Y

Y
�2ð _
2þþ _
2�Þ

�
;

(2.11)

Y2 � e2� ¼ �
Y2

X2

�
d

dt

� _Y

Y

�
þ

� _Y

Y
þ _
þ þ ffiffiffi

3
p

_
�
�

�
�
3

_Y

Y
� _X

X

�
þ ð €
þ þ ffiffiffi

3
p

€
�Þ
�
; (2.12)

2In Ref. [9], the effective energy-momentum tensor of perfect
fluid in EiBI was studied. However, the geometry part respond-
ing to the effective energy-momentum tensor was described by
the auxiliary metric. Therefore, the evolution of the Universe
was not very evident.

INYONG CHO, HYEONG-CHAN KIM, AND TAEYOON MOON PHYSICAL REVIEW D 86, 084018 (2012)

084018-2



Y2 � e2� ¼ �
Y2

X2

�
d

dt

� _Y

Y

�
þ

� _Y

Y
þ _
þ � ffiffiffi

3
p

_
�
�

�
�
3

_Y

Y
� _X

X

�
þ ð €
þ � ffiffiffi

3
p

€
�Þ
�
; (2.13)

Y2�e2�¼�
Y2

X2

�
d

dt

� _Y

Y

�
þ
� _Y

Y
�2 _
þ

��
3
_Y

Y
� _X

X

�
�2 €
þ

�
:

(2.14)

Equating (2.12), (2.13), and (2.14) for the anisotropic
factor, we get

€
� þ _
�
�
3

_Y

Y
� _X

X

�
¼ 0 ) _
� ¼ c�

X

Y3
; (2.15)

where c� is an integration constant. For the isotropic ex-
pansion, c� ¼ 0. Manipulating Eqs. (2.11), (2.12), (2.13),
and (2.14) with Eqs. (2.10) and (2.15), we get two equations
of motion for X and Y,� _Y

Y

�
2 ¼ 1

6�

�
1þ 2X2 � 3X4

ð�� �pÞ2
�
þ c2

X2

Y6

� fðX; Y; pÞ
6�

; (2.16)

d

dt

� _Y

Y

�
¼ _X

X

_Y

Y
� 1

2�

�
1� X4

ð�� �pÞ2
�
� 3c2

X2

Y6
; (2.17)

where c2 � c2þ þ c2� and

fðX; Y; pÞ � 1þ 2X2 � 3X4

ð�� �pÞ2 þ 6�c2
X2

Y6
: (2.18)

As mentioned earlier, the conservation law for the matter
is given by rg

�T�� ¼ 0 (see Appendix A). For perfect
fluid, it reduces to

_�þ 3 _�ð�þ pÞ ¼ 0: (2.19)

For barotropic fluid, the equation of state is given by p ¼
w�, and the solution to the above equation is given by

� ¼ �0e
�3ð1þwÞ� � �0a

�3ð1þwÞ; (2.20)

where we defined a � e� which we shall call the scale
factor.
Using Eqs. (2.10), (2.19), and (2.20), and p ¼ w�, the

Friedmann equation of the first kind (2.16) becomes

H2 � _�2 ¼ ð�� w��Þ2
6�

ð�þ ��Þ2 þ 2ð�� w��Þ3=2ð�þ ��Þ3=2 � 3ð�� w��Þð�þ ��Þ þ 6�c2ð�=�0Þ2=ð1þwÞ

½ð3=4Þ�wð1þ wÞð�þ ��Þ�� ð3=4Þ�ð1þ wÞð�� w��Þ�þ ð�� w��Þð�þ ��Þ�2 ;

(2.21)

and the equation for the anisotropic part (2.15) becomes

_
� ¼ c�
X

Y3
¼ c�

�e3� þ ��0e
�3w�

: (2.22)

III. EVOLUTION OF UNIVERSE

In this section, we investigate the evolution of the
Universe for various values of the equation-of-state parame-
terw by analyzing the two field equations (2.21) and (2.22).
We shall focus on the case of � > 0. The parameter � is
related to the cosmological constant.Although thevalue of�
is not restricted, in order to see the pure role of perfect fluid,
one can set the cosmological constant to zero (� ¼ 1). We
discuss our results mainly for � > 0.

A. w > 0

1. Nonsingular initial state

When �� w�� ¼ 0, i.e., at � ¼ �B ¼ �=w�, the ex-
pansion rate in Eq. (2.21) becomes zero, H ¼ 0. Let us
expand H2 about this point. We can write the energy
density and the scale factor as

� ¼ �B � " and a ¼ aB þ �; (3.1)

where " and � are small quantities. From Eq. (2.20),
we have

� ¼ �0a
�3ð1þwÞ ) �B � " ¼ �0ðaB þ �Þ�3ð1þwÞ

� �0a
�3ð1þwÞ
B

�
1� 3ð1þ wÞ

aB
�

�
: (3.2)

From this, we get the relations,

�B ¼ �0a
�3ð1þwÞ
B and " ¼ 3ð1þ wÞ�Ba

�1
B �: (3.3)

With the aid of these relations, H2 in Eq. (2.21) can be
expanded as

H2 � 8�w2½ð1þ wÞ2�2 þ 6�w2c2ð�B=�0Þ2=ð1þwÞ�
27ð1þ wÞ4�4

"2

¼ H2
0

�
a

aB
� 1

�
2
; (3.4)

where

H2
0 ¼

8

3�
þ 16w2c2

ð1þ wÞ2�a6B
: (3.5)

Note that the first term in H2
0 comes from the EiBI correc-

tion, and that the second term comes from the anisotropy
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with EiBI correction. From Eq. (3.4), we finally obtain the
scale factor

a � aB þ Ae�H0t; (3.6)

where A is an integration constant. We note that the ex-
panding solution is possible only for A > 0 considering the
definition of X and Y in Eq. (2.10). Therefore, we have the
expanding solution

aðtÞ � aB þ AeH0t: (3.7)

As it was studied for radiation (w ¼ 1=3) in Ref. [1], this
solution indicates that there could exist a nonsingular
initial state of the Universe. The Universe begins with a
finite scale factor aB, for which the Universe has a maxi-
mum value of energy density �B ¼ �=w�. However, it
takes infinite cosmological time to reach this state flushing
back in time. Therefore, there would be no horizon prob-
lem. From our result, this is true not only for the radiation-
dominated universe, but also for all the cases of w> 0 if
� > 0. (See Fig. 1.)

The Universe undergoes accelerating expansion in the
beginning, even when the cosmological constant is absent
(� ¼ 1). Later at the low-energy regime, the Universe
expands with deceleration as we shall see in the next
subsection. The e-folding depends on the parameters in-
volved, but from numerical calculations we observe that it
is order of unity�Oð1Þ as a whole. The e-folding becomes
considerably large �Oð10Þ as w ! 0. This can be inter-
preted as a limit of dust (w ¼ 0) in the next subsection.

2. Late-time evolution (� � �=w�)

When the energy density of the Universe becomes small
as the Universe expands, the Friedmann equation (2.21)
approximates as

H2 ¼ �� 1

3�
þ

�
1

3
� ð�� 1Þwðwþ 1Þ

2�

�
�

þ c2

�2

�
�

�0

� 2
1þw þOð�2Þ: (3.8)

The first term corresponds to the cosmological constant,
the second term is the linear dependence in � similar to GR
(but for � � 1 there is an EiBI correction in the coeffi-
cient), and the third term is the correction purely from the
anisotropic expansion. The anisotropic term is dominant
over the linear term for w> 1 in the low-energy limit.
When the cosmological constant is absent (� ¼ 1), the

expansion becomes

H2 � 1

3
�þ c2

�
�

�0

� 2
1þw

; (3.9)

which has no � dependence. Therefore, we can conclude
that the late-time expansion of the Universe approximates
to that in GR. When the cosmological constant is present
(� � 1), it must dominate the late-time low-energy uni-
verse. Therefore, in the end, for � > 1 the Universe must
asymptote to a de Sitter state and for � < 1 to an anti-
de Sitter state.
Let us briefly discuss the case of � < 1. As one can see

from Eq. (2.21), or (3.8), there exists a critical density
� ¼ �b � �B ¼ �=w� at which the expansion stops,
H2ð�bÞ ¼ 0. After the moment of � ¼ �b, H

2 < 0 and
the Universe contracts. Near �b, the Hubble parameter
behaves as

H2 / �� �b / ab � a; (3.10)

and the scale factor becomes

a ¼ ab �Hbðtb � tÞ2: (3.11)

Therefore, at t ¼ tb the expanding universe bounces back
to contract. This type of late-time behavior is more or less
similar for other values of w, except w<�1 for which the
late-time universe corresponds to the high-energy state.

B. w ¼ 0 (dust)

When p ¼ 0, the expansion behavior is very peculiar.
We precisely analyze this dust-filled universe. In this case,
the expansion rate (2.21) becomes simpler,

H2 ¼ 8

3

�2�2 � ���þ 2�3=2ð�þ ��Þ3=2 þ ð�2 þ 6�c2=�2
0Þ�2

�ð��þ 4�Þ2 : (3.12)

FIG. 1 (color online). Plot of H vs � ¼ loga for the case of
w> 0 (w ¼ 1=3). We set c� ¼ 0 and �0 ¼ 1. From the top, the
lines are for � ¼ 1:5 (dotted: positive cosmological constant),
� ¼ 1:0 (solid: vanishing cosmological constant), and � ¼ 0:5
(dashed: negative cosmological constant). The expansion van-
ishes initially, H ¼ 0.
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There is no H ¼ 0 point for � 	 1, which is different
from the w> 0 case. Note that the numerator can be
reexpressed as

�2S2½ðS� 1Þ2 þ 2ð�þ 1ÞðS� 1Þ þ 2ð�� 1Þ�
þ 6�c2

�
�

�0

�
2
> 2�2S2ð�� 1Þ þ 6�c2

�
�

�0

�
2
; (3.13)

where S � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ��=�

p
> 1. The right-hand side is posi-

tive definite if � 	 1, so H2 > 0. (For the isotropic case,
the scale factor a can be obtained explicitly. Please see
Appendix B.)

1. Early-time evolution (� 
 �=�)

In the high-energy limit, the expansion rate in Eq. (3.12)
becomes

H2 ¼ 8

3

�
1

�
þ 6c2

�2�2
0

�
þ 16

3

�
�

�

�
3=2 1

�1=2
þOð��1Þ:

(3.14)

Very interestingly, in the high-energy limit, the Universe
approaches the de Sitter state (see Fig. 2),

H2 � 8

3

�
1

�
þ 6c2

�2�2
0

�
� �eff

3
: (3.15)

The effective-cosmological constant originates from the
EiBI nature of dust with contributions coming from iso-
tropy as well as anisotropy. This means that for dust in high
density, the repulsive gravity is produced in EiBI theory.
This provides a new, interesting scope of the singularity-
free nature in EiBI theory. First, the initial singularity is not
accompanied in the dust-filled universe. This singularity-
free initial state is somewhat different from what was
obtained for the w> 0 case; it is a de Sitter state. Second,
this repulsive nature of gravity suggests a new possibility

of avoiding the singularity formation in collapsing dust.
When pressureless dust collapses gravitationally and
reaches the high-density regime, the repulsive nature of
EiBI gravity may arise to prevent further collapse.

2. Late-time evolution (� � �=�)

In the low-energy limit, the expansion rate becomes

H2 ¼ �� 1

3�
þ 1

3
�þ

�
�ð3� �Þ
16�2

þ c2

�2�2
0

�
�2 þOð�3Þ:

(3.16)

Therefore, the late-time expansion is similar to that in GR.

C. �1=3 < w < 0

For this case, there exists a moment at whichH becomes
singular. The denominator of H2 in Eq. (2.21) vanishes at

� ¼ �c

¼ �

�

ð1� wÞð1� 3wÞ � ð1þ wÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 42wþ 9w2

p

�4wð1þ 3wÞ :

(3.17)

For the negative root, there is no singular point since �c is
negative for all values of w in the range if �=� > 0.
However, for the positive root, �c is positive definite. At
this value of the critical density, the H is divergent. (See
Fig. 3.) The Hubble parameter around �c takes the form

H2 � h2

ða� acÞ2
; (3.18)

where ac is the scale factor at � ¼ �c and h is a constant
determined from Eq. (2.21). The scale factor is solved as

aðtÞ � ac �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2achjt� tcj

q
; (3.19)

FIG. 2 (color online). Plot of H vs � for the case of w ¼ 0,
with the same values of parameters as in Fig. 1. H becomes
constant at early times, which indicates that the Universe is in the
de Sitter state.

FIG. 3 (color online). Plot of H vs � for the case of �1=3<
w< 0 (w ¼ �1=6), with the same values of parameters as in
Fig. 1. There are two universes split by the singular point � ¼ �c

at which H diverges.
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where tc is the time of the critical moment. The scale factor
is finite, a ¼ ac, at the critical moment, but the expansion
rate H diverges. Therefore, a curvature singularity is
formed at that critical moment. The Universe is divided
into two sectors by this critical moment � ¼ �c. The
former high-density universe ends up with the singularity
within finite time, and the latter low-density universe
begins with the singularity.

1. High-density universe (� > �c)

In the high-energy limit � 
 j�=w�j of this high-
density universe, the expansion rate in Eq. (2.21) becomes

H2 ¼ 4

3ð1þ 3wÞ2
�
ð�wÞ3=2�þ 3c2

�2

�
�

�0

�� 2w
1þw

�
þOð�0Þ:

(3.20)

For �1=3<w< 0, the first term which is linear in � is
dominant and the evolution is similar to that in GR. (The
coefficient is a bit different.) The expansion is power law

aðtÞ �
�
t

t0

� 2
3ð1þwÞ

; where t0 ¼ 1þ 3wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð�wÞ3=2�0

q
ð1þ wÞ

:

(3.21)

The expansion power is 2=3< 2=3ð1þ wÞ< 1, so the
Universe undergoes decelerating expansion. As men-
tioned, the Universe will end up with a singularity at
� ¼ �c while it approaches a finite size.

2. Low-density universe (� < �c)

The low-density universe begins with a singularity at
� ¼ �c from a finite size. At late times in the low-energy
limit � � j�=w�j, the Universe approximates to that
in GR,

H2¼��1

3�
þ
�
1

3
�ð��1Þwðwþ1Þ

2�

�
�þOð�2Þ: (3.22)

In the absence of the cosmological constant (� ¼ 1), the
Universe decelerates.

D. �1 < w � �1=3

For this case, there is no singularity in H2 since �c in
Eq. (3.17) is negative. In the high-energy limit, the expan-
sion rateH2 is in the same form (3.20). (See Fig. 4.) For this
case, however, the second term becomes dominant which is
the anisotropic correction from EiBI. The scale factor is
given by

aðtÞ �
�
t

t0

�� 1
3w
; where t0 ¼ ð1þ 3wÞ�

6wc
: (3.23)

The expansion power is 1=3<�1=3w � 1, so the
Universe undergoes decelerating expansion. For the iso-
tropic case, the second term is absent and the evolution is
similar to that in GR.

At late times in the low-energy limit, the expansion rate
H2 is again in the same form (3.22). The evolution of the
Universe approximates to that in GR. In the absence of the
cosmological constant (� ¼ 1), the Universe accelerates in
this case.

E. w ¼ �1

For this case, the perfect fluid corresponds to the cos-
mological constant. The expansion rate is given by

H2 ¼ �� 1

3�
þ �0

3
þ c2

ð�þ ��0Þ2
a�6; (3.24)

which is exactly the same form as in GR. (Although the
EiBI parameter � appears in the anisotropic contribution,
it can be absorbed since the integration constant c� is
arbitrary.)
For the isotropic case, the expansion is exponential as

usual,

aðtÞ ¼ e
ffiffiffiffiffiffiffi
~�=3

p
t; where ~� ¼ �� 1

�
þ �0: (3.25)

For the anisotropic case, the scale factor is given by

aðtÞ ¼
�

3c2

ð�þ ��0Þ2 ~�
�
1=6

sinh1=3
� ffiffiffiffiffiffiffi

3~�
p

t

�
; (3.26)

and the anisotropic part is also obtained exactly,

e
�ðtÞ ¼ tanh
c�
3c

0
@ ffiffiffiffiffiffiffi

3~�
p
2

t

1
A: (3.27)

F. w <�1

This case corresponds to the phantom matter in GR. The
solution (2.20) to the conservation equation tells that the
energy density increases as the Universe expands, i.e., as
a ¼ e� increases,

FIG. 4 (color online). Plot of H vs � for the case of �1<
w � �1=3 (w ¼ �0:6), with the same values of parameters as
in Fig. 1.
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� ¼ �0e
�3ð1þwÞ� ¼ �0a

�3ð1þwÞ>0: (3.28)

Therefore, the low-energy limit corresponds to the early
universe.

1. Early-time evolution (� � j�=w�j)
At early times, the energy density is low. The expansion

rate becomes

H2 ¼ c2
�
1

�2
� ð1þ 3w2Þ�

2�2
�þOð�2Þ

��
�

�0

� 2
1þw þ �� 1

3�

þ
�
1

3
� ð�� 1Þwðwþ 1Þ

2�

�
�þOð�2Þ: (3.29)

For the isotropic case (c ¼ 0), the expansion is very similar
to that in GR. (See Fig. 5.) When there is an anisotropic
expansion, the first term (c2=�2 term) is dominant which is
inversely proportional to the energy density. The second
dominant term is the second term for�3<w<�1, and is
the cosmological constant term for w<�3. If we consider
the most dominant term only, the expansion rate becomes

H2 � c2

�2

�
�

�0

� 2
1þw ¼ c2

�2
a�6; (3.30)

which behaves like the stiff matter in GR, and the expan-
sion at early times becomes

aðtÞ �
�
3

��������c

�

��������ðt� t0Þ
�1

3
; (3.31)

where t0 is an integration constant.3

2. Late-time evolution (� 
 j�=w�j)
At late times, the energy density is high. The expansion

rate becomes

H2¼ 4ð�wÞ3=2
3ð1þ3wÞ2�þ

�
2

3ð1þ3wÞ�

�2ð�wÞ�1=2ð3w2�10w�9Þ�
3ð1þ3wÞ3�

�
þOð��1Þ: (3.32)

The anisotropic contribution is negligible, and the expan-
sion is similar to that in GR.When only the first term which
is most dominant is considered, the expansion at late times
becomes

aðtÞ �
�
tc � t

t0

� 2
3ð1þwÞ<0

;

where t0 ¼ 1þ 3wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð�wÞ3=2�0

q
ð1þ wÞ

:

(3.33)

The Universe accelerates and the scale factor blows up at
finite time tc. The Universe is led to a big-rip singularity.

IV. ANISOTROPY

So far, we have investigated the expansion in terms of
the scale factor a ¼ e�. In that expansion, we considered
also the contributions from the anisotropy c�. In this
section, let us consider the evolution of the shear 
�ðtÞ,
and the measure of anisotropy. The shear runs as Eq. (2.22),

_
� ¼ c�
�e3� þ ��0e

�3w�
¼ c�

�a3 þ ��0a
�3w

; (4.1)

and the measure of anisotropy is in general given by

I ¼ d


d�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_
2þ þ _
2�

q
H

¼ c

H½�a3 þ ��0a
�3w� : (4.2)

Let us analyze this anisotropy by cases.4

A. w > 0

For w> 0, the velocity of the shear _
� has a maximum
value,

c�w
�ð1þ wÞ

�
�

w��0

� 1
1þw

at a ¼
�
w��0

�

� 1
3ð1þwÞ

: (4.3)

At both sides of this value, _
� decays exponentially to zero.
Therefore, the asymmetry of the spatial axes due to the
shear cannot grow indefinitely at both ends. The shear does
not induce any singular behavior in anisotropy I. However,
the expansion vanishes (H ¼ 0) at � ¼ �B ¼ �=w� as

FIG. 5 (color online). Plot of H vs � for the case of w<�1
(w ¼ �1:5), with the same values of parameters as in Fig. 1.

3In the low-energy limit, for � < 1, there may exist a moment
of � ¼ �b for which H

2 vanishes. However, being different from
the case of !>�1, it does not always exist.

4For � < 1, there exists a bouncing moment at � ¼ �b at
which H is zero as shown in Eq. (3.11). At this moment, _
�
takes a finite value because the scale factor is finite. Therefore,
the measure of anisotropy I diverges. However, the spacetime is
regular since all the metric coefficients are finite.
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discussed in Sec. III A. Therefore, the anisotropy I diverges
at that moment.

The scale factor approaches a constant value at
this initial moment (t ! �1), a � aB þ AeH0t ! aB,
and the velocity of shear becomes finite, _
� � c�w=
�ð1þ wÞa3B � b�. Although the anisotropy diverges at
that moment, it is not difficult to show that the spacetime
is not singular with the metric functions a � aB þ AeH0t

and
� � b�tþ constant. Therefore, there is no curvature
singularity.

For the sake of completeness, let us discuss the anisot-
ropy at late times. At late times in the low-energy limit, the
expansion parameter is given by Eq. (3.8), and the measure
of anisotropy becomes

I � c

�a3H

� c

�a3

�
�� 1

3�
þ

�
1

3
� ð�� 1Þwðwþ 1Þ

2�

�
�

þ c2

�2

�
�

�0

� 2
1þw

��1
2
: (4.4)

For � > 1, the first term (cosmological constant term)
dominates, and the anisotropy goes to zero. When the
cosmological constant is absent (� ¼ 1), as discussed in
Sec. III A, for 0<w< 1, the second term (linear in �)
dominates and the anisotropy dies out. For w> 1, the third
term (anisotropic term) dominates and the anisotropy
becomes I ! 1.

B. w ¼ 0

For w ¼ 0, the Universe approaches a de Sitter state at

early times, a / eHt, with constant H ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�eff=3

p
. The

velocity becomes _
� � c�=��0. Therefore, the anisot-

ropy approaches a constant value I � c=��0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�eff=3

p
.

C. �1=3 < w < 0

Forw< 0, we observe fromEq. (4.1) that thevelocity _
�
diverges as the scale factor a decreases. For �1<w< 0,
the dominant dependence is _
� / a3w at early times. For
�1=3<w< 0 in the high-energy regime (� 
 �c), the

scale factor is power law a / t2=3ð1þwÞ from Eq. (3.21), so
the expansion rate becomesH / t�1. The initial anisotropy
then becomes

I ¼
_


H
/ a3w

t�1
/ t2w=ð1þwÞ

t�1
¼ t

1þ3w
1þw>0 ! 0ðas t ! 0Þ: (4.5)

For�1=3<w< 0, we observed in Sec. III C that there is a
moment � ¼ �c at which H diverges. At that time, the
spacetime becomes singular, but the anisotropy I vanishes
because _
� is finite while H diverges.

D. �1 < w � �1=3

For �1<w � �1=3 at early times, the scale factor is

power law a / t�1=3w from Eq. (3.23), and the expansion
rate is again H / t�1. The anisotropy then becomes

I ¼
_


H
/ a3w

t�1
/ t�1

t�1
! 1; (4.6)

which means finite.

E. w ¼ �1

Using the scale factor a in Eq. (3.26) and the shear in
Eq. (3.27), the anisotropy can be evaluated as

I ¼ 1

coshð
ffiffiffiffiffiffiffi
3~�

p
tÞ
: (4.7)

The anisotropy goes to a constant value as t ! 0, and
decays as t ! 1.

F. w <�1

At early times (a � ), the dominant dependence of the
velocity of the shear is _
� / a�3. The scale factor is

a / ðt� t0Þ1=3 from Eq. (3.31), and the expansion rate
becomes H / ðt� t0Þ�1. The anisotropy then becomes

I ¼
_


H
/ a�3

ðt� t0Þ�1
/ ðt� t0Þ�1

ðt� t0Þ�1
! 1: (4.8)

At late times (a 
 ), the dominant dependence of the
velocity of the shear is _
� / a3w. The scale factor is

a / ðtc � tÞ2=3ð1þwÞ from Eq. (3.33), and the expansion
rate becomesH / ðtc � tÞ�1. The anisotropy then becomes

I ¼
_


H
/ a3w

ðtc � tÞ�1
/ ðtc � tÞ2w=ð1þwÞ

ðtc � tÞ�1

¼ ðtc � tÞ1þ3w
1þw>0 ! 0 � ðas t ! tcÞ: (4.9)

V. CONCLUSIONS

In this work, we investigated the evolution of the
Universe driven by barotropic perfect fluid in Eddington-
inspired Born-Infeld gravity. We considered both the
isotropic and the anisotropic expansions for � > 0.
Since EiBI gravity is the same with GR in vacuum, the

evolution of the Universe at late times when the energy
density is very low is very similar to that in GR. For
phantom matter (w<�1), the energy density at late times
grows, but the evolution is still similar to that in GR.
At early times when the energy density is large, the

evolution is somewhat different. For w> 0, the Universe
starts from a ‘‘nonsingular initial state’’ of finite size at
which the expansion rate H becomes zero. This was
observed specifically for radiation (w ¼ 1=3) in the origi-
nal work for EiBI in Ref. [1].
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The most interesting phenomenon arises for pressureless
dust (w ¼ 0). Even when the cosmological constant is
absent, � � ð�� 1Þ=� ¼ 0, the Universe approaches a
de Sitter state at high-energy densities with the effective-
cosmological constant,

�eff ¼ 8

�
þ 48c2

�2�2
0

; (5.1)

which provides repulsive gravity. This opens a new possi-
bility of avoiding a singularity. At the final stage of
collapsing dust, the high-density state may give rise to
repulsive gravity, and thus the singularity may be not
formed. This might be related to work in Ref. [2] in which
the authors studied the interior of the compact star com-
posed of pressureless dust. They found a static configura-
tion of the star in the Newtonian limit of EiBI gravity,
which does not exist in general relativity.

The anisotropy in EiBI gravity is harmless contrary to
GR. In most of the cases, the measure of anisotropy I dies
out, or remains constant except for the initial state of the
w> 0 case. At that initial moment for the w> 0 case, I is
divergent, but there is no curvature singularity since the
metric functions behave regularly. For w ¼ 0, the initial de
Sitter state has a constant value of I. The spacetime singu-
larities originate mainly from the singular behavior of the
scale factor a, or the Hubble parameter H for the w< 0
cases. For w 	 0, the spacetime is singularity free.
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APPENDIX A: ENERGY-MOMENTUM
CONSERVATION

The notation for the covariant derivative used in this
section is as following:

rg
�, the covariant derivative defined by the Christoffel

symbol f���g based on g	

r�

�, the covariant derivative defined by the connection

��
�� based on q	


In order to check the energy-momentum conservation
explicitly, we recall two field equations (1.7) and (1.4)
given by

ffiffiffiffiffiffiffi�q
p

q�� ¼ �
ffiffiffiffiffiffiffi�g

p
g�� � �

ffiffiffiffiffiffiffi�g
p

T��; (A1)

q�� ¼ g�� þ �R��: (A2)

Applying the covariant derivative rg
� on both sides of

Eq. (A1) leads to

rg
�ð ffiffiffiffiffiffiffi�q
p

q��Þ ¼ rg
�ð� ffiffiffiffiffiffiffi�g

p
g�� � �

ffiffiffiffiffiffiffi�g
p

T��Þ
¼ ��

ffiffiffiffiffiffiffi�g
p rg

�T��; (A3)

) @�ð ffiffiffiffiffiffiffi�q
p Þq�� þrg

�q�� ffiffiffiffiffiffiffi�q
p � ffiffiffiffiffiffiffi�q

p f���gq��

¼ ��
ffiffiffiffiffiffiffi�g

p rg
�T��; (A4)

) ffiffiffiffiffiffiffi�q
p

�
�
��q�� þrg

�q�� ffiffiffiffiffiffiffi�q
p � ffiffiffiffiffiffiffi�q

p f���gq��

¼ ��
ffiffiffiffiffiffiffi�g

p rg
�T��; (A5)

) ffiffiffiffiffiffiffi�q
p ½ð��

�� � f���gÞq�� þrg
�q��� ¼ ��

ffiffiffiffiffiffiffi�g
p rg

�T��:

(A6)

Note that in Eqs. (A3) and (A4), we used the definition
of the covariant derivative for the tensor density jMj of
weight ! [10],

r�ðjMj!T b1b2b3...
a1a2a3...Þ

¼ @�ðjMj!ÞT b1b2b3...
a1a2a3... þ jMj!r�T

b1b2b3...
a1a2a3...

�!jMj!��
��T

b1b2b3...
a1a2a3...; (A7)

where ��
�� is the corresponding connection for the cova-

riant derivative r�. In Eq. (A5) the following relations

were used:

f���g ¼ 1

2
g��@�g�� ¼ 1ffiffiffiffiffiffiffi�g

p @�
ffiffiffiffiffiffiffi�g

p
and

��
�� ¼ 1

2
q��@�q�� ¼ 1ffiffiffiffiffiffiffi�q

p @�
ffiffiffiffiffiffiffi�q

p
:

(A8)

Next, we apply the covariant derivative r�
� on Eq. (A2);

then we get

r�
	g�� ¼ C	�� � ��r�

	R��; (A9)

where r�
	q�� ¼ 0 was used. Performing the permutation

of indices in this relation (A9) and using the definition of
the covariant derivative, we get a relation,

��
�� ¼ f���g þ �C��

�; (A10)

where �C��
� is given by

�C��
� ¼ 1

2
g�	ðC	�� � C��	 � C�	�Þ: (A11)

From the relation (A10) together with (A11), we can
express rg

�q�� in terms of C���,
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r�
�q

�� ¼ 0 ¼ @�q
�� þ ��

��q
�� þ ��

��q
��

¼ rg
�q

�� þ �C��
�q�� þ �C��

�q��; (A12)

)rg
�q

��¼� �C��
�q��� �C��

�q��

¼�1

2
g�	q��ðC	���C��	�C�	�Þ

�1

2
g�	q��ðC	���C��	�C�	�Þ

¼1

2
g�	q��C�	��1

2
g�	q��C	��þg�	q��C��	:

(A13)

Plugging Eqs. (A10) and (A13) into Eq. (A6), and rear-
ranging it by using Eq. (A9), we get

ffiffiffiffiffiffiffi�q
pffiffiffiffiffiffiffi�g
p g�	

�
ðr�Þ�

�
R�	 � 1

2
q�	R

��
¼ rg

�T��: (A14)

The quantity in the parenthesis is the Einstein tensor defined
by the auxiliary metric,G½�ðq��Þ�. From the Bianchi iden-

tity, the left-hand side vanishes, which provides the energy-
momentum conservation that we expected,

rg
�T�� ¼ 0: (A15)

APPENDIX B: SCALE FACTOR aðtÞ FOR p¼ 0

We derive the scale factor aðtÞ explicitly for the isotropic
universe filled with dust (p ¼ 0). Let us introduce a new
variable,

z � X2

�
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ��=�
p ) _X

X
¼ _z

2z
: (B1)

For the isotropic case, c� ¼ 0, fðX; Y; pÞ defined in
Eq. (2.18) becomes a function of z only,

fðX; Y; pÞ ! fðzÞ ¼ 1þ 2�z� 3z2: (B2)

Therefore, Eq. (2.17) becomes a differential equation
which depends only on z,

d
ffiffiffi
f

p
dt

� _z

2z

ffiffiffi
f

p ¼ �
ffiffiffiffiffiffi
3

2�

s
ðz2 � 1Þ; (B3)

where the signature � follows from Eq. (2.10) using
Eq. (2.16),

_� ¼ _X

X
þ _Y

Y
¼ _z

2z
þ _Y

Y
¼ _z

2z
�

ffiffiffiffiffiffi
f

6�

s
: (B4)

Plugging Eq. (B2) into Eq. (B3), we get the integral
equation between z and t,

T ðzÞ ¼
Z z

dz0
�

2ð�� 3z0Þ
ðz02 � 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�z0 � 3z02

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�z0 � 3z02

p
z0ðz02 � 1Þ

�

¼ �
ffiffiffiffi
6

�

s
ðt� t0Þ: (B5)

The integration is performed to give

T ðzÞ ¼ log
2z

1þ �zþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�z� 3z2

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�� 1

s
log

1þ �þ ð�� 3Þzþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð�� 1Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2�z� 3z2
p

ð1� zÞ½1þ �þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð�� 1Þp �

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

�þ 1

s
log

1� �þ ð�þ 3Þzþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2ð�þ 1Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�z� 3z2

p
ð1þ zÞ½1� �þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2ð�þ 1Þp �

: (B6)

The arguments of the logarithm are complex in general.
For � 	 1, it is real if 0< z < 1. For 0< �< 1, it is
real if 0< z � ð�þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ 3
p Þ=3. The upper limit zm ¼

ð�þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 3

p Þ=3 corresponds to the minimum energy
density state in which the expansion parameter becomes
zero, H ¼ 0. (We shall prove this later.) When this point
is reached, the Universe stops expansion and bounces
back to contract. For z > 1 and z < 0, the argument
becomes complex. At z ¼ 0 and z ¼ 1, TðzÞ is logarith-

mically divergent. For � ¼ 1, TðzÞ can be written in a
simpler form,

T ðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3z

p ffiffiffiffiffiffiffiffiffiffiffiffi
1� z

p � 1� tan�1

�
2zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2z� 3z2
p �

þ log
2z

1þ zþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2z� 3z2

p : (B7)
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The time evolution of z can be given by the inverse
function of T as

zðtÞ ¼ T �1

�
�

ffiffiffiffi
6

�

s
ðt� t0Þ

�
; (B8)

although obtaining the inverse function is nontrivial. We
finally get from Eq. (B4) using Eq. (B3),

�ðtÞ ¼ 1

2
lnz� 1ffiffiffiffiffiffi

6�
p

Z ffiffiffi
f

p
dt ¼ 1

2
lnz� 1ffiffiffiffiffiffi

6�
p

Z ffiffiffi
f

p
dz=dt

dz

¼ 1

2
lnzþ 1

6

Z
dz

�
f0

z2 � 1
� f

zðz2 � 1Þ
�

¼ 1

2
lnzþ 1

6

Z
dz

�
2ð�� 3zÞ
z2 � 1

� 1þ 2�z� 3z2

zðz2 � 1Þ
�

¼ 1

3
log

z2ðtÞ
1� z2ðtÞ : (B9)

Therefore, the scale factor becomes

aðtÞ ¼ e�ðtÞ ¼ z2=3ðtÞ
½1� z2ðtÞ�1=3 : (B10)

Using this result, the scale factors in two limits (high-
and low-energy) can be obtained with the aid of

Eqs. (B6) and (B8), which should agree with the results
in Sec. III B.
Recasting Eq. (B4), we get�

_�� _z

2z

�
2 ¼ fðzÞ

6�
¼ 1

6�
ð1þ 2�z� 3z2Þ: (B11)

When z ¼ zm ¼ ð�þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 3

p Þ=3, this equation becomes

zero, i.e., _� ¼ _z=2z. By differentiating the scale factor a

in Eq. (B10), one can show that H ¼ _� ¼ 0 at z ¼ zm.

As z ¼ ð1þ ��=�Þ�1=2 defined in Eq. (B1), we have
for � > 0

� 	 �min � 2�

�
ð1þ �2 � �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 3

p
Þ: (B12)

For 0< �< 1, this indicates that there is a minimum
energy density of the Universe, which is positive definite.
(Note that for � < 1, the cosmological constant is nega-
tive.) Afterwards, the Universe bounces back to collapse.
For � < 0, on the other hand, we get

� � � 2j�j
�

ð1þ �2 þ j�j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 3

p
Þ< 0: (B13)

Therefore, the energy density is negative definite in this
case.
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