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The detection of gravitational waves from binary neutron stars is a major goal of the gravitational-wave

observatories Advanced LIGO and Advanced Virgo. Previous searches for binary neutron stars with LIGO

and Virgo neglected the component stars’ angular momentum (spin). We demonstrate that neglecting spin

in matched-filter searches causes advanced detectors to lose more than 3% of the possible signal-to-noise

ratio for 59% (6%) of sources, assuming that neutron star dimensionless spins, cJ=GM2, are uniformly

distributed with magnitudes between 0 and 0.4 (0.05) and that the neutron stars have isotropically

distributed spin orientations. We present a new method for constructing template banks for gravitational-

wave searches for systems with spin. We present a new metric in a parameter space in which the template

placement metric is globally flat. This new method can create template banks of signals with nonzero

spins that are (anti-)aligned with the orbital angular momentum. We show that this search loses more than

3% of the maximum signal-to-noise for only 9% (0.2%) of binary neutron star sources with dimensionless

spins between 0 and 0.4 (0.05) and isotropic spin orientations. Use of this template bank will prevent

selection bias in gravitational-wave searches and allow a more accurate exploration of the distribution of

spins in binary neutron stars.
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I. INTRODUCTION

The second-generation gravitational wave detectors
Advanced LIGO (aLIGO) and Advanced Virgo (AdV)
[1,2] are expected to begin observations in 2015, and to
reach full sensitivity by 2018–2019. These detectors will
observe a volume of the Universe more than a thousand
times greater than first-generation detectors and establish
the new field of gravitational-wave astronomy. Estimated
detection rates for aLIGO and AdV suggest that binary
neutron stars (BNSs) will be the most numerous source
detected, with plausible rates of�40=yr [3]. Gravitational-
wave observations of BNS systems will allow measure-
ment of the properties of neutron stars and allow us to
explore the processes of stellar evolution.

The gravitational waves that advanced detectors will
observe from inspiraling BNS systems are well described
by post-Newtonian theory [4]. As the neutron stars orbit
each other, they lose energy to gravitational waves causing
them to spiral together and eventually merge. If the angular
momentum (spin) of the component neutron stars is 0,
the gravitational waveform emitted depends at leading

order on the chirp mass of the binary M ¼ ðm1m2Þ3=5=
ðm1 þm2Þ1=5 [5], where m1, m2 are the component masses
of the two neutron stars, and at higher order on the sym-
metric mass ratio � ¼ m1m2=ðm1 þm2Þ2 [6–11]. If the
neutron stars are rotating, coupling between the neutron
stars’ spin S1;2 and the orbital angular momentum L of the

binary will affect the dynamics of BNS mergers [12–15].
We measure the neutron stars’ spin using the dimensionless
parameter �1;2 ¼ S1;2=m

2
1;2.

The maximum spin value for a wide class of neutron star
equations of state is � � j�j � 0:7 [16]. However, the
spins of neutron stars in BNS systems are likely to be
smaller than this limit. The spin period at the birth of a
neutron star is thought to be in the range 10–140 ms
[17,18]. During the evolution of the binary, accretion
may increase the spin of one of the stars [19]; however
neutron stars are unlikely to have periods less than 1 ms
[20], corresponding to a dimensionless spin of �� 0:4.
The period of the fastest known pulsar in a double neutron
star system, J0737–3039A, is 22.70 ms [21], corresponding
to a spin of only �� 0:05. In this paper, we therefore
consider two populations of neutron star binaries: the first
has spins uniformly distributed from � ¼ 0 to 0.4; the
second, a subset of this, has spins between 0 and 0.05.
This extended spin distribution allows for the possibility of
serendipitous discovery of BNS systems in globular clus-
ters, where the evolutionary paths may be different than
that in field binaries [22]. Since supernova kicks may cause
the direction of the neutron star’s angular momentum to
be misaligned with the orbital angular momentum of the
binary [23], or the binaries may be formed by direct
capture, we consider a population of binaries with an
isotropic spin distribution.
Searches for binary neutron star systems in

gravitational-wave detectors use template-based searches
[24]. Data from the detector are correlated against a bank
of known template waveforms, which cover the space of
parameters searched over [25]. The template bank is con-
structed so that it covers the parameter space of interest so
that any signal in this region will lose no more than 3% of
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the signal-to-noise ratio obtained by an exactly matching
template. Alternative search methods have been proposed
[26,27]; however these still require the construction of a
template bank to perform the search. The effect of spin-
orbit and spin-spin interactions were neglected in previous
BNS searches [28], as they do not have a significant effect
on the�1600 gravitational-wave cycles in the 40–2000 Hz
sensitive band of first-generation detectors [29]. However,
aLIGO and AdV will be sensitive to gravitational-wave
frequencies between 10–2000 Hz, increasing the number
of cycles in band by an order of magnitude. Initial studies
have demonstrated that over this band, the small secular
effects produced by spin-orbit and spin-spin coupling will
have a significant effect on the detectability of BNS sys-
tems with nontrivial component spins [30]. However, the
current geometric method for placing BNS templates [31]
does not incorporate spin. While numerical (stochastic)
methods could be used to include spin, these require sub-
stantially more templates than a comparable geometric
approach [32].

We present a new geometric algorithm for placing tem-
plates for BNS systems with spin, which has a significantly
higher sensitivity than previous searches. Our new algo-
rithm constructs a metric on the parameter space using the
various coefficients of the TaylorF2 expansion of the orbi-
tal phase as coordinates. In such a coordinate system the
parameter space metric is globally flat; therefore we can
transform into a Euclidean coordinate system. Finally, our
method uses a principal coordinate analysis to identify a
two-dimensional manifold that can be used to cover the
aligned-spin BNS parameter space using existing two-
dimensional lattice placement algorithms.

To demonstrate our new method, we first perform a
systematic evaluation of the ability of a search that neglects
spin to detect gravitational waves for BNS in aLIGO and
AdV. We show that this search will lose more than 3% of
the matched filter signal-to-noise ratio for 59% (6%) of
signals if it is used to search for BNS systems with spins
uniformly distributed between 0 � �1;2 � 0:4ð0:05Þ; this
is unsatisfactory over a large region of the signal parameter
space. We show that by considering BNS systems where
the spins of the neutron stars are aligned with the orbital
angular momentum (i.e., the binary is not precessing), we
can create a two-dimensional template bank that is efficient
at detecting spin-aligned BNS signals. Finally we demon-
strate that this bank is sufficient to detect signals from
generic spinning, precessing binaries in aLIGO and AdV.
The spin-aligned bank loses more than 3% of the signal-to-
noise ratio for only 9% (0.2%) of signals, sufficient to
construct a sensitive and unbiased search for BNS systems
in aLIGO and AdV.

II. BNS SEARCH SENSITIVITY

Wequantify the performance of templatedmatched-filter
searches by the fitting factor (FF) of the search [33].

The fitting factor is the fraction of the signal-to-noise ratio
that would be recovered when matching a given signal with
the best matching waveform in the template bank. We first
define the overlap between two templates h1 and h2 as

O ðh1; h2Þ ¼ ðĥ1jĥ2Þ ¼ ðh1jh2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðh1jh1Þðh2jh2Þ
p ; (1)

which is defined in terms of the noise-weighted inner
product [34]

ðh1jh2Þ ¼ 4Re
Z 1

0

~h1ðfÞ~h�2ðfÞ
SnðfÞ df: (2)

This overlap is the fraction of signal power that would be
recovered by searching for the signal h1 using a matched
filter constructed from h2. Maximizing the overlap over the
time of arrival and waveform phase yields the match

M ðh1; h2Þ ¼ max
�c;tc

ðĥ1jĥ2ð�c; tcÞÞ: (3)

Themismatch, 1�M, is the fraction of the optimal signal-
to-noise ratio that is lost when searching for a signal h1 with
a template waveform h2.
When searching for BNSs, we do not know the exact

physical parameters of the system. We assume that the
masses of the neutron stars lie between 1 and 3M� and
construct a bank of waveform templates fhbg to span this
region of the mass parameter space. To measure the sensi-
tivity of this bank to a gravitational waveform hs with
unknown parameters, we compute the fitting factor

FF ðhsÞ ¼ max
h2fhbg

Mðhs; hÞ; (4)

where we have maximized the match over all the templates
in the bank. In searches for gravitational waves using
LIGO and Virgo, the bank is constructed such that the
fitting factor for any signal in the target parameter space
will never be less than 0.97. At least one of the templates in
the bank must have a maximized overlap of 0.97 (or more)
with the signal. This value is chosen to correspond to an
event rate loss of no more than 10% of possible sources
within the range of the detectors [35]. In this paper, we use
a fitting factor of 0.97 to construct search template banks.
We now test whether a bank of templates that does not

model the effect of spin is sufficient to detect generic,
spinning BNS sources in aLIGO and AdV. We create a
bank of nonspinning templates that would recover any
nonspinning BNS system with a fitting factor greater
than 0.97. This bank is constructed using TaylorF2 wave-
forms, which are constructed using the stationary phase
approximation to the gravitational-wave phasing accurate
to 3.5 post-Newtonian (PN) order [4,36]. To create a bank
of these waveforms we use the hexagonal-placement
method defined in Ref. [37], which was used in the ma-
jority of previous searches in LIGO and Virgo [38–40].
This template bank is placed using the metric given in
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Ref. [25], which is valid, by construction, for templates at
2PN order. Our signal waveforms are constructed using
the SpinTaylorT4 waveform [41], a time-domain wave-
form accurate to 3.5PN order in the orbital phase which
includes the leading order spin-orbit, spin-spin, and preces-
sional modulation effects and implemented in the LSC
Algorithm Library Suite [42]. We first confirm that
although the bank is constructed at 2PN order, it yields
fitting factors greater than 0.97 for both the TaylorF2 and
SpinTaylorT4 nonspinning waveforms at 3.5PN order. To
simulate a population of spinning BNS sources, we gen-
erate 100 000 signals with component masses uniformly
distributed between 1 and 3M� and dimensionless spin
magnitudes uniformly distributed between 0 and 0.4. The
orientation of the spin, the orientation of the orbital angular
momentum, and the sky location are isotropically distrib-
uted. To model the sensitivity of a second generation
gravitational-wave interferometer, we use the aLIGO
zero-detuned, high-power sensitivity curve [43]. For our
simulations, we use a lower frequency cutoff of 15 Hz.

We note that for nonprecessing systems the fitting factor
is independent of the detector alignment and location;
however this statement is not true for precessing systems.
For such systems, however, the distribution of fitting fac-
tors over a population of sources will be independent of the
detector alignment and location. Therefore, for this study
we calculate the fitting factor for a single detector with an
arbitrary location and position.

In Fig. 1 we show the distribution of fitting factors
obtained when searching for our population of BNS
sources with the nonspinning template bank. We see that
59% of signals were recovered with a fitting factor less
than 0.97. If the maximum spin magnitude is restricted to
0.05, we find that 6% of signals are recovered with a FF

less than 0.97. If BNS systems do exist with spin magni-
tudes up to 0.4, a template bank that captures the effects of
spin will be required to maximize the number of BNS
detections. Detection efficiency will be greatly reduced
by using a template bank that only contains waveforms
with no spin effects. Even under the assumption that com-
ponent spins in BNS systems will be no greater than 0.05,
detection efficiency will be decreased if the effect of spin
on the signal waveform is ignored.

III. A TEMPLATE PLACEMENTALGORITHM
FOR ALIGNED-SPIN BNS TEMPLATES

As we have demonstrated in the previous section, there
is a substantial region of the BNS parameter space where a
significant loss in signal-to-noise ratio would be encoun-
tered when searching for astrophysically plausible, spin-
ning BNS systems with nonspinning templates. It has been
suggested that using BNS templates where the spins of the
system are aligned with the orbital angular momentum is
sufficient for detecting generic BNS systems with second-
generation detectors [30] using TaylorF2 templates that
incorporate the leading order spin-orbit and spin-spin cor-
rections [44].
In this section we use these spin-aligned waveforms to

construct a template bank that attempts to cover the full
space of astrophysically plausible BNS spin configura-
tions. This template bank should contain as few templates
as possible, while still being able to detect any BNS system
that might be observed with aLIGO and AdV. To achieve
this, it is important to assess the effective dimension of the
space, which is defined as the number of orthogonal direc-
tions over which template waveforms need to be placed in
order to cover the full physically possible parameter range.
We demonstrate that the effective dimension of this pa-
rameter space is only two dimensional. For BNS systems in
aLIGO and AdV the extent of the physical parameter space
in the remaining directions is smaller than the coverage
radius of a template and can be neglected.
As the effective dimension of the space is two dimen-

sional, a hexagonal placement algorithm, similar to that
used in previous searches of LIGO and Virgo data, could be
employed to cover the space. This allows our new method
to be incorporated into existing search pipelines in a
straightforward way.
Since BNS systems coalesce at �1500 Hz, signifi-

cantly higher than the most sensitive band of the detec-
tors, the waveform will be dominated by the inspiral part
of the signal [45]. The effect of component spin on BNS
inspiral waveforms has been well explored in the litera-
ture [12–14,41]. For spin-aligned (i.e., nonprecessing)
waveforms, the dominant effects of component spin are
spin-orbit coupling, which enters the waveform phasing at
1.5PN order, and spin 1-spin 2 coupling, which enters the
waveform phasing at 2PN order. Other spin-related cor-
rections to the PN phasing have been computed [46,47];

FIG. 1 (color online). The distribution of fitting factors ob-
tained by searching for the precessing BNS systems described in
Sec. II with component spins up to 0.4 (blue solid line), 0.2
(green dashed line), and 0.05 (red dotted line) using the non-
spinning BNS template bank described in Sec. II and the
advanced LIGO, zero-detuned, high-power PSD with a 15-Hz
lower frequency cutoff.
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however, in this work we mainly restrict to only the two
dominant terms. The methods described here are easily
extendable to include additional spin correction terms and
this does not significantly change our results, as we dem-
onstrate at the end of this section.

To construct a bank to search for generic BNS signals,
we use TaylorF2 waveforms accurate to 3.5PN order in
orbital phase and including the leading order spin-orbit and
spin-spin terms given by [44,45]

~hðfÞ ¼ Aðf; �xÞei�ðf;�iÞ (5)

where �x describe the various orientation angles that only
affect the amplitude and overall phase of the observed
gravitational waveform [24]. The phase � is given by

�¼2�f0xtc��cþ�0x
�5=3þ�2x

�1þ�3x
�2=3þ�4x

�1=3

þ�5L logðxÞþ�6x
1=3þ�6L logðxÞx1=3þ�7x

2=3; (6)

where f is the frequency, f0 is a fiducial frequency,
x ¼ f=f0, tc is the coalescence time, and �c is a constant
phase offset. The PN phasing terms are

�0 ¼ 3

128
ð�Mf0Þ�5=3; (7)

�2 ¼ 5

96�2=5

�
743

336
þ 11

4
�

�
ð�Mf0Þ�1; (8)

�3 ¼ � 3�

8�3=5

�
1� 1

4�
�

�
ð�Mf0Þ�2=3; (9)

�4 ¼ 15
64�4=5

�
3058673
1016064 þ 5429

1008�þ 617
144�

2 � �

�
ð�Mf0Þ�1=3

(10)

�5L ¼ 3

128�

�
38645�

756
� 65�

9
�

�
(11)

�6 ¼ 3

128�6=5

�
11583231236531

4694215680
� 640�2

3

� 6848

21

�
	E þ log4� 1

5
log�þ 1

3
logð�Mf0Þ

�

� 15737765635

3048192
�þ 2255�2

12
�þ 76055

1728
�2

� 127825

1296
�3

�
ð�Mf0Þ1=3 (12)

�6L ¼ � 1

128�6=5

6848

21
ð�Mf0Þ1=3 (13)

�7 ¼ 3

128�7=5

�
77096675�

254016
þ 378515�

1512
�� 74045�

756
�2

�

� ð�Mf0Þ2=3; (14)

where 	E is the Euler gamma constant, � (the dominant
spin-orbit coupling term) and � (the dominant spin-spin
coupling term) are given by

� ¼ 1

12

X2
i¼1

�
113

�
mi

m1 þm2

�
2 þ 75�

�
L̂ � �i (15)

� ¼ �

48
ð�247�1 � �2 þ 721L̂ � �1L̂ � �2Þ; (16)

and L̂ is the unit vector in the direction of the orbital
angular momentum. Note that above we have omitted the
�5 term, as it has no dependence on frequency and is
therefore included in the constant phase offset, �c.
Our goal is to construct a template bank containing the

minimum number of waveforms for which any plausible
BNS signal has a FF of 0.97 or higher. To place a template
bank, we follow the method of Owen [48]. We first con-
struct a metric on the waveform parameter space that
describes the mismatch between infinitesimally separated
points,

O ðhð�Þ; hð� þ 
�ÞÞ ¼ 1�X
ij

gijð�Þ
�i
�j; (17)

with the metric given by

gijð�Þ ¼ � 1

2

@2O
@
�i@
�j

¼
�
@hð�Þ
@�i

��������
@hð�Þ
@�j

�
(18)

and where � describes the parameters of the signal, in this
case the masses and the spins.
This metric is used to approximate the mismatch in the

neighborhood of any point. When doing this care must be
taken to choose a good set of coordinates where extrinsic
curvature is minimized. If a bad set of coordinates is
chosen, the region in which this approximation can be
used will be very small. To minimize this issue when
placing the two-dimensional nonspinning bank, the masses
m1, m2 are transformed into the chirp times �0, �3 [25]. In
this coordinate system, ellipses are constructed that de-
scribe fitting factors greater than 0.97 around a point and
hexagonal placement is used to efficiently tile the space to
achieve the desired minimal match [31].
To construct our new bank, we treat the six �i and two

�iL components, given in Eq. (7), as eight independent
parameters, as in Ref. [49]. The range of possible physical
values will trace out a four-dimensional manifold in the
eight-dimensional parameter space given by the ��, where
� is an index that takes both i and iL values. We will
demonstrate that this eight-dimensional parameter space
allows us to construct a metric without intrinsic curvature.
As shown in Ref. [48] it is possible to evaluate the

derivative in (18), maximizing over the phase, �C, to
give the metric in terms of a nine-dimensional space:

	�� ¼ 1

2
ðJ ½c �c �	 � J ½c �	J ½c �	Þ: (19)
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In this expression c � is given by

c 0 ¼ @�

@tc
¼ 2�f0x (20)

c i ¼ @�

@�i

¼ xði�5Þ=3 (21)

c iL ¼ @�

@�iL

¼ xði�5Þ=3 logðxÞ; (22)

and J is the moment functional of the noise power spectral
density (PSD) [44,48]

J ½aðxÞ	 ¼ 1

Ið7Þ
Z xU

xL

aðxÞx�7=3

Shðxf0Þ dx; (23)

where

IðqÞ �
Z xU

xL

x�q=3

Shðxf0Þ dx (24)

and xU and xL correspond to the lower and upper bounds of
frequency in the integral. Unless stated otherwise we use
fL ¼ xLf0 ¼ 15 Hz for the aLIGO PSD and choose
2000 Hz for the upper frequency cutoff, fU ¼ xUf0.
While it is unphysical to use the same upper frequency
cutoff for all systems, especially as we are not including a
merger in our waveform model, it is necessary to make this
assumption to ensure that our metric will be flat. For BNS
systems this approximation is fair to use as such systems
will merge at frequencies that are outside the sensitive
range of the advanced detectors and thus our calculation
of signal power is not affected by assuming that all BNS
systems merge abruptly at 2000 Hz. This approach was
also used in Ref. [31] for computational efficiency.

Following [48] we can then maximize this expression
over tC to give the metric in terms of the eight ��

g�� ¼ 	�� � 	0�	0�

	00

: (25)

It is worth highlighting that the parameter space metric
g��, in the �� coordinate system, has no dependence on

the values of ��. In other words, the parameter space is
globally flat in this eight-dimensional parameter space.

Although this eight-dimensional metric is globally flat,
we have increased the dimensionality of the physical
waveform space by a factor of 2. However, we can trans-
form this metric to a new coordinate system that will allow
us to assess the effective dimensionality of the parameter
space. We first rotate and rescale the metric to transform to
a Cartesian coordinate system. We now use indicies i, j to
number the remaining eight �� coordinates. As gij is a real,

symmetric matrix we can use the eigenvalues and eigen-
vectors of the metric to rotate into an orthonormal coor-
dinate system defined by


i ¼
X
j

ðVij

ffiffiffiffiffi
Ei

p Þ�j; (26)

where Vij describes the eigenvectors of gij and Ei its

corresponding eigenvalues. We use the convention that
Vij is the jth component of the ith eigenvector, and the

eigenvectors are normalized by VTV ¼ I . In this coordi-
nate system, the metric, g0ij, will be the identity matrix.

Next, we perform a rotation to align the axis of the pa-
rameter space with the principal components of the physi-
cally possible region of the space. The physically allowed
ranges of the masses and spins cover only a limited region
in the parameter space. The extent of the physically rele-
vant region of the space in a certain direction may be thin
relative to the desired mismatch. By orienting the coordi-
nate system along the principal directions we can easily
identify any orthogonal directions in which the physical
region is sufficiently thin that we do not need to place
templates in those directions. This will allow us to assess
the effective dimension of the parameter space, or, in other
words, how many directions we need to consider when
placing a template bank. Transforming to a Cartesian
coordinate system also helps with template placement, as
it is trivial to place templates using the optimal A�

n lattice
[50] in a two-, three- or four-dimension Cartesian coordi-
nate system.
To perform the second rotation we make use of the fact

that in a Cartesian coordinate system we are free to rotate
the coordinates without changing the form of the metric.
We would like to rotate the coordinates so that the greatest
extent of the template bank lies along as few directions as
possible. To accomplish this we first draw many examples
of physical parameters of the masses and spins, and calcu-
late the corresponding values of
i for each of these points.
We then do a principal component analysis on this data set,
which amounts to finding the eigenvectors of the covari-
ance matrix from the set of 
i. This produces a rotation
into a new set of coordinates given by

�i ¼
X
j

ðCij

jÞ; (27)

where Cij contains the eigenvectors of the covariance

matrix using the same conventions as for Vij. The rotation

of course leaves the metric Cartesian, but now the bank is
oriented along the principal axes and it is much easier to
visualize the shape of the boundaries and determine how to
perform the template placement.
We now use this method to construct a template bank

where the spin of each component neutron star is restricted
to 0.4. When this metric is constructed using the aLIGO,
zero-detuned high-power noise curve with a lower fre-
quency cutoff of 15 Hz we show that, although many
additional templates are required to cover an aligned-
spinning parameter space when compared to the nonspin-
ning space, the effective dimension for these BNS systems
is still 2.
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We begin by attempting to visualize the space. We will
refer to �1 as the direction along which the parameter space
has the biggest extent (the dominant direction) and �8 as the
direction with the smallest extent (the least-dominant di-
rection). We draw a large set of points, with random values
of masses and spins, and transform these points into the �i

coordinate system. The position of these points is shown in
Fig. 2, where we plot the extent of �2;3;4 against �1.

In Fig. 2 and subsequent plots, we have scaled the �i

direction such that one unit corresponds to the coverage
diameter of a template at 0.97 mismatch. Equivalently, we
have scaled the directions such that two points separated by
0.5 units (one template radius) in any direction have a
match of 0.97.1 We remind that mismatch is proportional
to distance squared and therefore two points separated by
one unit would have a match of 0.88.
Immediately we notice that the extent along the �4

direction is small compared to the diameter of a template.
We can also see that the extent along the �3 direction is
comparable to a template diameter, while the �1 and �2

directions have much larger extents and clearly need to be
gridded over. The extent in the other four directions is
smaller than �4 and can be completely ignored. This
hierarchy of measurable parameters may be a generic
feature according to the model of Transtrum et al. [51].
The plot of �1 against �3 in Fig. 2 can be somewhat

misleading as we have projected out the �2 direction. It is
more informative to investigate the depth of �3 at fixed
values of �1 and �2 and translate this into the maximum
mismatch that would be obtained if one were to assume
that there is no width in the third direction. In Fig. 3 we
show the maximum mismatch between the central and
extremal values of the possible range of �3 (and �4) as a
function of the two primary directions. This is calculated
by binning the points mentioned above into bins in �1 and
�2, where the bin width is equal to one template radius. We
then determine the extremal values of �3 (and �4) for the
points in each bin. From Fig. 3 we can see that, while there
are small areas of parameter space where up to a 1.6% loss
in SNR would be incurred from assuming the �3 direction
had no depth, most areas of the parameter space are very
thin in the �3 direction. This figure also helps to reinforce
the fact that the depth in the fourth direction is negligible,
as, even in the worst region of the space, no more than
0.01% of SNR would be lost by assuming �4 had no depth.
The depth of the �5;8 directions are even smaller than �4.

In this coordinate system it is easy to explore how the
size of the parameter space depends on the maximal spins
of the component neutron stars. In Fig. 4 we show the
extent of the physical space for aligned-spinning BNS
systems, with maximum component spins of 0.4, 0.2, and
0.1, compared to that of nonspinning systems. Ignoring any
issues related to the depth of the �3 direction, one can
clearly see that to cover the aligned-spin parameter space
will require a great deal more templates than the nonspin-
ning parameter space.
From these results we can see that a two-dimensional

template bank would be sufficient to cover the aligned-spin
parameter space for BNS systems in the advanced detector
era. Specifically, we would advocate placing a hexagonal

FIG. 2. The extent of the binary neutron star, �i < 0:4, pa-
rameter space in the �2, �3 and �4 directions, plotted against �1.
The �i coordinates have been scaled such that one unit corre-
sponds to the coverage diameter of a template at 0.97 mismatch.
Generated using the zero-detuned, high-power advanced LIGO
sensitivity curve with a 15-Hz lower frequency cut off.

1The unscaled distance between two points with a match of
0.97 would be ð1� 0:97Þ0:5 ¼ 0:17.
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lattice in the �1, �2 coordinates and setting the value of �3::8

to be the middle of the possible range of those parameters
at the given position of �1, �2. For the regions of parameter
space where the depth of �3 is not negligible, one could
either ignore it, understanding that the resulting bank will
not have a fitting factor of 0.97 in this region. Alternatively,
one could stack templates in the region where �3 is deepest
to minimize this effect.

For this work we chose to employ a hexagonal template
bank in the �1, �2 coordinates, stacking the templates in the
�3 direction, where necessary, to ensure that the maximum
mismatch due to the depth of �3 is no more than 0.25%. For
an aligned-spin template bank where the spin of each
component is restricted to 0.4, using the advanced LIGO,
zero-detuned high-power noise curve with a lower fre-
quency cutoff of 15 Hz, we find that approximately
520 000 templates are required. Roughly 100 000 of these
templates were added by the stacking process.

We can verify that the template bank algorithm is work-
ing correctly by repeating the simulation described in
Sec. II, but evaluating the fitting factor between our bank
of aligned-spin template waveforms and a set of signals
that is restricted to having spins that are (anti-)aligned with
the orbital angular momentum. The results of this simula-
tion are shown in Fig. 5 and one can see that with our bank
we do not observe fitting factors lower than 0.97 when
searching for aligned-spin BNS systems.
In the previous paragraphs we have restricted attention

to the aLIGO zero-detuned, high-power predicted sensitiv-
ity with a 15-Hz lower frequency cutoff. However, we

FIG. 3. The mismatch between the edge and center of the
physically possible range of �3 (top) and �4 (bottom) values
as a function of �1 and �2. The �i coordinates have been scaled
such that one unit corresponds to the coverage diameter of a
template at 0.97 mismatch. Plotted for a binary neutron star
parameter space with spins restricted to 0.4 using the zero-
detuned, high-power advanced LIGO sensitivity curve with a
15-Hz lower frequency cutoff.

FIG. 4. The size of the BNS parameter space as a function of
the maximum spin. The darkest points indicate points with spin
on both components constrained to 0.4; then, in order of increas-
ing lightness, we show points constrained to a maximal spin of
0.2 and 0.1; finally the lightest points show points with no spin.
The �i coordinates have been scaled such that one unit corre-
sponds to the coverage diameter of a template at 0.97 mismatch.
This plot was generated using the zero-detuned, high-power
aLIGO sensitivity curve with a 15-Hz lower frequency cutoff.

FIG. 5. The distribution of fitting factors obtained by searching
for aligned-spin, binary neutron star systems, with spin magni-
tudes restricted to 0.4 using the aligned-spin BNS template bank
described in Sec. III and the aLIGO, zero-detuned, high-power
PSD with a 15-Hz lower frequency cutoff.
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should verify that the conclusions we have drawn are valid
for AdV, whose PSD is different from that of aLIGO, as
shown in Fig. 6. Additionally we should also show that the
choice to use a 15-Hz cutoff in the aLIGO PSD does not
affect the conclusions made in this section.
The process we described above is applicable for any

PSD, and therefore we can use it directly to determine the
�i directions for the AdV PSD, or the aLIGO PSD with a
10-Hz lower frequency cutoff. In Fig. 7 we plot �1 against
�2 for both PSDs while the shading shows the mismatch
between the center and edges in the �3 direction. This plot
can be directly compared to Fig. 3. We notice that the size
of the parameter space for the AdV PSD is significantly
smaller than for the aLIGO PSD in all three of the domi-
nant directions. Therefore our conclusions for aLIGO
are still valid for AdV. Using our method we find that we
require approximately 120 000 templates to cover the pa-
rameter space for AdV, in comparison to approximately
520 000 templates for aLIGO.
By comparing the results when using the aLIGO PSD

with a 10-Hz and 15-Hz lower cutoff we observe that
using a 10-Hz lower frequency cutoff will increase the
number of necessary templates from �520 000 to
�860 000. However the shape of the parameter space,
and thus our final conclusions, are unaffected when using
a 10-Hz lower frequency cutoff. However, in this case we
see larger mismatches due to the depth of �3 and therefore
the process of stacking templates is important when using a
10-Hz lower cutoff. However, even in this case, we do not
feel that the depth is large enough everywhere in the space
to justify using a fully three-dimensional placement
algorithm.

FIG. 6 (color online). The amplitude spectral density for the
aLIGO zero-detuned high-power design sensitivity (blue solid
curve), AdV design sensitivity (red dashed curve), initial LIGO
design sensitivity (blue dot-dash curve) and initial Virgo design
sensitivity (red dotted curve).

FIG. 7. The mismatch between the edge and center of the third
dominant direction as a function of the first and second dominant
directions when using the Virgo noise curve (top) and when
using the advanced LIGO noise curve with a 10-Hz lower
frequency cutoff (bottom). The �i coordinates have been scaled
such that one unit corresponds to the coverage diameter of a
template at 0.97 mismatch. Plotted for a binary neutron star
parameter space with spins restricted to 0.4.

FIG. 8. The mismatch between the edge and center of the third
dominant direction as a function of the first and second dominant
directions using waveforms incorporating the subdominant spin
corrections to the orbital phase. The �i coordinates have been
scaled such that one unit corresponds to the coverage diameter of
a template at 0.97 mismatch. Plotted for a binary neutron star
parameter space with spins restricted to 0.4 using the zero-
detuned, high-power aLIGO sensitivity curve with a 15-Hz lower
frequency cutoff.
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Finally, we wish to investigate the effect that the higher
order spin contributions to the orbital phase have on our
method. To do this we repeat the process described above,
but include the spin 1-spin 1 and spin 2-spin 2 contribu-
tions to the � term at 2PN order and also the 2.5PN spin-
orbit term as given in et al. [47]. In Fig. 8 we plot �1 against
�2 when these higher order spin terms are included; the
shading shows the mismatch between the center and edges
in the �3 direction. This plot can be directly compared to
Fig. 3. By comparing these plots we can see that including
the higher order spin terms has caused the parameter space
to have a larger extent in the �2 direction. However, the
depth of the space in the �3 direction has been reduced by
almost an order of magnitude. In this case the stacking
process is not required and the resulting bank consists of
�560 000 templates.

IV. COMPARISON TO ALTERNATIVE
PLACEMENT METHODS

An alternative approach to template placement for
aligned spin systems is to use templates with unphysical
values of the symmetric mass ratio, �. That is, one uses
nonspinning templates, with the desired range of chirp
mass but where the range of� values is extended to include
both values of � that are much lower than the relevant
parameter space and values of � that are much higher,
including templates with � greater than the physically
possible limit of 0.25.

We can understand this unphysical � approach in terms
of our �i coordinate system by noting that it is always
possible to produce a template with any possible value of
�1 and �2 that is within the BNS parameter space, by using
nonspinning templates with unrestricted values of �. By
generating a set of templates in the �1, �2 directions, where
we restrict the chirp mass to be that possible for BNS
systems, but where � ranges from 0.1 to 0.7 we are able
to cover the full physically possible space in �1, �2.
However, the disadvantage to using unphysical � tem-
plates is that the points will not take the correct values of
�3. The shaded bar in Fig. 9 indicates the mismatch be-
tween unphysical � templates and aligned-spin templates
as a function of �1 and �2. In making this plot we assume
that �3 has no depth in the aligned-spin case by taking the
central value where �3 has a range of values.

While unphysical � templates will produce an increase
in efficiency when compared with nonspinning templates,
the method is not as efficient as the aligned-spin geomet-
rical placement we have described. In addition, both meth-
ods require the same number of templates to cover the
parameter space. Therefore, we would recommend using
aligned-spin templates placed using our metric algorithm
as opposed to unphysical � templates.

Finally, we wish to compare the performance of this
geometrical algorithm with the stochastic bank proposed
in Refs. [32,52]. The stochastic placement works by

randomly placing points within the parameter space and
rejecting points that are too close to points already in the
bank. This has the advantage that it is valid for any pa-
rameter space metric, so we could use any of the metrics
discussed above. However, it is more computationally
efficient to use the Cartesian �i or 
i coordinate system
rather than the non-Cartesian metric given above.
The disadvantage of a stochastic bank, when compared

to a geometrically placed bank, is that it will require more
templates to achieve the same level of coverage [32,53].
For our parameter space, consisting of BNS signals with
component spins up to 0.4 and using the advanced LIGO
zero-detuned high-power design curve with a 15-Hz lower
frequency cutoff, we found that the stochastic placement
produced a bank containing �750 000 templates, which is
44% more than with the geometrical placement. However,
stochastic placement can still be used to place templates
when no analytical metric is known, such as when the
merger becomes important. In such regions of parameter
space, the stochastic placement may still be the best algo-
rithm to use to place a template bank.

V. PERFORMANCE OF THE ALIGNED-SPIN
TEMPLATE BANK

In this section we would like to investigate the improve-
ment in the detection of generic BNS systems that results
from using a template bank that includes the dominant,
nonprecessing spin effects. To do this we use the aligned-
spinning bank that we detail in Sec. III and compare this to
the results of using a nonspinning bank as shown in Sec. II.
Using our aligned-spin template bank, we repeat the

investigation from Sec. II. We create a population of source
BNS signals identical to those used in Sec. II, and compute

FIG. 9. The mismatch between unphysical � and aligned-spin
BNS templates as a function of the first and second dominant
directions. In making this plot we assume that �3 has no depth in
the aligned spin case by taking the central value where �3 has a
range of values. This plot was generated with spins restricted to
0.4 using the zero-detuned, high-power advanced LIGO sensi-
tivity curve with a 15-Hz lower frequency cutoff.
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the fitting factor between these signals and the aligned-spin
template bank. The results of this are shown in Fig. 10. To
decrease the computational cost of this test, we only calcu-
lated the overlaps between a signal and templates that were
within a range of
0:1M� in chirp mass. This is reasonable
because the overlap will decrease rapidly with small
changes in chirp mass; therefore we expect templates
with very different values of chirp mass to have low over-
laps with each other. We verified that this approach did not
cause us to underestimate the fitting factor of our banks.

We can now compare the results obtained in this section,
using our aligned-spin template bank, with the results
obtained in Sec. II, using a nonspinning template bank.
One can clearly see an improvement in the distribution of
fitting factors when using the aligned-spin template bank.
The fraction of signals that fall below a fitting factor of
0.97, when the spin magnitudes are restricted to 0.4, falls
from 59 to 9%.We also see an improvement for signals that
have spin magnitudes restricted to 0.05, where the fraction
of signals falling below a fitting factor of 0.97 drops from 6
to 0.2%. We can also compare the performance of the
aligned-spin bank to that of the nonspinning bank as a
function of the maximum spin magnitude, as shown in
Fig. 11. From this figure we can see that regardless of the
maximum component spin, the aligned-spin bank will
greatly reduce the number of signals recovered with fitting
factors less than 0.97.

A small fraction of signals fall below a FF of 0.97, even
when using the new aligned-spin template bank. We expect
that these poor matches with the aligned template bank are
due to precession. In general, precessional effects will not
be important in BNS systems as the orbital angular mo-
mentum is significantly larger than the component spins. In
such cases there is only a small angle between the total and

orbital angular momenta and precession has only a small
effect on the waveform.
However, there is a small region of parameter space

where precessional effects will have an effect for BNS
systems. Using the model of Ref. [54], applied to the small
precession angles in BNS systems, we can predict for
which systems precession will be most important. The
orientation of a precessing binary must be defined using
the total angular momentum rather than the orbital angular
momentum as done with nonprecessing binaries. The ori-
entations with the worst matches should be those where the
system is edge-on (angular momentum perpendicular to
the viewing direction) and where the detector is nearly
insensitive to the plus polarization and only sees the cross
polarization (a binary overhead of the detector would have
its angular momentum oriented 45� between the arms of
the detector). We find that this is indeed the case; in fact, all
cases with fitting factors less than 0.95 are close to this
configuration. All of these cases also have biases in the
recovered mass and spin parameters due to the secular
effects of precession on the phasing of the waveform.

VI. CONCLUSION

In this work we have investigated the effects of neglect-
ing spin when searching for binary neutron star systems in
aLIGO and AdV. We have found that, if component spins
in binary neutron star systems are as large as 0.4, then
neutron star spin cannot be neglected, and there is a non-
trivial loss in signal-to-noise ratio even if the maximum
spin is restricted to be less than 0.05. We have developed a
new algorithm for placing an aligned-spin template bank in

FIG. 10 (color online). The distribution of fitting factors ob-
tained by searching for the precessing signals described in Sec. II
with component spins up to 0.4 (blue solid line), 0.2 (green
dashed line), and 0.05 (red dotted line) using the aligned-spin
BNS template bank described in Sec. III and the advanced
LIGO, zero-detuned, high-power PSD with a 15-Hz lower fre-
quency cutoff.

FIG. 11 (color online). The fraction of the precessing signals
described in Sec. II recovered with a fitting factor less than 0.97
as a function of the maximum component spin. Shown for the
nonspinning BNS template bank described in Sec. II (blue solid
line), and the aligned-spin BNS template bank described in
Sec. III (red dotted line). The advanced LIGO, zero-detuned,
high-power PSD with a 15-Hz lower frequency cutoff was used
when computing the fitting factors.
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the BNS parameter space. We have shown that this bank
works for aligned-spin systems and have demonstrated that
it does significantly better for generic, precessing BNS
systems than the traditional nonspinning bank. However,
for the BNS aligned-spin �i < 0:4 parameter space the
aligned-spin bank requires approximately five times as
many templates as the nonspinning bank. This increased
number of templates will increase the computational cost
of the search and increase the number of background
events, so it needs to be balanced against the potential
gain in being able to cover a larger region of parameter
space. A further advantage of our method is the ease with
which it can be incorporated into existing or future search
pipelines, which include the use of signal-based vetoes
[55] and coincidence algorithms [56]. In future work we
will investigate how this template bank performs in data
from the aLIGO and AdV detectors which include non-
Gaussian and nonstationary noise features. Finally we note
that the method proposed in this work should be applicable
wherever the TaylorF2 waveforms closely represent actual
gravitational waveforms. In a future work we will inves-
tigate how well this method performs in the binary black

hole and neutron-star, black-hole regions of the parameter
space. Wherever the TaylorF2 approximation begins to
break down, a stochastic bank placement may still be the
most viable option.
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