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We recently developed a local description of the energy, momentum and angular momentum carried

by the linearized gravitational field, wherein the gravitational energy-momentum tensor displays

positive energy density and causal energy flux, and the gravitational spin tensor describes purely

spatial spin [1,2]. We now investigate the role these tensors play in a broader theoretical context,

demonstrating for the first time that (a) they do indeed constitute Noether currents associated with the

symmetry of the linearized gravitational field under translation and rotation and (b) they are

themselves a source of gravity, analogous to the energy momentum and spin of matter. To prove

(a) we construct a Lagrangian for linearized gravity (a covariantized Fierz-Pauli Lagrangian for a

massless spin-2 field) and show that our tensors can be obtained from this Lagrangian using a

standard variational technique for calculating Noether currents. This approach generates formulae that

uniquely generalize our gravitational energy-momentum tensor and spin tensor beyond harmonic

gauge: we show that no other generalization can be obtained from a covariantized Fierz-Pauli

Lagrangian without introducing second derivatives in the energy-momentum tensor. We then construct

the Belinfante energy-momentum tensor associated with our framework (combining spin and energy

momentum into a single object) and as our first demonstration of (b) we establish that this Belinfante

tensor appears as the second-order contribution to a perturbative expansion of the Einstein field

equations, generating the gravitational field in a manner equivalent to the (Belinfante) energy-

momentum tensor of matter. By considering a perturbative expansion of the Einstein-Cartan field

equations, we then demonstrate that (b) can be realized without forming the Belinfante tensor: our

energy-momentum tensor and spin tensor appear as the quadratic terms in separate field equations,

generating gravity as distinct entities. Finally, we examine the role of field redefinitions within these

perturbative expansions; in contrast to our tensors, the Landau-Lifshitz tensor is found to require a

nonlocal field redefinition in order to be cast as a source of the gravitational field. In an appendix, we

also give a brief treatment of the global quantities that our framework defines and verify their

equivalence (within the quadratic approximation) to the energy momentum and angular momentum of

Arnowitt, Deser, and Misner.
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I. INTRODUCTION

There are at least three ways to quantify the energy of a
physical system. One approach is to consider interactions
with a second system (the energy of which is known) and
to seek a function-of-state of the first system, which, by
undergoing equal and opposite changes, accounts for the
energy lost or gained by the second system. Alternatively, a
Lagrangian for the physical system might be constructed
and the energy identified as the Noether charge associated
with the Lagrangian’s symmetry under translation in time.
Thirdly, and most simply of all, one can ‘‘weigh’’ the
system; the energy is then determined by the gravity it
generates.

In the preceding articles [1,2], we arrived at a local
description of the energy, momentum, and angular

momentum of the linearized gravitational field.1 The
resulting gravitational energy-momentum tensor �ab and
spin tensor sabc are particularly notable in that whenever

the field is transverse-traceless, they describe non-negative
energy-density, causal energy flow, and spatial spin; more-
over, these properties, and the gauge-invariant energetics
of an infinitesimal probe, motivate a natural gauge-fixing
procedure. These two tensors were derived by what is
essentially the first method described above: we sought

*l.butcher@mrao.cam.ac.uk

1To clarify: we have not performed the demonstrably
impossible feat of finding an energy-momentum tensor �ab �
�rh �rh and spin tensor sabc � h �rh that are invariant under the
linearized gauge transformations of the gravitational field
�hab ¼ �rða�bÞ. Rather, we rely on a gauge-fixing program
(motivated by key properties of �ab and sabc and the energetics
of an infinitesimal gravitational detector) to remove the freedom
to perform such transformations and, hence, arrive at a physi-
cally unambiguous description.
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functions of the gravitational field which could account for
the energy, momentum, and angular momentum exchanged
locally with matter. The main purpose of this present
investigation is to demonstrate that �ab and sabc fulfill

the other two roles of energy momentum and spin:
(a) they are Noether currents of local translations and
rotations and (b) they appear as self-interaction terms in
the field equations, generating gravity alongside the energy
momentum and spin of matter.

The paper is organized as follows. In Sec. II, we con-
struct a Lagrangian for linear gravity (a covariantization of
the Fierz-Pauli Lagrangian for a massless spin-2 field) and
show that it generates �ab and sabc according to standard

variational definitions of energy momentum and spin.
This process of ‘‘gauging’’ the translational and rotational
symmetries of the background, and deriving �ab and
sabc as functional derivatives of the Lagrangian with

respect to the gauge fields, confirms their status as
Noether currents of translational and rotational symmetry.
(More precisely, the vectors ��

a are the Noether currents

of translations in the x� direction, and j��
a � 2x½����

a þ
sa�� are the Noether currents of rotations in the x�x�

plane.) In Sec. III we then demonstrate that under a local
redefinition of the gravitational field, �ab and sabc appear
(combined into a single Belinfante energy-momentum
tensor) as the quadratic part of the vacuum Einstein field
equations. The same techniques are then applied to
Einstein-Cartan gravity, with �ab and sabc appearing as

the quadratic parts of two separate field equations. In
both cases, �ab and sabc quantify the self-interaction of

the gravitational field and generate gravity in an identical
fashion to material energy momentum and spin. Finally,
in Sec. IV we examine the significance of the field
redefinitions used in Sec. III; in contrast to our tensors,
we show that a nonlocal redefinition is required in order
to cast the Landau-Lifshitz tensor [3] as a source of the
gravitational field.

From all of this we learn that �ab and sabc stand on an

equal footing with the energy momentum and intrinsic spin
of matter: they can be derived from the symmetries of a
suitable Lagrangian and behave as sources for the gravita-
tional field. These developments solidify the tensors’
physical interpretation and embed them within the same
theoretical apparatus that has been used to define gravita-
tional energy momentum in the past [3–6]. Furthermore,
through their role in the nonlinear field equations, we gain
insight into how �ab and sabc may be extended beyond the

linear regime and also uncover a new and possibly valuable
set of gravitational field variables.

Our notation and conventions have not changed since the
previous papers [1,2]. We will, however, introduce a new
variety of index: greek letters with overbars, which we will
use to enumerate the components of tensors in the non-
holonomic basis defined by the tetrad ea��; see Appendix A

for details. (These bars should not to be confused with

those placed over two-index tensors, which indicate trace
reversal: �hab � hab � �gabh=2 and ��ab � �ab � �gab�=2.)
As before, when working in the flat background spacetime

( �M, �gab), it will often be convenient to express our tensors
in a coordinate system fx�g that is Lorentzian with respect
to the background metric: �g�� ¼ ���.

II. LAGRANGIAN FORMULATION

The primary aim of this section is to reproduce the
formulae obtained in Refs. [1,2],

� ���� ¼ 1

4
@�h�	@� �h

�	; (1a)

�s��� ¼ 2 �h	½�@½� �h��
	�; (1b)

from a LagrangianL that also generates the field equations
of linear gravity.2 Before we do this, however, we will
have to make some accommodation for the harmonic
gauge condition,

@� �h�� ¼ 0; (2)

which we have been diligently enforcing since its appear-
ance as an unexpected consequence of the derivation of
��� [1]. While this condition has been immensely valu-

able, naturally reducing the gauge ambiguity of our frame-
work, it now has the potential to interfere with the arbitrary
field variations that occur when taking functional deriva-
tives of a Lagrangian. To avoid this problem, we shall
temporarily relax the gauge condition (2) and aim to derive
from L an energy-momentum tensor and spin tensor that
generalize ��� and s��� beyond the harmonic gauge,

reducing to the familiar formulae (1) only once the
harmonic condition is reintroduced. It is worth noting,
however, that although the generalized forms of the tensors
will be useful for technical reasons in later sections, they
will not give us any further physical information than their
restriction to harmonic gauge (1). This is because in order
to interpret ��� and s��� physically, we must first extin-

guish their gauge freedom; the only way to do this that
produces sensible local properties (positive energy density,
causal energy flow, and spatial spin) is by insisting on
transverse-traceless gauge, which obviously ensures that
the harmonic condition is satisfied.
In addition to relaxing the harmonic condition, it will

also be convenient to ignore matter (T�� ¼ 0) and work

with gravity in vacuo for the entirety of this section. Even
though the framework of our previous papers was devel-
oped around the exchange of energy momentum and

2It will often be convenient to express the formula for ��� in
terms of its trace-reverse ����, as we have in Eq. (1a). Although
the algebraically simpler object ���� contains all the structure
needed to reconstruct the energy-momentum tensor ���, it does
not itself carry a physical interpretation.
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angular momentum between matter and gravity, here we
will be able to construct ��� and s��� from the dynamics

of the gravitational field alone.

A. The Fierz-Pauli Lagrangian

We begin in a flat background spacetime ( �M, �gab)
with the Fierz-Pauli Lagrangian for a massless spin-2
field [7]:

L FP � 1

4�
ð@�h�	@� �h�	 � 2@� �h��@� �h

�
�Þ: (3)

From a nongravitational standpoint, this Lagrangian can be
derived by demanding invariance under the massless spin-2
gauge transformation [8]:

�h�� ¼ @ð���Þ ) �LFP ¼ surface terms: (4)

For our purposes, however, it suffices to observe that
LFP correctly reproduces the linearized vacuum Einstein
field equations:

0 ¼ �LFP

�h��

¼ 1

�
Ĝ���	h�	; (5)

where

Ĝ ��
�	h�	 � Gð1Þ

��

� @�@ð�h�Þ
� � @2h��=2� @�@�h=2

þ ���ð@2h� @�@	h
�	Þ=2; (6)

is the linear part of the Einstein tensor when the physical
metric gab is perturbed according to


�gab ¼ �gab þ hab: (7)

As before, 
: M ! �M maps the physical spacetime
(M, gab) to the background.

We wish to obtain an energy-momentum tensor and a
spin tensor from LFP by ‘‘gauging’’ the symmetries of the
background spacetime and taking functional derivatives
with respect to the background gauge fields. In the standard
formulation of general relativity, the rotational and trans-
lational symmetries of Minkowski spacetime are gauged
into a single local symmetry: diffeomorphism gauge in-
variance. As a result, the energy momentum and angular
momentum of matter are all contained within a single
Belinfante energy-momentum tensor TBel

ab (written simply

as Tab in Refs. [1,2]), which one derives according to
Hilbert’s definition: TBel

ab � ð1= ffiffiffiffiffiffiffi�g
p Þð�Lmatter=�g

abÞ. In

order to obtain two separate tensors, ��� and s
�
��, follow-

ing a Hilbert-like approach, one must gauge the rotational
and translational symmetries separately and take deriva-
tives with respect to the two gauge fields (A13). These are
the techniques of Einstein-Cartan gravity (as formulated by
Kibble and Sciama [9–15]), which we summarize in
Appendix A.

To apply these techniques to the problem at hand, we
will first need to covariantize LFP. Invoking a background
tetrad �ea�� and spin connection �!a

�� ��, we write the Fierz-

Pauli Lagrangian in terms of quantities that are covariant
under local translations and rotations:

L0
FP �

�e

4�
ð �D ��h �� �	

�D �� �h �� �	 � 2 �D ��
�h �� �� �D ��

�h ��
��Þ; (8)

where �Da is a covariant derivative with connection �!a
�� ��,

the volume element �e � 1= detð �ea��Þ, and greek indices with
overbars enumerate the components of tensors in the non-
holonomic basis f �ea��g.
In order to perform arbitrary infinitesimal variations in

�ea�� and �!a
�� ��, we will inevitably explore backgrounds with

nonzero curvature �Rab �� �� and torsion �T
a
�� ��. For this rea-

son, we must also decide how our Lagrangian should
change when the background is no longer flat and torsion
free.3 The obvious response to this uncertainty is to
follow the ‘‘minimal coupling’’ maxim and insist that the
Lagrangian remain as it is in Eq. (8) even when the
background is curved and contorted. Despite the simplicity
of this approach, the Lagrangian L0

FP is actually a highly
unnatural choice, as it deprives the field theory of its
spin-2 gauge invariance when the background is no longer
flat. To see this, consider a curved vacuum background

( �Ra �� ¼ 0, �T
a
�� �� ¼ 0, �Rab �� �� � 0) and perform a cova-

riantized spin-2 gauge transformation:

�h �� ��¼ �Dð ��� ��Þ

)�L0
FP¼� �e

�
�D ��� �� �R �� �� �� �	

�h �� �	þsurfaceterms: (9)

Thus, L0
FP loses its spin-2 gauge invariance when one

tries to extend the theory ‘‘minimally’’ beyond the flat
background.
The gauge invariance of the field theory can be

preserved, for vacuum backgrounds at least, if we allow

3One might hope to avoid this decision by instead demanding
that the variations in �ea�� and �!a

�� �� be constrained to backgrounds
with �Rab �� �� ¼ �T

a
�� ¼ 0. However, one must enforce this re-

striction by including Lagrange multiplier terms �ab �� �� �Rab �� �� þ
�a

�� �� �T
a
�� in the Lagrangian, which inevitably produce uncon-

strained superpotentials proportional to @	���
	 in the energy-

momentum tensor and @	�
�	

�� � �½���
� in the spin tensor.

Thus, one cannot use these ‘‘constrained variations’’ alone to
construct ��� and s��� from a Lagrangian, as one must make
further specifications of the form � ¼ . . . before the energy-
momentum tensor and spin tensor are well defined. In contrast,
‘‘unconstrained variations’’ can be used to construct ��� and
s���, as we will soon see. The key to this approach is that we are
forced to describe how L0

FP behaves when the background is
curved and contorted. Because there is a precise correspondence
between background coupling and superpotentials (see Sec. II C),
once this behavior of the Lagrangian is fixed, it is able to define
the energy-momentum tensor and spin tensor unambiguously.
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h�� to couple directly to the curvature of the back-

ground.4 The Lagrangian (10) we will use to generate
��� and s��� will do exactly this, although we should

explain that it is not unique in this regard. If we had wanted
to present the subsequent calculation as a genuine ab initio
derivation of ��� and s���, then we would need to justify

our specialization to (10) over the other possibilities.
However, we have already derived ��� and s��� from

more concrete considerations [1,2], and our aim here is
only to show that a Lagrangian exists from which the
tensors can be obtained. We will explore this curvature-
coupling freedom in section II C, and by the end of
section IVB, we will be in a position to look back at L
and better understand the significance of our ‘‘choice.’’ For
now, we shall simply write down our Lagrangian as an
ansatz, justified by its being a covariantization of LFP,
which preserves the field theory’s gauge invariance beyond
the flat background, and proceed to calculate its energy-
momentum tensor and spin tensor.

B. Energy-momentum tensor and spin tensor

Let us consider the following the Lagrangian for the
linearized gravitational field:

L � �e

4�
ð �D ��h �� �	

�D �� �h �� �	 � 2 �D ��
�h �� �� �D ��

�h ��
��

þ 2 �h �� �� �R �� �� �� �	
�h �� �	Þ: (10)

This clearly reduces to the Fierz-Pauli Lagrangian (3)
when the background is flat and torsion free and, further-
more, successfully extends the spin-2 gauge invariance of
the theory to curved (vacuum) backgrounds:

�h �� �� ¼ �Dð ��� ��Þ ) �L ¼ surface terms: (11)

Treating the fields fh �� ��; �ea��; �!a
�� ��g as independent var-

iables, we shall evaluate the energy-momentum tensor and
spin tensor of L according to their definitions from
Einstein-Cartan gravity:

�a
� �

�
1

2�e

�L
� �ea��

�
�e¼�
�!¼0

; sa�� �
�
1

�e

�L
� �!a

�� ��

�
�e¼�
�!¼0

; (12)

where the subscripts �e ¼ � and �! ¼ 0 signify that once the
functional derivatives have been taken, we evaluate the
tensors on a flat torsion-free background, and the tetrad
and spin connection become trivial (A15) to reflect this.
Substituting (10) into (12), we arrive at the following

formulae for the energy-momentum tensor and spin tensor
of the linearized gravitational field:

� ���� ¼ 1

4
@�h�	@� �h

�	 � 1

2
@� �h��@	 �h�	; (13a)

�s��� ¼ 2 �h	½�@½� �h��
	� þ ��

½� �h��
	@� �h

�
	: (13b)

This is precisely the result we needed: L has generated an
energy-momentum tensor ��� and spin tensor s��� which

reduce to the familiar formulae (1) when the harmonic
condition (2) is reintroduced.
We have achieved the main aim of this section, demon-

strating that our energy-momentum tensor and spin tensor
can be identified as translational and rotational Noether
currents of a Lagrangian for linear gravity. In addition, the
equations (13) reveal how our tensors (1) generalize be-
yond harmonic gauge. Before we study these generalized
tensors in detail, we shall first examine the freedom that
was available in our choice of covariantization of LFP and
demonstrate that the formulae (13) constitute a suitably
unique extension of (1).

C. Background coupling and superpotentials

We begin by considering the most general Lagrangian,
quadratic in h�� and second order in derivatives, which

differs from the minimally coupled Lagrangian (8) only by
terms that couple h�� to background curvature; ignoring

surface terms, this is

L �R � L0
FP þ

�e

2�
�R
�� �	

�� ��� �� �	
�� ��; (14)

where ��	
�� ¼ ��	�

�� ¼ ���	
�� ¼ ���

	� is a local

quadratic Lorentz-covariant function of h��, the general

form of which can be parametrized by five dimensionless
constants fAng:
��	

�� � A1h
�
½�h

	
�� þ A2hh

½�
½��

	�
�� þ A3h

�
½��

½	
��h

��
�

þ ��
½��

	
��ðA4h

2 þ A5h��h
��Þ: (15)

If we recall the behavior of L0
FP under a spin-2 gauge

transformation (9), it is immediately clear that the field
theory will retain its gauge invariance for curved vacuum
backgrounds (11) if, and only if, A1 ¼ �1.
Inserting L �R into (12), we find that the energy-

momentum tensor of this Lagrangian is identical to the
tensor (13a) derived from L, but that the spin tensor is
given by

�s��� ¼ h	½�@�h��
	 þ ��

½� �h��
	@� �h

�
	

þ �h�½�@
	 �h��	 þ @	�

�	
��: (16)

In harmonic gauge this becomes

�s��� ¼ h	½�@�h��
	 þ @	�

�	
��; (17)

4No set of curvature-coupling terms (nor torsion-coupling
terms) can extend the theory’s gauge invariance to include non-
vacuum backgrounds. This comes as no surprise, considering
that we are studying a Lagrangian LFP that does not include
matter. Evidently, the linearized vacuum field equations (5) can
only be expected to be consistent when they describe perturba-
tions from a vacuum background.
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revealing that fAng are the very same constants that
parameterized the superpotential freedom of s��� in

Sec. III of our previous paper [2]. There, the value
A1 ¼ �1 was fixed by demanding that s��� ¼ 0 for all
transverse-traceless h��. Now we see that this special

value of A1 has yet another significance: it ensures that
the spin-2 gauge invariance of the linearized theory ex-
tends beyond the flat background.

Equation (17) also demonstrates that the parameters fAng
must take the values

A1 ¼�1; A2 ¼ 1; A4 ¼�1=4; A3 ¼ A5 ¼ 0;

(18)

(as they do in Ref. [2]) if the spin tensor (16) is to reduce to
its original form (1b) in harmonic gauge; thus, the freedom
to add curvature terms (14) cannot, by itself, produce any
other generalization of ��� and s��� than (13).

Now that we understand the role played by curvature
terms in the Lagrangian, we must also explore the possi-
bility of coupling h�� to background torsion. If the

Lagrangian is to remain quadratic in h�� and second order

in derivatives, the only contribution we need to consider is

�L � � �e

�
�T
a
�� ���a

�� ��; (19)

where �a
�� ¼ ��a

�� is composed of terms of the form
hDh. The torsion terms generate the superpotential free-
dom of the energy-momentum tensor:

���a
� ¼

�
�

2�e

��L
� �ea��

�
�e¼�
�!¼0

¼ @��a
��; (20)

which is also accompanied by a change in the spin tensor,

��sa�� ¼
�
�

�e

��L
� �!a

�� ��

�
�e¼�
�!¼0

¼ 2�½���
a: (21)

Because the energy-momentum superpotentials are of the
form @ðh@hÞ, containing tensors of the form h@2h, their
addition has the potential to spoil the homogeneous differ-
ential structure of (13a): ��� � @h@h. In fact, there is no

superpotential @��a
��, entirely composed of terms @h@h,

which vanishes in harmonic gauge. [To prove this, con-
struct the most general two-index, Lorentz-covariant ten-
sor, composed entirely of terms of the form @h@h, which is
at least linear in @� �h��, and suppose that it is also a

superpotential: ����� ¼ @� �h�	ðC1@� �h�	 þ C2@� �h�	 þ
C3@	 �h�� þ ���ðC4@	h þ C5@� �h

�
	ÞÞ þ C6@� �h��@�hþ

C7@� �h��@�h þ C8@� �h��@	 �h	�, where fCng are arbitrary
dimensionless constants. Equation (20) informs us that
@����

� ¼ 0 for all h��; the only values of fCng consistent
with this are Cn ¼ 0.] Thus, the freedom to add torsion
terms to the Lagrangian is nullified by our insistence that
the generalized ��� be free of second derivatives and

reduce to our original formula when the harmonic condi-
tion is enforced.
We therefore conclude that our Lagrangian (10) is the

unique covariantization of LFP, quadratic in h�� and

second order in derivatives, which according to the defini-
tions (12) generates an energy-momentum tensor that is
free from second derivatives, and an energy-momentum
tensor and spin tensor that agree with our original for-
mulae (1) in harmonic gauge. Consequently, the resulting
energy-momentum tensor and spin tensor (13) are the
unique extensions of ��� and s��� beyond harmonic

gauge, which can be derived from a covariantized Fierz-
Pauli Lagrangian according (12), and which do not intro-
duce terms of the form h@2h into ���.

Having demonstrated that (13) are indeed the unique
extension of (1) beyond the harmonic gauge, it will be
useful to construct their Belinfante tensor.

D. Belinfante tensor

As an alternative to our description of gravitational
energy momentum and spin in terms of two separate
tensors, ��� and s���, we may construct a Belinfante

energy-momentum tensor [16],

t�� � ��� þ @�ðs��
� þ s��

� � s���Þ=2; (22)

which combines the two. This tensor is symmetric by
virtue of the field equations,

t½��� ¼ �½��� �@�s
�
��=2¼ 1

�
h�½�Ĝ��

�	�h	� ¼ 0; (23)

and is also conserved:

@�t�� ¼ @���� ¼ � 1

2�
ð@�h�	ÞĜ�	

��h�� ¼ 0: (24)

Furthermore, provided surface terms are negligible, the
Belinfante tensor defines precisely the same global
measure of energy, momentum, and angular momentum
as ��� and s���:

Z
t�

0d3x ¼
Z

��
0d3x; (25a)

Z
2x½�t��

0d3x ¼
Z
ð2x½����0 þ s0��Þd3x: (25b)

The advantage of this Belinfante description is obvious:
it combines energy momentum and spin into a single
symmetric tensor.5 This apparent simplicity comes at a
high price, however, because although the global picture
remains intact (25), the Belinfante tensor is unable to

5That said, as far as our framework is concerned, the symmetry
of the Belinfante tensor is not particularly impressive: our
energy-momentum tensor ��� is already symmetric, by virtue
of the harmonic condition (2) rather than the field equations.
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reproduce the physically sensible local description that ���

and s��� provide.

In general, the intermixture of spin and energy momen-
tum in (22) prevents us from localizing the two quantities
separately, and we are left with angular momentum cur-
rents x½�t��

� which ‘‘contain’’ spin but do not assign it a

local current, and energy-momentum currents t�
� which

display negative energy densities and noncausal energy
flux. Furthermore, because the gravitational Belinfante
tensor has no special geometric or algebraic properties in
either harmonic or transverse-traceless gauge, it becomes
impossible to justify a natural gauge-fixing program. The
tensor t�� can then be evaluated over the entire gauge

space of h�� and will depend on the arbitrary mapping


: M ! �M as much as it depends on the physical prop-
erties of the gravitational field.

For these reasons, we cannot advocate interpreting t��

as the ‘‘true’’ energy momentum of the gravitational field.
The tensors ��� and s��� are the local measures of gravi-

tational energy momentum and spin, describing positive
energy density, causal energy flux, and spatial spin; t�� is a

derived quantity which packages spin and energy momen-
tum into a single object, losing some local information in
the process. The main application of the gravitational
Belinfante tensor will arise in the next section, where we
will also gain some insight into its physical interpretation.
In brief, we will see that t�� appears as the quadratic

contribution to the Einstein field equations, generating
perturbations in the metric alongside the (Belinfante)
energy momentum of matter. In other words, it is the
particular combination of energy-momentum and spin,
��� þ @�ðs��

� þ s��
� � s���Þ=2, that curves physical

spacetime in a quadratic approximation to general relativ-
ity. It would be implausible to expect ���, alone, to fulfill

this role, as there is no other field equation in which
s��� could act as the source; only by considering pertur-

bations in the Einstein-Cartan equations, as we do in
Sec. III B, will we find a setting in which ��� and s���

arise as the self-interaction source terms in two separate
field equations.

Proceeding with the calculation, we substitute the gen-
eralized tensors (13) into the definition (22) in order to
obtain the Belinfante tensor associated with our frame-
work. The resulting formula can be expressed most
compactly in terms of the trace-reverse of t��:

��t�� ¼ 1

4
@�h�	@� �h

�	 þ 1

2
@� �h�	ð@ð� �h�Þ	 � @	h��Þ

þ 1

2
@� �h	ð�ð@	 �h�Þ

� � @�Þ �h�	Þ

þ 1

2
�h�	ð@�@ð� �h�Þ	 � @�@	h��Þ

þ 1

2
�h	ð�@	@� �h�Þ� þ h�½�Ĝ��

�	�h	�: (26)

Although the last term can be removed by applying the
field equations, we will retain it for the sake of generality.
This concludes our analysis of the Lagrangian formula-

tion of ��� and s���. Armed with the results of this

section, we are now in a position to ‘‘weigh’’ the gravita-
tional field and investigate the role our tensors play in the
nonlinear field equations.

III. SELF-INTERACTION IN THE
GRAVITATIONAL FIELD EQUATIONS

Here we examine how ��� and s
�
�� [in their generalized

form (13)] occur as the quadratic terms in a perturbative
expansion of the Einstein field equations and also the
Einstein-Cartan field equations, generating gravity in
exactly the same fashion as material energy momentum
and spin.
As we move from a linear theory of gravity to a qua-

dratic one, it will become important to fix the definition of
h�� more precisely. Until this point, h�� has been used to

signify a perturbation in the physical metric:


�gab ¼ �gab þ hab: (27)

However, because our framework is based exclusively on
gravity in the linear approximation, we could have defined
h�� such that


�gab ¼ �gab þ hab þOðh2Þ; (28)

and arrived at the very same results. For instance, suppose
we had decided to work with the field h0�� that defines a

(negative) perturbation in the inverse metric:


�gab ¼ �gab � h0ab: (29)

The equation for the metric would then have been


�gab ¼ �gab þ h0ab þ h0ach0cb þOðh3Þ; (30)

instead of (27), but because h0�� ¼ h�� þOðh2Þ, the line-
arized theory of h0�� would be the same as h��, and our

framework would assign the same tensors (13) to describe
its energy momentum and spin. Only once we came to
study the quadratic approximation of the field equations, as
we do now, would any mathematical difference between
the fields h�� and h0�� have been observed.

For the sake of concreteness, we will start with the
standard definition of the gravitational field (27) and con-
sider this to be true to all orders of approximation. As we
will soon see, however, it is precisely the freedom to make
field redefinitions of the form (28) that will allow us to cast
��� and s��� as the sources of the gravitational field; by

the end of the next section, we will have uncovered a new
definition of h��, valid to quadratic order, that is specially

selected by our local description of gravitational ener-
getics. We will examine the wider significance of this
definition, and the effects of field redefinition in general,
in Sec. IV.
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A. The Einstein equations

Consider the vacuum Einstein field equations (in the
physical spacetime) expressed in terms of the ‘‘mixed’’
Einstein tensor density:ffiffiffiffiffiffiffi�g

p
Ga

b ¼ 0: (31)

Mapping this equation to the background, we apply (27) to
every instance of 
�gab and expand the result in powers
of h��:

Ĝ ��
�	h�	 þ ~Gð2Þ

�� þOðh3Þ ¼ 0; (32)

where

~G ð2Þ
a
b � ½
�ð ffiffiffiffiffiffiffi�g

p
Ga

bÞ�ð2Þ; (33)

is the quadratic part of the mixed Einstein tensor density.
Let us now redefine the gravitational field h�� by mak-

ing the replacement

h�� ! h�� þ h��h�
�=2; (34)

this gives rise to a corresponding change in the definition of
the metric,


�gab ¼ �gab þ hab þ hach
c
b=2; (35)

and causes the vacuum Eqs. (32) to become

Ĝ ��
�	h�	 þ Ĝ��

�	ðh��h�	Þ=2þ ~Gð2Þ
�� ¼ 0; (36)

when working to second order.6 Moving all quadratic terms
to the right-hand side, and making use of the following
identity,

� ~Gð2Þ
�� � Ĝ��

�	ðh��h�	Þ=2 ¼ �t��; (37)

which is derived in Appendix B, we find that the quadratic
vacuum field Eqs. (36) are equivalent to

Ĝ ��
�	h�	 ¼ �t��; (38)

where t�� is the Belinfante tensor of the gravitational field

(26) constructed from ��� and s���.

Equation (38) is exactly what we had hoped to find:
gravitational energy momentum generates gravity in ex-
actly the same fashion as material energy momentum. To
make this comparison transparent, we remind ourselves of
the nonvacuum field equations at linear order:

Ĝ ��
�	h�	 ¼ �TBel

�� ; (39)

where TBel
�� (written simply as T�� in Refs. [1,2]) is the

Belinfante energy-momentum tensor of matter, mapped to

the background. Because TBel
�� is Belinfante, any intrinsic

spin carried by matter must be packaged inside this tensor
according to the same formula (22) that defines the
Belinfante tensor of the gravitational field, making the
analogy with t�� extremely close. Furthermore, if one

assumes that TBel
�� is of the same order of magnitude as

t�� �Oðh2Þ, then at quadratic order the nonvacuum ver-

sion of (38) is in fact

Ĝ ��
�	h�	 ¼ �ðt�� þ TBel

�� Þ; (40)

wherein the source of the gravitational field is the sum of
the material and gravitational Belinfante tensors.
It goes without saying that Eq. (38) can also bewritten as

Ĝ��
�	h�	 ¼�ð���þ@�ðs��

�þ s��
�� s���Þ=2Þ; (41)

making the function of ��� and s
�
�� absolutely clear: these

tensors do not simply constitute a passive ‘‘kinematical’’
description of gravitational energy momentum and spin;
they actively determine the field’s dynamics.
Despite the satisfying simplicity of this result, Eq. (41) is

clearly not the best point at which to end our investigation.
Having extolled the virtues of a formalism that keeps spin
separate from energy momentum, our real goal must be to
find a formulation of gravity in which ��� and s

�
�� appear

as source terms in separate gravitational field equations.
It should come as no surprise that Einstein-Cartan theory
will provide precisely the environment in which to achieve
this objective.

B. The Einstein-Cartan equations

Wewill now disentangle the spin and energy momentum
in Eq. (41), formulating a quadratic approximation to
Einstein-Cartan gravity in which ��� and s��� appear

as separate source terms in the field equations. In close
analogy with the previous section, we proceed by expand-
ing the field equations (A12) to second order in f�� and

w�
��, where


�ea�� ¼ �a
� � fa�=2; (42a)


�!a
�� �� ¼ wa

��; (42b)

are initially considered to be true to all orders; we then
perform a nonlinear field redefinition,

f�� ! f�� þOðf2Þ; (43a)

w�
�� ! w�

�� þOðf2Þ; (43b)

to generate the field equations we desire. In order to
identify ��� and s��� in these equations, it will also be

necessary to express tensors of the form w@fþ w2 in
terms of h��. To this end, we will evaluate these tensors

on torsion-free perturbations (A22),

6To clarify: the tensor ~Gð2Þ
�� is still the quadratic part of


�ð ffiffiffiffiffiffiffi�g
p

Ga
bÞ when the metric is expanded according to (27);

this tensor has exactly the same formula in terms of the new h��

as it did the old because the replacement (34) only alters ~Gð2Þ
�� by

quantities Oðh3Þ, which we neglect.
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w�
�� ¼ð@½�f��

�þ@½�f��� þ@�f
½���Þ=2þOðf2Þ; (44)

in the ‘‘symmetric’’ rotation gauge (A24):

f½��� ¼ Oðf2Þ: (45)

These relations allow us to identify

f�� � h�� þOðf2Þ; (46a)

w�
�� � @½�h��

� þOðf2Þ; (46b)

and thus convert the quadratic parts of the field equations
into the corresponding tensors of perturbative general rela-
tivity: w@fþ w2 ¼ @h@hþOðf3Þ.7

To begin, let us focus our attention on the first Einstein-
Cartan field equation (A12a). Following the approach of
Sec. III A, we express the vacuum field equation in terms of
the mixed Einstein tensor density,

eGa
b ¼ 0; (47)

whereGa
b � ðRa

�� � e ��
a R=2Þeb�� is a function of the physi-

cal tetrad ea�� and physical spin connection!a
�� ��. Mapping

this equation to the background, we expand to quadratic
order in f�� and w�

�� and simplify the resulting equation

by taking the trace-reverse:

2@½�w���
� ¼ �f@½�w���

� þ f�	@½�w��
	�

þ f�	@½�w���
	 � 2w½�j

�
�wj	�

	
�: (48)

We now redefine w�
�� according to the replacement

w�
�� ! w�

�� � fw�
��=2þ f	½�w�	

��

þ f	
½�@�f��	=4; (49)

the quadratic field equation (48) then becomes

2@½�w���
� ¼ @½�fw���

� � @½�jf�	wj��
	�

� @½�f�	w���	 � 2w½�j�
�wj	�

	
�

� @½�jf	�@j��f�	=4þ @½�f	�@��f�	=4:

(50)

Applying (46) to the terms on the right-hand side and
taking the trace-reverse of the equation, we obtain

2@½�w���
� � ���@�w	

�	 ¼ ����: (51)

This is the field equation we had hoped to construct,
mirroring the structure of the linearized nonvacuum field
equation (A21a) with gravitational energy momentum ���

taking the place of the material energy-momentum
tensor T��.

We now turn to the second vacuum Einstein-Cartan field
equation (A12b). Writing this as

T a
�� �� ¼ 0; (52)

in the physical spacetime, we once again use the standard
definitions (42) and expand to second order in the back-
ground:

@½�f��� þ 2w½�
�
�� ¼ f	½�@	f���=2þ w	

�
½�f

	
��

þ w½�
	
��f

�
	: (53)

Consistency with the first field equation (51) requires us
to redefine w�

�� as before (49) but places no constraint on
the definition of f��; we are therefore free to make the

replacement

f�� ! f�� � f��f
�
�=4: (54)

Appling these redefinitions to the second field equation (53)
and converting the quadratic terms using (46), one
finds that

@½�f��� þ 2w½�
�
�� ¼ 2 �h	½�@½�h��

	�

¼ �ðs��� þ ��
½�s

	
��	Þ; (55)

from which the desired equation follows:

@½�f��� þ 2w½�
�
�� þ ��

½�jð@j��f� @	f
	
j�� � 2w	

	
j��Þ

¼ �s���: (56)

We have found a suitable counterpart to Eq. (51), in
which the gravitational spin tensor s��� takes on the role

played by material spin S��� in the linearized field

equation (A21b).
Combining these results, we conclude that under the

perturbative expansions


�ea�� ¼ �a
� � fa�=2þ fa�f

�
�=8; (57a)


�!a
�� �� ¼ wa

�� � fwa
��=2þ wa	

½�f��	

þ f	
½�@af��	=4; (57b)

the vacuum Einstein-Cartan field equations are approxi-
mated, to quadratic order, by

7The validity of the formulae (13) can only be guaranteed in
the generally relativistic regime, i.e., torsion-free gravity de-
scribed by a symmetric tensor field h��. In the linearized
Einstein-Cartan theory, this corresponds to the restriction (44)
for w�

�� and (45) for f��. If we already knew how to generalize
��� and s

�
�� beyond the generally relativistic regime (where the

gravitational field is described by unconstrained f�� and w�
��),

then it would be possible to recognize these tensors in the field
equations without making such restrictions. The conversion
@h ! @fþ w is not unique, however, so it is not immediately
clear how this generalization should be achieved.
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2@½�w���
� � ���@�w	

�	 ¼ ����; (58a)

@½�f��� þ 2w½�
�
�� þ ��

½�jð@j��f� @	f
	
j�� � 2w	

	
j��Þ ¼ �s���; (58b)

wherein ��� and s
�
�� generate the gravitational fields f��

and w�
�� in an identical fashion to the energy momentum

and spin of matter (A21). We have found the analogue of
(38) in the Einstein-Cartan theory of gravity, in which
gravitational energy momentum and spin act as the source
terms of separate field equations.

IV. FIELD REDEFINITION

We have succeeded in demonstrating that ��� and s���

do, indeed, express the dynamical ‘‘weight’’ of the gravi-
tational field and have uncovered the field definitions,
(35) and (57), which make this relationship manifest at
the level of the field equations. We now turn our attention
to the field definitions, themselves, investigating the
importance of (35) and (57) in a broader context and
exploring the effects of field redefinitions in general. In
particular, the analysis of Sec. IVC will allow us to con-
firm the statement that justified the traceless condition,
which we imposed when deriving the formula for s��� in

our previous paper [2].

A. The ‘‘central’’ expansion

In many respects, the most striking aspect of the new
definition of h��, as displayed in (35), is how closely it

relates to a linear perturbation in the metric (27) and a
linear perturbation in the inverse metric (30); this is in
comparison with the full range of local Lorentz-covariant
field definitions consistent with (27) at linear order:


�gab ¼ �gab þ hab þ B1hach
c
b þ B2habh

þ �gabðB3h
2 þ B4hcdh

dcÞ þOðh3Þ; (59)

where fBng are arbitrary constants. One can argue, in fact,
that the definition (35) lies at a natural ‘‘center’’ of the
four-dimensional space parameterized by fBng. This argu-
ment begins by observing that a priori there is no special
variable which represents the ‘‘true’’ dynamical field of
general relativity: one can equally well define the gravita-
tional field h�� as a linear perturbation in a metric density

ð�gÞ�gab, or an inverse metric density ð�gÞ�gab, for any
value of �. Of all these choices, perturbations in the metric
and its inverse (i.e., � ¼ 0) are distinguished by the fact
that they possess linear-order gauge transformation of the
form @ð���Þ, without a part proportional to ���@��

�, and

can therefore be identified with the Fierz-Pauli massless
spin-2 field. However, once we have restricted our
interest to these particular definitions [(27) or (30)], the
decision to focus on one, and discard the other, is com-
pletely arbitrary. Instead of making a forced choice

between two essentially equivalent options, one might
instead consider the definition that lies exactly halfway
between them, where the values of fBng are the mean of
those in (27) and (30). It is easy to see that this ‘‘center
point’’ is precisely the field (35) that casts t�� as the self-

interaction term of the quadratic field equations (38)! This
is an extraordinary coincidence, as ��� and s��� were

selected for their capacity to display positive energy
density, causal energy flux, and spatial spin; none of these
criteria would be expected to determine a definition of h��

that is geometrically distinguished in this way.

B. Expansion of the Einstein-Hilbert Lagrangian

The new metric expansion (35) also offers some per-
spective on the particular form of the Lagrangian (10) that
generated the main results of Sec. II, including the gener-
alized formulae (13) for ��� and s���.

In an earlier paper [17] we studied the expansion of the
Einstein-Hilbert Lagrangian,8

L EH ¼ � ffiffiffiffiffiffiffi�g
p

R=�; (60)

under a linear perturbation of the inverse metric: h0��

as defined in (29).9 Taking care to retain all terms pro-
portional to background curvature, but ignoring surface
terms, the Einstein-Hilbert Lagrangian was found to ex-
pand as follows,

LEH½ �gab � h0ab� ¼ � ffiffiffiffiffiffiffi� �g
p

�R=�þL0
1½h0ab�

þL0
2½h0ab� þOðh03Þ; (61)

where the linear and quadratic parts of the Lagrangian,
L0

1 and L0
2, are given by Eqs. (65) and (66) of Ref. [17].

To generate the expansion of LEH under our newly
defined perturbation h��, we need only compare its metric

expansion (35) to that of h0�� (30),

h0ab ¼ hab � hach
c
b=2þOðh3Þ; (62)

and substitute this relation into (61). After commuting
derivatives, and discarding surface terms, the quadratic
part of this expansion turns out to be

8As it was Hilbert, alone, who formulated general relativity in
terms of a least-action principle [18], some authors refer to (60)
as the Hilbert Lagrangian.

9The field written as h�� in Ref. [17] is in fact �h0�� in our
present notation; the Lagrangians of that paper also take the
opposite sign to those here.
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L 2½hab� � L0
2½hab� þL0

1½�hachc
b=2�

¼
ffiffiffiffiffiffiffi� �g

p
4�

ð �rch
0ab �rc �h0ab � 2 �ra �h0ab �rc �h0cb

þ 2 �h0ab �Rcabd
�h0cdÞ; (63)

which is precisely the form of the Lagrangian L that we
used to reproduce the formulae for ��� and s

�
��! Thus, the

curvature term in (10), which we introduced in Sec. II as an
ansatz, can be understood as a consequence of the special
definition of h�� associated with our framework: these are

simply the terms proportional to the background curvature
that appear when the Einstein-Hilbert action is expanded to
quadratic order.

C. Field redefinitions and superpotentials

To understand the new metric expansion (35) in a wider
context, we should also explain the relationship between
field redefinitions and the superpotentials we encountered
in Sec. II C.

Recall that the addition of superpotentials to ��� and

s��� corresponds to the addition of curvature terms (14)

and torsion terms (19) to the Lagrangian. Notice, however,
that t�� is unaffected by torsion terms: the energy-

momentum superpotentials (20) cancel those of the spin
tensor (21) when they enter the formula (22). As a result,
the superpotentials of the Belinfante tensor are character-
ized by curvature terms alone, which were determined by
the five parameters fAng of Eq. (15). Although these
parameters are fixed according to (18), for the sake of
argument let us relax these equations and alter each An

by an amount�An; the gravitational Belinfante tensor then
gains the superpotential term

��t�
� ¼ �@�ð�s��� þ �s��

� � �s��
�Þ=2

¼ @�@
	����

	�; (64)

where, according to (15),

���	
�� ¼ �A1h

�
½�h

	
�� þ�A2hh

½�
½��

	�
�� þ �A3h

�
½��

½	
��h

��
�

þ ��
½��

	
��ð�A4h

2 þ�A5h��h
��Þ: (65)

It is also possible to generate superpotentials in the
quadratic approximation to Einstein’s field equations: an
arbitrary field redefinition

h�� ! h�� þ �h��; (66)

adds the divergence-free tensor

� Ĝ��
�	�h�	; (67)

to the right-hand side of the field equations (38) and thus
defines a new Belinfante tensor,

�t0�� � �t�� � Ĝ��
�	�h�	; (68)

that acts as the source of the new gravitational field.
Therefore, as long as we can find a field redefinition
�h�� to solve

� Ĝ�
��	�h�	 ¼ @�@

	����
	�; (69)

we can produce the same superpotential in the field
equations as the ones we have generated by altering fAng
in the Lagrangian.
First we shall try to solve Eq. (69) using local field

redefinitions. Noting that �h�� will also need to be

Lorentz-covariant and quadratic in h�� to solve this

equation, the most general field redefinition we need to
consider is

�h�� ¼ �B1h��h
�
� þ �B2h��h

þ ���ð�B3h
2 þ �B4h�	h

�	Þ; (70)

where the f�Bng correspond to changes in the parameters
fBng of Eq. (59). Comparing the number of free parameters
here with those of (65), it is immediately clear that these
local redefinitions will not span the entire space of super-

potentials. Indeed, if we use the identity Ĝ�
��	X�	 �

�2@�@
	ð�½�

½� �X��
	�Þ, valid for any symmetric tensor X��,

we can rewrite (69) as

0 ¼ @�@
	ð����

	� � 2�½�
½�� �h��	�Þ; (71)

inserting (70) and (65), we arrive at

0 ¼ @�@
	½�A1h

�
½	h

�
�� þ ð�A2 � 2�B2Þhh½�½	���

��

þ ð�A3 � 2�B1Þh�½	�½�
��h

��
�

þ ��
½	�

�
��ð�A4 þ 2�B3 þ �B2Þh2

þ ��
½	�

�
��ð�A5 þ 2�B4 þ �B1Þh��h���; (72)

which makes the mismatch of parameters unequivocal.
Clearly, this equation can only hold for all h�� if

�A1 ¼ 0; (73)

and if we assume that this is the case, the local field
redefinition �h�� is determined uniquely:

�B1¼�A3=2; �B2¼�A2=2;

�B3¼��A4=2��A2=4; �B4¼��A5=2��A3=4:

(74)

As the �An were defined relative to the values (18) that
correspond to our Belinfante tensor t��, the condition (73)

implies that

A1 ¼ �1; (75)

which also arose in Sec. II A as the requirement that
ensured the curvature terms would extend the spin-2 gauge
invariance of the Lagrangian beyond the flat background.
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If A1 � �1 then it is still possible to solve Eq. (69) by

inverting the differential operator Ĝ�
��	:

� �h�
� ¼ 2

@2
@�@

	����
	�; (76)

where the precise form of the propagator 1=@2 will depend
on boundary conditions. As we have seen, however, this
�h�� cannot be a local function of h��; hence, it will no

longer be possible to express the physical metric 
�gab as
a local function of the gravitational field (59).

From this vantage point, we can now appreciate another
important property of our framework: the Belinfante tensor
t�� (constructed from ��� and s���) is the source of a

gravitational field h�� of which the metric is a local

function (35). Of course, this was precisely the reason for
fixing A1 ¼ �1 (by imposing the traceless condition)
when we derived the formula for s��� in our previous

paper [2]. Note that the statement that we made in
Sec. III B of that paper, justifying A1 ¼ �1, has now
been proven.

This state of affairs should be contrasted with that of the
celebrated tensor tLL�� of Landau and Lifshitz [3]:

�tabLL � �
�Gab þ 1


�g
�rc

�rdð
�ðgga½bgc�dÞÞ: (77)

The divergence on the right-hand side clearly contributes a
term

@�@	ðh�½�h��	Þ; (78)

at second order, corresponding to a superpotential with
�A1 ¼ 1 ) A1 ¼ 0. Thus, there can be no local field
redefinition that will render the Landau-Lifshitz tensor as
the source term of the vacuum Einstein field equations,
and, furthermore, the tensor cannot be derived from a
covariantized Lagrangian which maintains its spin-2 gauge
invariance beyond the flat background.

It is rather surprising that this deficiency is not more
widely known. In their effort to construct a gravitational
energy-momentum tensor that was symmetric and free of
second derivatives in all gauges, it seems that Landau and
Lifshitz were forced to include a superpotential (78) that
would be impossible to generate in the field equations by
a local redefinition of h��. The only way the Landau-Lifshitz

tensor can be given an equal footing with the energy mo-
mentum of matter, generating gravity alongside T�� in the

Einstein field equations, would be to define the gravitational
field h�� in terms of a nonlocal perturbation in the metric.

D. Beyond second order

It will be difficult to gain any further insight into the
physical meaning of the new h�� without first deciding

how the definition (35) should extend beyond quadratic
order. As this question is intimately related to the issue of
extending the formulae of ��� and s��� to the full non-

linear theory, we shall postpone a thorough investigation of

this topic for another article. For now, we only mention one
particularly attractive possibility. As we have already ex-
plained, the new definition (35) lies on a point of symmetry
between a linear perturbation in the metric (27) and a linear
perturbation in the inverse metric (30); reflecting this, one
finds that the expansion of the inverse metric, consistent
with (35), is


�gab ¼ �gab � hab þ hachc
b=2þOðh3Þ; (79)

which, apart from a change in sign convention h�� !
�h��, is identical to the metric expansion (35) to quadratic

order. Thus, a particularly natural extension of (35) would
be one that preserved this symmetry exactly, so that the
metric and its inverse had an identical expansion to all
orders, except for a sign change in h��. This idea can be

realized by viewing the tensor hab=2 as a linear map and

forming its exponential ½eh=2�ab; a metric defined by


�gab � ½eh=2�ca �gcd½eh=2�db; (80)

is then consistent with (35) to second order and, moreover,
the associated expansion of the inverse metric,


�gab ¼ ½e�h=2�ac �gcd½e�h=2�bd; (81)

is clearly identical to (80) apart from a change in the sign
of h��.

E. New fields for Einstein-Cartan

While it is certainly tempting to bring our analysis to
bear on the new field definitions (57) that arose in Einstein-
Cartan theory, unfortunately a full discussion of these
variables will not be possible at this time. As we previously
explained, the right-hand sides of (58) are only given by the
formulae (13) when we restrict ourselves to the torsion-free
perturbations (44) and symmetric gravitational field (45) of
general relativity. We are therefore free to alter the qua-
dratic parts of the new field definitions (57) by terms
proportional to T �

�� and f½���: such terms vanish under

the aforementioned restrictions and so do not interfere with
our results. Until we fix the definitions of ��� and s��

� in

terms of arbitrary perturbations f�� and w��
�, this degen-

eracy will remain, and it will be difficult to offer a physical
interpretation of the new field variables. We leave this
generalization of ��� and s��

�, and the consequent analy-

sis of the field variables they define, for another paper. For
now, we shall simply remark that the new tetrad expansion
(57a) defines an inverse tetrad


�e ��
a ¼ �

�
a þ f�a=2þ f��f

�
a=8þOðf3Þ; (82)

which, to second order, differs from the tetrad expan-
sion only by a change in sign convention f�� ! �f��:

mirroring the relationship between the metric expansion
(35) and inverse metric expansion (79) for the new
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definition of h�� that arose in Sec. III A. In fact, f��

defines a metric


�gab¼ �gabþfðabÞþfðaj
�f�jbÞ=4þf�af�b=4þOðf3Þ;

(83)

which, if we set

f�� ¼ h�� þOðf3Þ; (84)

gives


�gab ¼ �gab þ hab þ ha
�h�b=2þOðh3Þ; (85)

identical to the new metric expansion (35) of Sec. III A.
Note that the equivalence (84) between f�� and h�� now

holds to quadratic order, whereas one would only expect a
linear correspondence from the symmetric gauge (A26)
condition alone.

V. CONCLUSION

As a local description of the energy momentum and spin
of the linearized gravitational field, ��� and s��� serve a

number of purposes within the theory. In addition to
accounting for the energy momentum and angular momen-
tum exchanged locally with matter [1,2], we can now con-
firm their status as Noether currents of translational and
rotational symmetry and as sources of gravity, itself. Thus,
our framework displays many of the fundamental properties
possessed by previous treatments of local gravitational en-
ergetics [3–5], all the while endowing linear gravity with
positive energy density, causal energy flux, and spatial spin.

In summary, the main results of this article are as
follows:

(i) A Lagrangian (10) has been constructed from which
our gravitational energy-momentum tensor ��� and

spin tensor s��� arise according to standard varia-

tional definitions (12) once harmonic gauge (2) has
been enforced.

(ii) The formulae for ��� and s��� have been general-

ized beyond harmonic gauge (13). This is the unique
generalization that does not add terms of the form
h@2h to ���.

(iii) The Belinfante tensor associated with our descrip-
tion t�� � ��� þ @�ðs��

� þ s��
� � s���Þ=2 has

been calculated (26).
(iv) A nonlinear perturbation in the metric has been

uncovered (35) that generates ��� and s���

(combined into t��) as the second-order contribu-

tion to the Einstein field equations (38).
(v) Nonlinear perturbations in the tetrad and spin con-

nection have been found (57) that generate ��� and

s��� separately as the second-order contributions to

the Einstein-Cartan field equations (58).
(vi) The global quantities defined by ��� and s

�
�� have

been examined (Appendix C) and shown to agree

with Arnowitt, Deser, and Misner’s (ADM) energy
momentum and angular momentum under appro-
priate conditions.

In addition, we have described at quadratic order:
(vii) The correspondence between background coupling

in the Lagrangian and the superpotentials present
in the gravitational energy-momentum tensor and
spin tensor that the Lagrangian defines. (Sec. II C)

(viii) The correspondence between these superpotentials
and the field redefinitions required to generate
those particular gravitational energy-momentum
tensors and spin tensors in the field equations.
(Sec. IVC)

Finally, as a consequence of the above analysis:
(ix) We have isolated the range of superpotentials

[A1 � �1 in (15)] that (a) cannot be generated by
a Lagrangian that maintains the gauge freedom of
hab beyond the flat background (11) and (b) cannot
be generated in the field equations by local field
redefinitions (59). The Landau-Lifshitz tensor con-
tains a superpotential of this form; as such, nonlocal
field redefinitions are required to render the
Landau-Lifshitz tensor as a source for the gravita-
tional field.

Having embedded ��� and s��� within various aspects

of the linear and quadratic approximations to gravity, the
key goal that remains is to extend these ideas to the full
nonlinear theory. This is obviously an ambitious task, and
at the present stage it is far from clear which of our frame-
work’s properties can survive in the exact theory. However,
based on the results of this article, it seems more than likely
that Einstein-Cartan gravity will provide a natural starting
point from which to launch this undertaking, with the field
definitions (35), (80), and (57) offering clues as to the new
field variables into which this theory should be cast.
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APPENDIX A: EINSTEIN-CARTAN THEORY

The role of this Appendix is to briefly introduce
Einstein-Cartan gravity, establish notation, and serve as a
reference for results needed in the body of the paper. For a
more complete treatment of the subject, see Refs. [12–15].

1. Kinematics

Einstein-Cartan theory is a slight extension of general
relativity, in which (as formulated by Kibble [9] and
Sciama [10,11]) translational and rotational symmetries
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are gauged separately rather than being subsumed into a
single diffeomorphism gauge transformation. The gravita-
tional field is represented by four vector fields ea�� (the

tetrad) and six covector fields !a
�� �� ¼ �!a

�� �� (the spin
connection). Following the conventions of our previous
papers [1,2] and Wald [19], greek letters are used as
numerical indices [running from 0 to 3, raised and lowered
by ��� ¼ diagð�1; 1; 1; 1Þ] while Roman indices repre-

sent the tensor ‘‘slots’’ of Penrose’s abstract index notation
(see Ref. [19], chap. 2.4). Note that the numerical indices
now come in two varieties: the unadorned greek letters
are used to enumerate the components of tensors in a
Lorentzian coordinate system fx�g of flat spacetime,
whereas the greek letters with overbars enumerate the
components of tensors with respect to the nonholonomic
basis fea��g formed from the tetrad. For example,

v �� � ea��va; v �� � e ��
a va; (A1)

where e ��
a is the inverse tetrad, defined by ea��e

��
a ¼ � ��

�� . In

order that this convention be consistent with general rela-
tivity (in which abstract indices are raised and lowered by
the metric gab), we identify the metric as follows:

gab � e ��
a e ��b: (A2)

The tetrad and the spin connection are gauge fields: they
allow the global translational and rotational symmetries of
flat space to be generalized to local symmetries. Local
translations are brought about by diffeomorphisms
’: M ! M, under which a scalar field c has a particu-
larly simple transformation law: c ðxÞ ! c ð’�1ðxÞÞ. The
tetrad allows us to form a ‘‘translation covariant’’ deriva-
tive @ �� � ea��@a; as this derivative carries no spacetime

indices, @ ��c will also transform as a scalar field. Local

rotations are embodied by position-dependent Lorentz
transformations which act on the tetrad,

ea�� ! ea���
��
��ðxÞ; � ��

���
�	
��� �� �	 ¼ � �� ��: (A3)

Neither @a nor @ �� transform covariantly under local rota-

tions (@av �� ! @aðv ���
��
��Þ ¼ ���

��@av �� þ v ��@a�
��
��), so a

‘‘rotation covariant’’ derivative Da is constructed using the
spin connection:

Dav �� ¼ @av �� �!a ��
��v ��;

Dav
�� ¼ @av

�� þ!a
��
��v

��; etc:
(A4)

If we declare that the spin connection should transform
according to

!a
��
�� ! ð��1Þ �� ��ð@a� ��

�� þ!a
��
�	
�

�	
��Þ; (A5)

under local rotations, then it is easy to show that these
derivatives are indeed covariant:

Dav �� ! ���
��Dav ��; Dav

�� ! ð��1Þ �� ��Dav
��; etc:

(A6)

Using the tetrad once again, we can now construct a
derivative D �� � ea��Da that is covariant under both local

translations and rotations. Thus, by replacing all partial
derivatives with covariant derivatives, and all spacetime
indices with basis indices, we can ‘‘gauge’’ the global
Poincaré invariance of any flat-space field theory and, in
doing so, extend the theory to a spacetime with curvature
and torsion.

2. Curvature and torsion

The rotation covariant derivatives define a curvature
tensor Rab

��
��:

½Da;Db�v �� � �Rab
��
��v �� 8v ��; (A7)

from which it follows that

Rab
��
�� ¼ 2ð@½a!b�

��
�� þ!½aj

��
��!jb�

��
��Þ: (A8)

Contracting this tensor with the tetrad yields an asym-
metric Ricci tensor Rb �� � ea��Rab

��
��, and Ricci scalar

R � ea��Ra
��.

The major difference between Einstein-Cartan gravity
and general relativity is that, in addition to curvature,
spacetime may also possess torsion, which we quantify
with the torsion tensor T ��

ab � 2D½ae ��
b�, or equivalently,

T a
�� �� � �2D½ ��ea���: (A9)

If this tensor vanishes everywhere, we can use D½ ��ea��� ¼ 0

to relate the spin connection to the tetrad:

!a
�� �� ¼ e

��
brae

��b; (A10)

where ra is the familiar (torsion-free) metric-compatible
derivative of general relativity. Thus, when there is no
torsion, the covariant derivatives D �� are equivalent to ra

in the sense that D ��v �� ¼ ea��e
b
��ravb. Thus, in the absence

of torsion, the curvature tensor Rab
��
�� is equivalent to its

counterpart from general relativity.

3. Dynamics

The dynamics of the tetrad, spin connection, and matter
fields are determined by a Lagrangian LEC that closely
resembles that of the Einstein-Hilbert action:

L EC ¼ �eR=�þLmatter; (A11)

where Lmatter is the (covariantized) matter Lagrangian and

e � detðe ��
a Þ ¼ 1= detðea��Þ ¼ ffiffiffiffiffiffiffi�g

p
is the volume element.

Variation with respect to ea�� and !a
�� �� generates the gravi-

tational field equations,
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Ga
�� ¼ �Ta

��; (A12a)

Fa
�� �� ¼ �Sa �� ��; (A12b)

where matter’s energy-momentum tensor Ta
�� and spin

tensor Sa �� �� are the conjugate currents of the translational

and rotational gauge fields,

Ta
�� � 1

2e

�Lmatter

�ea��
; Sa �� �� � 1

e

�Lmatter

�!a
�� �� ; (A13)

and we have written

Ga
���Ra

���e
��
a R=2; (A14a)

Fa
�� ���2e�1Dbðeea½ ��eb���Þ¼T a

�� ��þ2ea½ ��T
��
��� ��: (A14b)

Consequently, the energy momentum of matter generates
curvature, and the intrinsic spin of matter generates
torsion. When Sa �� �� ¼ 0 everywhere, the second field

equation (A12b) ensures that torsion will vanish also;
on substitution of (A10) and (A2), the first field
equation (A12a) then becomes the usual Einstein field
equations.

4. Perturbations

When the curvature and torsion of the physical
spacetime are small, it is often convenient to represent
the gravitational fields as perturbations from a flat

torsion-free background ð �M; �ea��; �!a
�� ��Þ. This spacetime

is equipped with a constant tetrad

�ea�� ¼ �a
� � ð@=@x�Þa; �e

��
a ¼ �

�
a � ðdx�Þa; (A15a)

defined by a Lorentzian coordinate system fx�g, and a
vanishing spin connection,

�!a
�� �� ¼ 0: (A15b)

In the background spacetime it is customary to manipulate
indices using the background tetrad; because �e��� ¼ ��

� , the
distinction between barred indices and unbarred indices
can then be dropped.
Mapping the physical spacetime ðM; ea��;!a

�� ��Þ onto

the background with a diffeomorphism 
: M ! �M, we
define an asymmetric tensor field fa� as a perturbation

in the physical tetrad,


�ea�� ¼ �a
� � fa�=2; (A16)

and the tensor fieldwa
�� ¼ �wa

�� as a perturbation in the
physical spin connection,


�!a
�� �� ¼ wa

��: (A17)

The perturbation in the tetrad (A16) will be accompanied
by a perturbation in the inverse tetrad,


�e ��
a ¼ �

�
a þ f�a=2þ f��f

�
a=4þOðf3Þ; (A18)

which in turn perturbs the physical metric (A12):


�gab� �gabþfðabÞþfðaj
�f�jbÞ=2þf�af�b=4þOðf3Þ:

(A19)

Thus, in the linear approximation, we can identify the
symmetric part of f�� with the metric perturbation h��

of general relativity:

h�� � fð��Þ þOðf2Þ: (A20)

Working to first order in f�� and wa
��, the Einstein-

Cartan field equations (A12) take the following form:

2@½�w���
� � ���@�w	

�	 ¼ �T��; (A21a)

@½�f��� þ 2w½�
�
�� þ ��

½�jð@j��f� @	f
	
j�� � 2w	

	
j��Þ ¼ �S���; (A21b)

where, for the sake of notational brevity, we have dropped
the
� from the tensors
�Ta

�� and
�Sa �� ��. To recover the
linearized field equations of general relativity, we need
only set S��� ¼ 0: the solution to Eq. (A21b) is then

w�
�� ¼ ð@½�f��

� þ @½�f��� þ @�f
½���Þ=2; (A22)

which can be substituted into (A21a) to retrieve

Ĝ ��
�	fð�	Þ ¼ �T��: (A23)

The equivalence between f�� and h�� can be strength-

ened further by fixing the rotation-gauge freedom (to linear
order) with the condition

f½��� ¼ Oðf2Þ: (A24)

This can always be achieved by a local rotation (A23) of
the form

��
� ¼ �

�
� þ ðf�� � f�

�Þ=4þOðf2Þ; (A25)

which is indeed a valid Lorentz transformation,
��

��
	
���	 ¼ ��� þOðf2Þ, and has the desired effect:

f�� ! fð��Þ þOðf2Þ. In this ‘‘symmetric’’ gauge, f�� and

h�� are equivalent to linear order:

h�� ¼ f�� þOðf2Þ: (A26)

APPENDIX B: AN IDENTITY

Here we derive an identity that relates the Belinfante
tensor (26) to the Einstein tensor of physical spacetime.

First, for notational purposes, let us define a tensor ~Gð2Þ
a
b
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to represent the quadratic part of the ‘‘mixed’’ Einstein
tensor density:

~G ð2Þ
a
b � ½
�ð ffiffiffiffiffiffiffi�g

p
Ga

bÞ�ð2Þ: (B1)

This definition expands to give

~Gð2Þ
�� ¼ Rð2Þ

�� � Rð1Þ
��

�h�� � ���ðRð2Þ � Rð1Þ
�	

�h�	Þ=2; (B2)

where

Rð1Þ
ab � ½
�Rab�ð1Þ; Rð2Þ

ab � ½
�Rab�ð2Þ; (B3)

are the linear and quadratic parts of the Ricci tensor when
expanded according to (27):

Rð1Þ
�� ¼ @�@ð�h�Þ

� � @2h��=2� @�@�h=2; (B4a)

Rð2Þ
�� ¼ �h�	ð2@�@ð�h�Þ	 � @�@�h�	 � @�@	h��Þ=2

þ @�h
�	@�h�	=4þ @�h	�ð@½�h	��Þ

� @� �h�	ð@ð�h�Þ	 � @	h��=2Þ: (B4b)

Now, consider the tensor

Q�� � ~Gð2Þ
�� þ 1

2
Ĝ��

�	ðh��h�	Þ; (B5)

and take its trace-reverse:

�Q�� ¼ Rð2Þ
�� � Rð1Þ

��
�h�� þ 1

2
@�@ð�ðh�Þ	h	�Þ � 1

4
@2ðh��h

�
�Þ � 1

4
@�@�ðh�	h�	Þ: (B6)

Substituting Eqs. (B4) and (B6) into, one finds

�Q�� ¼ � 1

2
h�	ð@�@ð�h�Þ	 � @�@	h��Þ � 1

2
h�ð�ð@�@	h�Þ	 � @�Þ@�hÞ þ 1

4
hð2@�@ð�h�Þ� � @2h�� � @�@�hÞ

� 1

4
@�h

�	@�h�	 � 1

2
@�h	�@	h�� � 1

2
@�h

�	ð@ð�h�Þ	 � @	h��Þ þ 1

2
@�h	ð�@�Þh�	

þ 1

4
@�hð2@ð�h�Þ� � @�h��Þ � h�½�R

ð1Þ
���

¼ ���t��; (B7)

the last line of which can be confirmed by expanding out all
the trace-reversed fields on the right-hand side of (26) and
observing that h�½�R

ð1Þ
��� ¼ h�½�G

ð1Þ
��� ¼ h�½�Ĝ��

�	�h	�.
Inserting (B5) into the trace-reverse of (B7), we conclude
that the following identity

�t�� ¼ � ~Gð2Þ
�� � Ĝ��

�	ðh��h�	Þ=2; (B8)

is valid for all h��.

APPENDIX C: ADM ENERGY MOMENTUM

In this article, and those that have preceded it [1,2], we
have focussed on the local aspects of gravitational energy
momentum and spin; although we will not attempt a
thorough investigation here, it will be valuable to briefly
examine the global energy and momentum that our
framework defines and compare these quantities to the
well-known results of Arnowitt, Deser, and Misner
(ADM) [20–22].

Recall that, as seen in (25), the Belinfante tensor t��

defines the same total energy, momentum, and angular
momentum as ��� and s���.

10 Thus, for the purposes of

this Appendix, we are free to use whichever set of tensors is
convenient, and the results we derive will carry over to the

other. With this in mind, let us define the total energy
momentum of gravity and matter by

P� �
Z

d3y
ffiffiffiffiffiffiffi�g

p ðTBel
a
b þ ð
�1Þ�tabÞðd=dy�Þaðdy0Þb;

(C1)

where y� � ð
�1Þ�x� are the images of the Lorentzian
coordinates fx�g in the physical spacetime.11 To this
definition, we now apply the Einstein field equations:

P� ¼ 1

�

Z
d3y

ffiffiffiffiffiffiffi�g
p ðGa

b þ �ð
�1Þ�tabÞðd=dy�Þaðdy0Þb

¼ 1

�

Z
d3xðĜ�

0�	h�	 þ ~Gð2Þ
�
0 þ �t�

0Þ; (C2)

where, in the second line, we have evaluated the integral
in terms of background quantities, expanded the metric
according to (27), and neglected terms Oðh3Þ under the
assumption that the gravitational field is everywhere
weak enough that the quadratic approximation to general

10To be precise: the integrals in (25) may, in fact, differ by
surface terms quadratic in h��. However, as we will see, these
can be neglected in comparison to the surface terms linear in h��
when the boundary of the integral is taken to spatial infinity.

11In Eq. (C1), the contraction between the energy-momentum
tensors and the covector ðdy0Þa defines, in the usual way, the
energy-momentum densities on the surface of integration y0 ¼
const. The vectors ðd=dy�Þa have assumed the role of killing
vectors in the absence of an exact spacetime symmetry; these
same vectors were denoted by ea� in Refs. [1,2], but this symbol
is now being used for the Einstein-Cartan tetrad.
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relativity will suffice. We now use the identity (37) to write
the energy momentum as

P � ¼ 1

�

Z
d3xĜ�

0�	ðh�	 þOðh2ÞÞ: (C3)

Although terms Oðh2Þ cannot be neglected in general
[otherwise, t�� should never have appeared in the integral

(C1) to begin with] we note that all the terms in (C3) are
total spatial derivatives, so P� will depend only on the

behavior of the gravitational field on the boundary of the
integral. Thus, as the limit is taken in which this boundary
moves to spatial infinity, we will require the linear surface
terms @h� 1=r2 in order that the integral be finite, and as a
consequence, the quadratic surface terms h@h� 1=r3 will
be negligible in comparison.

Let us first consider the total energy of the system:

P 0 ¼ 1

2�

Z
d3xð@i@jhij � @i@ihjjÞ

¼ 1

2�

Z
d2Sið@jhij � @ihjjÞ; (C4)

which the reader will recognize as the ADM mass [21,22].
Furthermore, the total linear momentum

Pi¼�1

2�

Z
d3xð@j _hij�@k@kh0i�@i _hjjþ@i@jh0jÞ

¼�1

2�

Z
d2Sjð _hij�@jh0i��ij

_hkkþ2�ij@kh0k�@ih0jÞ

¼�1

�

Z
d2Sjð�ð1Þ0

ij��ij�
ð1Þ0

kkÞ

¼�1

�

Z
d2Sj


ð1Þ
ij ; (C5)

which is the familiar expression for the ADM momentum
[21,22] truncated at linear order. Thus, when the terms
Oðh3Þ can be neglected from the field equations, and the
terms Oðh2Þ can be neglected at spatial infinity, our gravi-
tational Belinfante tensor t�� defines exactly the same total

energy and momentum as ADM. Moreover, these results
would also arise if we had defined P� using ���, rather

than the Belinfante tensor t��. Thus, ��� is able to cast the

global information present in the ADM energy momentum
in terms of a local description with physically sensible
properties, including gravitational energy density that is
nowhere negative and gravitational energy flux that is
nowhere spacelike.

Although the ADM energy momentum is usually repre-
sented in terms of the asymptotic behavior of the gravita-
tional field, as above, the reader should also be aware that
these global quantities can be cast as spatial integrals of a
gravitational Belinfante tensor tADM�� that emerges from the

canonical formalism [20–22]. Although ADM did not

propose that this tensor should be interpreted as a physi-
cally meaningful local measure of gravitational energy
momentum, it is nonetheless interesting to compare the
quadratic part of tADM�� with ��� and t��. The strongest

resemblance occurs when we employ our gauge-fixing
procedure (that is, we insist that h�� be transverse-

traceless) and examine the (0,0) components of the tensors:

�00 ¼ t00 ¼ 1

8�
ð _hij _hij þ @khij@khijÞ ¼ tADM00 þOðh3Þ:

(C6)

Remarkably, we find that our gauge-fixed �00 and t00 are in
fact equal to the ADM ‘‘Hamiltonian density’’ tADM00 when

working to quadratic order. This is a rather surprising
correspondence, particularly when one considers how
little our framework has in common with the canonical
3þ 1 approach from which tADM00 arose. Note, however,

that this equality does not extend to the other components
of the tensors:

��i0 ¼ 1

4
_hjk@ihjk; (C7a)

�ti0 ¼ 1

4
ð _hjk@ihjk � _hjk@jhik þ hjk@j _hkiÞ; (C7b)

�tADMi0 ¼ 1

4
ð _hjk@ihjk � 2 _hjk@jhikÞ þOðh3Þ: (C7c)

Hence, ���, t��, and tADM�� do not give rise to equivalent

local descriptions of gravitational energy momentum, even
in transverse-traceless gauge; moreover, even though tADM��

succeeds in defining a positive gravitational energy density
tADM00 � 0 as seen by observers at rest with respect to the

TT-frame, it does not display the full (Lorentz-invariant)
positivity properties of ���: the energy density v�v�tADM��

(as seen by an observer moving with four-velocity v�) may
be negative, and the energy flux v�tADM�� may be spacelike.

The formulae (C7) also serve as another starting point
from which to verify that all three tensors define the same
total momentum Pi: those terms in ti0 and tADMi0 which do

not appear in �i0 can be integrated by parts (discarding a
quadratic surface term, as usual) and then vanish due to the
gauge condition @ihij ¼ 0. Of course, these terms do con-

tribute to the total angular momentum: they correspond to
the divergence @�ðs��

� þ s��
� � s���Þ=2 that packages

intrinsic spin into the Belinfante tensor (22). Accordingly,
when one neglects quadratic surface terms, one finds that

Z
ð2x½i�j�0 þ s0ijÞd3x ¼

Z
2x½itj�

0d3x

¼
Z

2x½itADMj�
0d3xþOðh3Þ;

(C8)

confirming that ��� and s��� also give the same global

description of angular momentum as ADM at second order.
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In summary, whenever general relativity can be approxi-
mated to quadratic order, and quadratic surface terms can
be neglected at spatial infinity, our gravitational energy-
momentum tensor ��� and spin tensor s��� provide the

same global description of energy, momentum, and angular
momentum as ADM but localize these quantities in a
physically sensible fashion, displaying positive gravita-
tional energy density, causal energy flux, and spatial spin.
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