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In a previous article [L.M. Butcher, et al., Phys. Rev. D 82, 104040 (2010).], we derived an energy-

momentum tensor for linear gravity that exhibited positive energy density and causal energy flux. Here we

extend this framework by localizing the angular momentum of the linearized gravitational field, deriving a

gravitational spin tensor which possesses similarly desirable properties. By examining the local exchange

of angular momentum (between matter and gravity) we find that gravitational intrinsic spin is localized,

separately from ‘‘orbital’’ angular momentum, in terms of a gravitational spin tensor. This spin tensor is

then uniquely determined by requiring that it obey two simple physically motivated algebraic conditions.

Firstly, the spin of an arbitrary (harmonic-gauge) gravitational plane wave is required to flow in the

direction of propagation of the wave. Secondly, the spin tensor of any transverse-traceless gravitational

field is required to be traceless. (The second condition ensures that local field redefinitions suffice to cast

our gravitational energy-momentum tensor and spin tensor as sources of gravity in a quadratic approxi-

mation to general relativity.) Additionally, the following properties arise in the spin tensor spontaneously:

all transverse-traceless fields have purely spatial spin, and any field generated by a static distribution of

matter will carry no spin at all. Following the structure of our previous paper, we then examine the

(spatial) angular momentum exchanged between the gravitational field and an infinitesimal detector, and

develop a microaveraging procedure that renders the process gauge-invariant. The exchange of nonspatial

angular momentum (i.e., moment of energy) is also analyzed, leading us to conclude that a gravitational

wave can displace the center of mass of the detector; this conclusion is also confirmed by a ‘‘first

principles’’ treatment of the system. Finally, we discuss the spin carried by a gravitational plane wave.

DOI: 10.1103/PhysRevD.86.084012 PACS numbers: 04.20.Cv, 04.30.�w

I. INTRODUCTION

We recently developed a local description of energy
and momentum in linear gravity, deriving a gravitational
energy-momentum tensor �ab that describes positive
energy density and causal energy flux [1].1 The purpose
of this present article is to complete our picture of local
linear gravitational energetics, extending our framework to
quantify the angular momentum carried by the field. This
approach will localize both the ‘‘orbital’’ angular momen-
tum and the intrinsic spin of linear gravity, the former in
terms of �ab, and the latter in terms of a gravitational spin
tensor sabc. Not only is this spin tensor vital if one is to

account for the angular momentum possessed by gravity
and exchanged locally with matter, the formula we derive
for it will display a number physically desirable algebraic
properties, closely analogous to those of �ab.

Armed with a local description of the energy, momen-
tum, and angular momentum of linear gravity, we will be
ready to tackle the task of our next paper [2]: to understand
�ab and sabc in terms of the familiar theoretical apparatus

that has been used to define gravitational energy-
momentum in the past [3–5], and energy-momentum in
general [6–8]. These developments will crystallize the
tensors’ physical interpretation, deepen our understanding
of their theoretical underpinnings, and suggest a route by
which our work might be generalized beyond the linear
approximation.
Let us begin by summarizing the key points of the

program developed in Ref. [1].2 We define the gravitational

field hab on a flat background spacetime ð �M; �gabÞ by a

diffeomorphism �: M ! �M that maps the physical
spacetime ðM; gabÞ onto the background3:

*l.butcher@mrao.cam.ac.uk
1To clarify, we have not performed the demonstrably impos-

sible feat of finding a tensor �ab, quadratic in the gravitational
field hab and second order in derivatives, that is invariant under
the linearized gauge transformation �hab ¼ �rða�bÞ. Rather, we
rely on a gauge-fixing program (motivated by key properties of
�ab and the energetics of an infinitesimal gravitational detector)
to remove the freedom to perform such transformations, and
hence arrive at a physically unambiguous description.

2As before, we work in units where c ¼ 1, write � � 8�G,
and use the sign conventions of Wald [9]: ��	 �
diagð�1; 1; 1; 1Þ, ½rc;rd�va � 2r½crd�va � Ra

bcdv
b, and

Rab � Rc
acb. We use roman letters (except i, j, k, l) as abstract

tensor indices [Ref. [9], Chapter 2.4] and greek letters as nu-
merical indices running from 0 to 3. The indices i, j, k, l are
reserved for spatial components, and run from 1 to 3.

3As usual, fields defined on M have their indices raised and
lowered with gab, and those on �M with �gab. Lorentzian coor-
dinates fx�g are commonly deployed in �M, for which
�g�	 ¼ ��	.

PHYSICAL REVIEW D 86, 084012 (2012)

1550-7998=2012=86(8)=084012(16) 084012-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.86.084012


��gab ¼ �gab þ hab: (1)

The physical spacetime is assumed to be ‘‘nearly flat,’’ and
� chosen such that hab is small everywhere, so that the
linear approximation to the Einstein field equations is
valid:

bGab

cd
hcd ¼ � �Tab þOðh2Þ; (2)

where �Tab � ��Tab �OðhÞ is the matter energy-
momentum tensor Tab mapped onto the background, and

bGab

cd
hcd � �rc

�rðahbÞ
c � 1

2
�r2hab � 1

2
�ra

�rbh

þ 1

2
�gabð �r2h� �rc

�rdh
cdÞ (3)

is the linearized Einstein tensor Gð1Þ
ab .

The gravitational energy-momentum tensor �ab is de-

fined by seeking a symmetric tensor, quadratic in �rchab,
which solves

�r aj�
a þ��ðraJ�

aÞ ¼ 0; (4)

neglecting terms Oðh3Þ. In the above equation, J�
a �

Tb
ae�

b are the (1 energy, 3 momentum) current densities

of matter, associated with the (1 timelike, 3 spacelike)
vector fields e�

a � ð��1Þ� �e�a, the images of the

Lorentzian coordinate basis �e�
a � ð@=@x�Þa that generate

the translational symmetries of the background; the j�
a �

�ab �e�
b ¼ �a� constitute the energy-momentum current

densities of the gravitational field. Consequently (4) indi-
cates that the extent to which material energy-momentum
fails to be conserved at a point in the physical spacetime is
exactly equal and opposite to the extent to which gravita-
tional energy-momentum fails to be conserved at the cor-
responding point in the background. Interactions between
matter and gravity can then be understood in terms of a
local exchange of energy and momentum between the two.

It is not possible to construct a �ab to solve (4) for all
gravitational fields, so a condition must be placed on hab in
order to proceed. Of all possible symmetric tensors �ab,

quadratic in �rchab, and all (nontrivial, linear and Lorentz
invariant) field conditions, only one combination solves (4):

� ��ab ¼ 1

4
�rahcd

�rb
�hcd; (5)

�r a �hab ¼ 0; (6)

where the overbars signify trace reversal. Because (6) is
simply the equation of harmonic gauge, which can always
be satisfied through a choice of �, the field condition does
not restrict the physical applicability of our approach in any
respect. In fact, the only effect of the field condition is to
vastly reduce the gauge freedom in our description of gravi-
tational energy-momentum (5). What at first appeared as a

weakness is in fact a great strength of our approach.
Essentially, (6) indicates that � is to be chosen such that it
maps Lorentzian coordinates fx�g of the background onto
harmonic coordinates y�ðpÞ � x�ð�ðpÞÞ of the physical
spacetime. This ensures that the energy-momentum currents
J�

a are defined by the generators of a harmonic coordinate

system; these represent the approximate translational sym-
metries of the physical spacetime (present due to its small
curvature) and give a sensible replacement for killing vec-
tors in the absence of an exact symmetry.
The gravitational energy-momentum tensor �ab has two

notable mathematical properties, in addition to solving (4).
Firstly, the energy-momentum tensor for any (harmonic
gauge) gravitational plane wave

hab ¼ habðx
k
Þ; ka �hab ¼ 0; kaka ¼ 0; (7)

is completely invariant under the remaining gauge freedom
consistent with (6) and (7). Secondly, and most remarkably
of all, �ab displays the following positivity property: all
transverse-traceless (TT) gravitational fields have positive
energy density and causal energy flux, for all observers. To

state this rigorously: if, at some point p 2 �M, the gravi-
tational field hab obeys the transverse-traceless conditions

�r ahab ¼ 0; h ¼ 0; uahab ¼ 0; (8)

for some timelike vector ua, then �ab satisfies the following
inequalities:

va�abv
b � 0; (9)

va�ac�
c
bv

b � 0; (10)

at p, for any timelike vector va.
In order to deal with the last trace of gauge freedom that

remains after enforcing (6), we examined the energy-
momentum transferred between the gravitational field
and an infinitesimal probe, i.e., a matter ‘‘point source’’
with energy-momentum tensor

�T00 ¼ M�ð ~xÞ þ 1

2
Iij@i@j�ð ~xÞ;

�T0i ¼ 1

2
ð _Iij � LijÞ@j�ð ~xÞ; �Tij ¼ 1

2
€Iij�ð ~xÞ;

(11)

derived by shrinking a compact source down to a point.4

The exchange is rendered gauge-invariant [under the free-
dom that remains after (6) has been enforced] by the
monopole-free microaverage: the incoming wave is split

4M, Iij and Lij are the mass, moment of inertia, and angular
momentum of the source, respectively. Overdots indicate differ-
entiation with respect to t � x0, and the three spatial coordinates
are abbreviated ~x ¼ ðx1; x2; x3Þ. In Ref. [1], the angular momen-
tum of matter was written �Jij; our change in notation corrects
for the unusual sign convention chosen in Eq. (A10) of Ref. [1],
and avoids confusion with the energy-momentum current den-
sities J�

a.
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into a sum of Heaviside step functions, and the energy-
momentum delivered by each is integrated over a vanish-
ingly small 4-volume centered on the probe.5 The result

h@���	iMR ¼ � 1

4
�ð ~xÞ €Iij@	hTTij (12)

is equal to the bare (i.e., not microaveraged) energy-
momentum delivered by the incident field in TT gauge.
This motivated the program of fixing the final piece
of gauge freedom by insisting that the incident hab be
transverse traceless; consequently, �ab represents the
gauge-invariant gravitational energy-momentum that is
accessible to an infinitesimal probe at rest in the TT frame.
Furthermore, due to the positivity property of �ab, this
program ensures that the gravitational field is always
described with positive energy density and causal
energy flux.

The approach we will take for localizing gravitational
angular momentum will be very similar to the one we have
just described. Section II of this paper begins with the
counterpart of (4) for the local exchange of angular
momentum between matter and gravity. We will show
that the local change in the angular momentum of matter
is not entirely accounted for by the change in orbital
angular momentum 2x½��	�

a carried by the gravitational

field: gravity’s intrinsic spin sa�	 must be included to

balance the exchange. This argument defines sabc up to

the addition of total divergences, so further requirements
must be placed on the tensor before we have a unique
formula localizing gravitational intrinsic spin. We achieve
this in Sec. III by demanding that sabc satisfy two simple,

physically motivated, algebraic conditions, analogous to
the algebraic properties of �ab. As a result, a formula (32)
is derived for the spin tensor of the gravitational field. The
gauge freedom of sabc is automatically nullified by the TT

program motivated in Ref. [1]; however, it is still enlight-
ening to reprise our analysis of the infinitesimal probe and
develop a microaverage procedure that renders the transfer
of angular momentum gauge-invariant (within harmonic
gauge) without the need to fix the gauge completely. This is
covered in Sec. IV. In Sec. V, we examine the role of the
nonspatial components of gravitational angular momen-
tum, demonstrating that the exchange of nonspatial spin
sa0i can displace the center of mass of a gravitational

probe. We conclude our investigation with a calculation
and analysis of the intrinsic spin carried by a gravitational
plane wave.

II. LOCAL ANGULAR MOMENTUM EXCHANGE

The purpose of this section, and the one that follows it, is
to extend the basic framework of Ref. [1] to include a local
description of gravitational angular momentum. Unlike our

work on �ab, eliminating gauge freedom will not be a
major concern: we already know that harmonic gauge (6)
is necessary (thus we shall enforce this condition through-
out the article), and that the last trace of freedom must be
removed by insisting that the incident field be transverse
traceless. We begin by formulating the local exchange of
angular momentum.
As noted in Sec. I, the material energy-momentum

current densities J�
a are formed by contracting Ta

b with

the vectors e�
b � ð��1Þ� �e�b, the pushforwards of which

under � generate the translational symmetries of the back-
ground. Therefore, to define material angular momentum
current densities J�	

a, we must contract Ta
b with the

vector fields ð��1Þ�ð2x½� �e	�bÞ, the pushforwards of which
generate the rotational symmetries of the background6:

J�	
a � Ta

bð��1Þ�ð2x½� �e	�bÞ ¼ 2Ta
by½�e	�

b: (13)

As usual, fx�g comprise a Lorentzian coordinate system on
the background, and y�ðpÞ � x�ð�ðpÞÞ are the image of
these coordinates in the physical spacetime. The fy�g are
harmonic (that is, r2y� ¼ 0) as a result of the gauge
condition (6).
We wish to explain the effect of the gravitational field on

the angular momentum of matter in terms of a local ex-
change of angular momentum between the two. Just as (4)
captured this idea for energy-momentum, we will require

�r aj�	
a þ��ðraJ�	

aÞ ¼ 0; (14)

for angular momentum, where j�	
a is the angular momen-

tum current density of the gravitational field. Neglecting
terms Oðh3Þ, Eq. (14) is equivalent to
�raj�	

a ¼ ���ðraðJ�	
aÞÞ

¼ ���ðTa
brað2y½�e	�bÞÞ

¼ ���ðTa
bÞ½ð �rcha

b þ �rahc
b � �rbhacÞx½� �e	�c

þ 2 �raðx½� �e	�bÞ�
¼ � �Ta

bð �rcha
bÞx½� �e	�c

� 2ð �Ta
b � hac �TcbÞ �raðx½� �e	�bÞ; (15)

where in the last line we used ��ðTa
bÞ ¼ ��ðgacTcbÞ ¼

�Ta
b � hac �Tcb þOðh3Þ and �Tab ¼ �Tba. As we now have an

equation relating tensors defined on the background, we
can express these tensors in terms of their components in
the Lorentzian coordinate system:

5Details are to be found in Secs. IV B, and IV C of Ref. [1].

6We use the term ‘‘rotational symmetry’’ here as a shorthand
for both rotations and Lorentz boosts. The three independent
vector fields 2x½i �ej�

a generate rotations (so that 2x½1 �e2�
a rotates

about the x3 axis, for example) and hence define angular mo-
mentum current densities. The 2x½0 �ei�

a generate boosts (in the xi

direction) and define moment-of-energy current densities, the
interpretation of which we explore in Sec. V.
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@
j�	

 ¼ � �T


�ð@�h
�Þx½���
	�

� 2ð �T

� � h
� �T��Þ@
ðx½���

	�Þ
¼ �x½� �T
�@	�h
� þ 2h�½� �T	�

�: (16)

Finally, we recall the field equations (2) in harmonic gauge,

@2 �hab ¼ �2� �T
�; (17)

and eliminate �T
� from (16):

@
j�	

 ¼

�
@2 �h
�x½�@	�h
� � 2h�½�@2 �h	�

�
�.

2�

¼ @

h
2x½��	�


 þ h�½	@
h��
�
.
�
i
: (18)

This is rather surprising result, and one that reveals the
importance of the gravitational field’s intrinsic spin. The
first term in the square brackets clearly represents
the orbital angular momentum of the field: it takes the
familiar form x� p and is the result of the tangential linear
momentum about the origin. The second term, in contrast,
does not depend explicitly on x�; it measures the extent to
which the field itself is spinning at a particular point, and
contributes the same gravitational angular momentum
without regard to where this spin is taking place. We are
forced by (18) to accept that the angular momentum of the
gravitational field is not simply orbital, but also has an
intrinsic component:

j�	

 ¼ 2x½��	�


 þ s
�	; (19)

where s
�	 is the gravitational spin tensor (composed of

intrinsic spin current densities) without which the local
exchange of angular momentum would not balance. Of
course, the division of angular momentum into orbital and
intrinsic components is not a new idea, and the form of
Eq. (19) originates from standard flat-space field theory
[10,11]. In general, the Noether current of a rotational
symmetry cannot be constructed entirely from Noether
currents of translational symmetries: the mismatch, born
of the field’s tensorial (or spinorial) structure, is called
intrinsic spin.7 More neatly, and of greater relevance to
our later analysis, the energy-momentum tensor and the
spin tensor can be derived separately from a Lagrangian by
‘‘gauging’’ the translational and rotational symmetries of
spacetime and taking the functional derivatives with
respect to the two gauge fields. In the paper that follows
Ref. [2], we construct ��	 and s
�	 according to this

method, confirming that our formulas for ��	 and s
�	

(soon to be derived) are in keeping with the established
concepts of energy-momentum and spin.8

III. GRAVITATIONAL INTRINSIC SPIN TENSOR

Our immediate goal, of course, is to arrive at a formula
for s
�	 in terms of h
�. With this in mind, it is tempting to

solve (18) simply by setting

�s
�	�? h�½	@
h��
�; (20)

and declare that we have found our local description of
gravitational spin. However, this is not the only solution:
the exchange equation (18) only defines s
�	 up to terms

with identically vanishing divergence, so further demands
must be made of the spin tensor before it can be determined
uniquely. Obviously, s
�	 should have the same basic

properties as ��	: it should be a local, quadratic,

Lorentz-covariant function of h
�, and should contain no

dimensionful constants other than �.9 The general solution
to (18) is then

�s
�	 ¼ h�½	@
h��
� þ @��


�
�	; (21)

where �
�
�	 is any local, quadratic, Lorentz-covariant

function of h
� (but not its derivatives) that obeys

�
�
�	 ¼ ���


�	 ¼ ��
�
	�: (22)

The most general tensor that can be formed from h
� this

way is

�
�
�	 � A1h



½�h

�
	� þ A2hh

½

½��

��
	� þ A3h

�
½��

½�
	�h


�
�

þ �

½��

�
	�ðA4h

2 þ A5h��h
��Þ; (23)

7Essentially, this is because a tensor field undergoes two types
of transformation when it is rotated. A vector field A�ðxÞ, for
example, becomes ��

	A
	ð��1ðxÞÞ; in the parlance of quantum

field theory, this can be understood as a displacement x ! �ðxÞ
generated by the orbital angular momentum operator x� p, and
a pointwise Lorentz transformation A� ! ��

	A
	 generated by

the spin operator.

8Because spin tensors are usually associated with asymmetric
energy-momentum tensors, it is worth mentioning that the sym-
metry of ��	 does not contradict the existence of s



�	. Typically,

one argues that �½�	� � 0 describes finite torques acting on infin-
itessimal regions [12], and then states that this is only acceptable if
one can interpret these torques as generating intrinsic spin:
@
s



�	 ¼ 2�½�	�. Clearly, this argument does not run in reverse:

the presence of a spin tensor does not require that the energy-
momentum tensor be asymmetric. A symmetric gravitational
energy-momentum tensor simply indicates that there are no tor-
ques on infinitesimal regions due to gravity, and so (in the absence
of matter) the spin tensor is conserved: @
s



�	 ¼ 2�½�	� ¼ 0.

9This last stipulation (which forces the terms in s
�	 to
contain exactly one derivative, in order that they have the correct
units) is essentially unavoidable within the context of classical
general relativity: � is the only dimensionful constant available.
If we allow ourselves to use Planck’s constant ℏ (as we would for
a quantum theory) or introduce a new dimensionful gravitational
constant (as would arise in a higher-derivative theory of gravity)
then higher-derivative terms would be dimensionally permissible
within the spin tensor; nonetheless, these higher-derivative terms
would each be multiplied by small factors (such as the Planck
length) that would ensure the terms were negligible within the
low-curvature regime of the theory that corresponds to classical
general relativity.
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where the fAng are arbitrary dimensionless constants.
Equations (21) and (23) describe the range of possible
gravitational spin tensors that account for the angular
momentum exchanged with matter; the aim of this current
section is to find a distinguished member of this set,
deserving of its physical interpretation.

We encountered a similar ‘‘superpotential’’10 freedom
when deriving ��	 in Ref. [1], and extinguished it imme-

diately by insisting that the energy-momentum tensor
should be free of second derivatives. Unfortunately, this
tactic is of no use here: all the terms in s
�	 have the same

form h@h, and so cannot be distinguished from one another
by their differential structure. Instead, we must place alge-
braic requirements on the spin tensor, and we shall do so by
choosing two conditions that are physically well moti-
vated, and closely analogous to the algebraic properties
of ��	.

A. The plane wave condition

Condition 1: The spin tensor of any (harmonic gauge)
gravitational plane wave (7), with wave vector k�, must
obey

s
�	 / k
: (24)

Clearly, this ensures that spin flows in the direction of
propagation of the wave, a physically reasonable request
that reciprocates the property ��	 / k�k	 of plane wave

energy-momentum. Substituting (7) into Eqs. (21) and (23),
we find that the condition (24) holds for all harmonic gauge
plane waves if and only if

A2 ¼ �A1; A4 ¼ A1=4; A3 ¼ A5 ¼ 0: (25)

This leaves us with a much smaller range of spin tensors

�s
�	 ¼ h�½	@
h��
� þ A1@�

�
�h
½� �h�	�

�
; (26)

parametrized by A1.
Of course, the influence of this first condition is not

limited to gravitational plane waves. In fact, the restriction
(26) automatically endows the spin tensor with two highly
desirable properties that apply to much more general gravi-
tational fields. Furthermore, one can check that these two
properties occur only if the spin tensor takes the form (26);
hence the logic can be reversed, with both properties taken
together as conditions on s
�	, and (24) derived as a

consequence.
Property 1(a): The spin carried by a transverse-traceless

gravitational field (8) is purely spatial:

h0
 ¼ 0; h ¼ 0; @ihij ¼ 0 ) s
0i ¼ 0: (27)

Not only are transverse-traceless fields blessed with posi-
tive energy density and causal energy flux, now we see they
carry only standard spatial spin. This result is akin to the
Frenkel condition [13] that constrains the spin tensor of a
Weyssenhoff fluid [14,15]: S
0i ¼ 0, in the rest frame of

the fluid.11 The only difference here is that the gravitational
field, being massless, has no rest frame; in its place, the TT
frame defines the space/time split.
The reader should not be under the impression that the

nonspatial spins s
0i are completely unphysical, however;

as a matter of fact, they have a simple physical interpreta-
tion. In Sec. V, we explain that the nonspatial angular
momentum current densities j0i


 localize gravity’s

moment of energy, the conserved quantity associated with
the symmetry of the background under Lorentz boosts.
Accordingly, the intrinsic current densities s
0i signify an

‘‘internal displacement of energy’’ of the field. This alters
the gravitational moment of energy just as the ‘‘internal
spinning motion,’’ signified by s
ij, contributes to the total

gravitational angular momentum. Due to (27) it is now
clear that the transverse-traceless field does not carry these
internal displacements, and hence, that the location of
gravitational energy is determined by ��	 alone. The s
0i

still play an important role in the local exchange of
moment of energy with matter (see Sec. VB) because TT

gauge cannot be adopted where �T�	 � 0.

Property 1(b): All static distributions of matter give rise
to spinless gravitational fields12:

�T �	 ¼ ð ~xÞ�0
��

0
	 ) s
�	 ¼ 0: (28)

The meaning of this statement is intuitively obvious: mat-
ter must be in motion if it is to generate gravitational
intrinsic spin. It is worth remembering that the linearized
gravitational field due to static matter is just the Newtonian
potential �, so (28) is equivalent to the statement that �
has no spin. This is in keeping with our observation in
Ref. [1] that the gravitational field corresponding to a static
Newtonian potential has the energy-momentum tensor of a
massless scalar field.

B. The traceless condition

So far we have placed one algebraic condition on the
gravitational spin tensor and removed all but one of the
superpotential degrees of freedom. Our second condition
will fix A1 and determine s
�	 uniquely.

10These superpotentials are so called because they are total
derivatives. They bear no relation to the homonymous concept
from supersymmetric field theory.

11The Weyssenhoff fluid is simply a perfect fluid with intrinsic
spin. Note that the massive spin-1=2 field (described by the
classical Dirac Lagrangian) also obeys the Frenkel condition,
if one takes the charge current density to define the field’s
4-velocity [11].
12In order that the distribution does not collapse under its own
gravity, the matter will also have stresses Tij �OðhÞ �Oðh2Þ,
but these can be neglected in the linear approximation.
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We begin by noting that (as shown in our subsequent
paper [2]) the superpotential @�ðh
½�h

�
	�Þ associated with

A1 plays a distinguished role in the quadratic approxima-
tion to the Einstein field equations. To avoid a major
diversion, let us make the following statement here and
postpone its proof until [2]: if the difference between the
physical metric and the background metric ��gab � �gab is
a local function of the gravitational field hab, then the
quadratic approximation to the vacuum Einstein field equa-
tions can be written as

bG�	

�

h
� ¼ �½��	 þ @
ðs�	

 þ s	�


 � s
�	Þ=2�;
(29)

if and only if

A1 ¼ �1: (30)

The tensor in square brackets on the right-hand side of
(29) is the Belinfante energy-momentum tensor of the
gravitational field, combining ��	 and s
�	 into a single

object. According to (29) this tensor acts as a source for
the gravitational field, fulfilling the role played by the
(Belinfante) energy-momentum tensor of matter T�	 at

linear order in the nonvacuum equations (2). If we wish
to be able to interpret ��	 and s
�	 as a genuine

localization of gravitational energy-momentum and
spin, then not only must they (i) account for the ex-
change of energy-momentum and angular momentum
with matter, but they must also (ii) generate gravity
alongside matter in the Einstein field equations; for this
reason we must insist that the remaining superpotential
freedom be extinguished by setting A1 ¼ �1. Were any
other value of A1 to be chosen, then a nonlocal field
redefinition h�	 ! h�	 þOðh2Þ would be needed to

bring the field equations into the form (29), and the
physical metric would no longer be a local function
of h�	.

Setting A1 ¼ �1 also has an important effect on the
spin tensor (26) independent of its role in the quadratic
field equations. Once the gauge has been fixed, and h�	

is transverse traceless, A1 ¼ �1 guarantees that the trace
of the spin tensor will vanish: s

	 ¼ 0. In fact, because
the spin tensor (26) has this property only if A1 ¼ �1, it
is possible to fix the final piece of superpotential free-
dom by placing a second algebraic condition on the spin
tensor, as follows.

Condition 2: The spin tensor of a transverse-traceless
gravitational field (8) must be traceless:

h0
 ¼ 0; h ¼ 0; @ihij ¼ 0 ) s

	 ¼ 0: (31)

Note that this condition strengthens the similarity between
gravitational spin and standard examples of material spin:
the spin tensors of the Weyssenhoff fluid [14,15], and the
spin-1=2 field [11], are also traceless.

By design, the spin tensor (26) is consistent with condi-
tion 2 if and only if A1 ¼ �1; as a result, we arrive at our
final formula for the gravitational spin tensor:

�s
�	 ¼ 2 �h�½	@½
 �h��
��: (32)

This is the unique, local, quadratic, Lorentz-covariant
function of h�	 that accounts for the local exchange of

angular momentum with matter (14) in harmonic gauge
(6), satisfies the two physically well-motivated algebraic
conditions (24) and (31), and contains no dimensionful
constants other than �.13 This is an exceptionally compact
formula, and one that embodies a remarkably parsimoni-
ous description of gravitational spin: for a transverse-
traceless field, s
�	 is specified by no more than nine

independent components [due to (27) and (31)] as opposed
to the 24 that would be needed in the generic case.
This completes the foundational portion of the article.

Following the structure of Ref. [1], our next task is to apply
our newly assembled framework to an investigation of the
angular momentum absorbed by an infinitesimal gravita-
tional detector. Section IV will focus on the exchange of
standard (i.e., spatial) angular momentum jij


, and the

microaverage that renders this process gauge-invariant;
Sec. V concerns the interpretation of nonspatial angular
momentum ji0


, and the physical consequences of its

exchange. A reader whose primary interests are the theo-
retical underpinnings of ��	 and s
�	 may wish to skip to

Ref. [2] at this point: knowledge of Secs. IV, V, and VI, will
not be necessary for the discussion therein.

IV. ANGULAR MOMENTUM MICROAVERAGE

Having derived the formula (32) for gravitational spin,
we now possess a complete description of the local energy,
momentum, and angular momentum carried by the linear
gravitational field. Our first application of this framework
will be an analysis of the angular momentum exchanged
with an infinitesimal probe. This will allow us to revisit the
monopole-free microaverage, the procedure which defined
the gauge-invariant energy-momentum transferred onto
the probe,14 and motivated the (equivalent) program of
preparing the incident field in transverse-traceless gauge.
Clearly, this gauge-fixing program also provides us with an

13This derivation has taken place entirely within harmonic
gauge, so it goes without saying that s
�	 has only been
uniquely defined up to the addition of terms proportional to
@� �h�	. As long as we remain in harmonic gauge (which we must
if we are to interpret ��	 and s
�	 physically) then such terms
can clearly be ignored. For a discussion of the unique extension
of ��	 and s
�	 beyond harmonic gauge, see Sec. II of our
subsequent paper [2].
14As our description of gravitational energetics only exists in
harmonic gauge, we need only consider gauge transformations
which do not break the harmonic condition (6). Hence, we use
the term ‘‘gauge-invariant’’ to mean invariant under the gauge
freedom that remains after enforcing the harmonic condition.
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unambiguous definition of the angular momentum ex-
changed with the probe. What is not obvious, though, is
whether a microaveraging procedure can also achieve this
effect, allowing us to define a gauge-invariant exchange of
angular momentum that does not rely on gauge-fixing. The
aim of this section is to confirm the truth of this idea.

We shall consider a system that is almost identical to the
one described in Sec. IVA of Ref. [1]: a pointlike detector
in the path of a gravitational ‘‘pulse’’ plane wave. The
gravitational detector will once again consist of an infini-
tesimal point source at ~x ¼ 0,15 the energy-momentum
tensor of which is given by (11) as M, Iij, Lij ! 0.16 The

gravitational field

h�	 ¼ hwave�	 þ hsource�	 (33)

is the sum of the incoming gravitational wave,

hwave�	 ¼ A�	�ðk
x
 � t0Þ; A�	 ¼ const;

k� ¼ ð1;�1; 0; 0Þ; k� �A�	 ¼ 0;
(34)

and the field hsource�	 generated by the detector,

@2 �hsource�	 ¼ �2� �T�	: (35)

It is important to recognize that the plane wave (34) is not
quite the same as the one we used when defining the
energy-momentum microaverage. There, the gravitational
wave had the profile of a Heaviside step function H, and
this brought about an exchange of energy-momentum
@���	 � @h@2h� �ðt� t0Þ�ð ~xÞ that was confined to an

infinitesimal spacetime region over which we could aver-
age. The same is not true of angular momentum, however:
a step function wave will give rise to a local exchange
@
j�	


 including a term @
s


�	 � h@2h�Hðt� t0Þ�ð ~xÞ

that is not localized at t ¼ t0 and is therefore unsuitable
for microaveraging. We have no choice but to use a
delta-function wave to generate a pointlike angular

momentum exchange.17 This will be the only modifica-
tion needed to adapt the microaverage for angular
momentum.18

Following the same reasoning that took us to Eq. (42) of
Ref. [1], we find that the exchange of spatial angular
momentum for this system is given by

@
jij

 ¼ 2x½i@
�j�
 þ h�½j@

2 �hi��=�

¼ � 1

2
k½jxi� _�ðk
x
 � t0Þ

� ½ €IklAkl�ð ~xÞ � 2ð _Ikl � LklÞAk0@l�ð ~xÞ
þ ð2M�ð ~xÞ þ Ikl@k@l�ð ~xÞÞA00� � �ðk
x
 � t0Þ
� ½A0½ið _Ij�k � Lj�kÞ@k�ð ~xÞ � Ak½i €Ij�k�ð ~xÞ�: (36)

As was the case with energy-momentum, the local ex-
change of angular momentum (36) is clearly not invariant
under the gauge transformations

�A�	 ¼ Eð�k	Þ; E� ¼ const; (37)

which neither break the harmonic condition (6) nor alter
the form (34) of the wave. This gauge dependence can be
dealt with in one of two ways. The simplest approach is to
invoke the familiar TT program, insisting that the incident
field be transverse traceless: A�	 ¼ ATT

�	. The alternative,

which we will now examine, is to integrate over the infini-
tesimal interaction region and render the exchange gauge-
invariant without gauge-fixing. The two methods give
identical results, as we shall soon show.
The microaverage h. . .it0 is defined, just as it was in

Ref. [1], by

hfit0 � �ð ~xÞ�ðt� t0Þlim
�!0

Z
B�ðt0Þ

fd4x;

where B�ðt0Þ � fðt; ~xÞ: jt� t0j � �; j ~xj � �g:
(38)

Applying this definition to (36) and integrating by parts,19

we arrive at

15It might appear that we risk a loss of generality in placing the
probe at the origin, but this is not the case. To explain, let us
consider a uniform translation of the coordinates xi ! xi þ ai;
the probe then lies at ~x ¼ ~a, and according to (19) the only effect
on the gravitational angular momentum current density is
�jij


 ¼ 2a½i�j�

. Because ai is constant, the exchange of angu-

lar momentum associated with this term is simply @
ð�jij
Þ ¼
2a½i@
�j�
, and we already know from (12) that @
�i
 (which
quantifies the local exchange of linear momentum) is rendered
gauge-invariant by the monopole-free microaverage:

h@
ð�jij
ÞiMR ¼ 2a½ih@
�j�
iMR . Clearly, this term accounts for

the angular momentum that results from the transfer of linear
momentum onto the detector; by assuming that the probe is at
~x ¼ 0 in what follows, we are simply ignoring the trivial
exchange of angular momentum associated with the detector’s
bulk motion.
16We take this limit as the size of the source shrinks to zero.
The detector is then a form of generalized ‘‘test particle’’ with
negligible self-interaction in comparison to the effect of the
external field.

17One might try to use a pulse based on derivatives of the delta
function, but the process of splitting a general wave into such
pulses is nonlocal and introduces an arbitrary constant of
integration.
18The lesson here is that the microaverage is not a process in
which we split the incident wave into a particular sort of pulse: as
we have seen, the profile of the pulse depends on what exchange
we aremicroaveraging. Rather, it is a process in whichwe split the
wave such that the local exchange (of energy-momentum @
�



�,

or angular momentum @
jij

) takes a particular form: a series of

delta-function pulses (and possibly derivatives of delta functions)
each of which can then be averaged over a vanishingly small
4-volume.
19For each term, integrate by parts to move derivatives from
�ð ~xÞ onto the xi _�ðk
x
 � t0Þ or �ðk
x
 � t0Þ part of the term,
convert @i�ðk
x
 � t0Þ ¼ ��1i

_�ðk
x
 � t0Þ, and integrate by
parts once again to send the time derivatives to theM, Jij, Iij part
of the term, recalling that _M ¼ _Jij ¼ 0. Note that at least one of
the spatial derivatives must act on the xi in front of the orbital
terms: those terms where xi is left untouched will vanish because
�ð ~xÞ will set xi ¼ 0 when the integral is finally evaluated.
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h@
jij
it0 ¼ �ð ~xÞ�ðt� t0Þ½k½jð €Ii�kAk0 þ €Ii�1A00Þ
þ A0½i €Ij�1 þ Ak½i €Ij�k�: (39)

Although it is far from obvious in its current form, this
equation is in fact invariant under the gauge transforma-
tions given in Eq. (37). The easiest way to demonstrate
this is to examine each component in turn and to use
k� �A�	 ¼ 0 in the following form:

A00 þ A11 þ 2A01 ¼ 0; A22 þ A33 ¼ 0;

A02 þ A12 ¼ 0; A03 þ A13 ¼ 0:
(40)

After a great deal of canceling, one finds that

h@
j23
it0 ¼ �ð ~xÞ�ðt� t0ÞðAþ €I23 � A�ð €I22 � €I33Þ=2Þ;
h@
j12
it0 ¼ ��ð ~xÞ�ðt� t0ÞðAþ €I12 þ A� €I13Þ=2;
h@
j13
it0 ¼ ��ð ~xÞ�ðt� t0ÞðA� €I12 � Aþ €I13Þ=2;

(41)

all of which depend only on the transverse components
of the wave A� ¼ A23, Aþ ¼ ðA22 � A33Þ=2 which are
invariant under (37). Considering that the microaverage
was developed purely for the purposes of energy-
momentum exchange, it is gratifying to discover that it
renders the exchange of angular momentum gauge-
invariant as well.

It is possible to write the above relations (41) in a more
compact form:

h@
jij
it0 ¼ �ð ~xÞ�ðt� t0ÞATT
k½i €Ij�k; (42)

where ATT
�	 is the transverse-traceless part of A�	, the only

nonzero components of which are ATT
22 ¼ �ATT

33 ¼ Aþ and

ATT
23 ¼ ATT

32 ¼ A�. As previously advertised, this is exactly
the same result as would be obtained from applying the TT
program to the bare angular momentum exchange (36):

@
j
TT
ij


 � @
jij

½hsource�	 þ ATT

�	�ðk
x
 � t0Þ�
¼ �ð ~xÞ�ðt� t0ÞATT

k½i €Ij�k: (43)

The only subtlety with this calculation is that one must set

xi _�ðk
x
 � t0Þ�ð ~xÞ ¼ 0, which is valid as an identity be-
tween distributions on test functions that are differentiable

with respect to t at ðt0; ~0Þ.
The angular momentum microaverage need not be re-

stricted to plane wave pulses: we can generalize Eq. (42)
following the same procedure as the energy-momentum
case. First we note that an arbitrary (harmonic-gauge)
plane wave,

hwave�	 ¼ B�	ðk
x
Þ; k� �B�	 ¼ 0; (44)

can be split into a sum of individual pulses

hwave�	 ¼
Z 1

�1
B�	ðt0Þ�ðk
x
 � t0Þdt0; (45)

and the angular momentum exchange of each pulse micro-
averaged separately20:

h@
jij
½hsource�	 þ hwave�	 �iR
�

�
Z 1

�1
h@
jij
½hsource�	 þ B�	ðt0Þ�ðk
x
 � t0Þ�it0dt0:

(46)

Second we recall that any incident field hin�	 can be ex-

pressed as a sum of plane waves, at least locally. Because
(42) is linear in the incident field, we can split any incident
field into a sum of plane waves, each of which can be split
into a sum of pulses, then perform the microaverage on
each element and reassemble the result. The general for-
mula is therefore

h@
jij
iR�
¼ �ð ~xÞhTTk½i €Ij�k; (47)

where hTT�	 is the transverse-traceless part of hin�	.

This concludes our analysis of the spatial angular
momentum transferred onto the probe. The nonspatial
currents j0i


 can also be absorbed by the detector; the

exchange equation (14) then ensures that the shift in grav-
ity’s moment of energy is accompanied by a displacement
in the detector’s center of mass. This is a rather surprising
phenomenon, and one that, to our knowledge, has not been
discussed in the literature. Under resonant conditions, this
effect can cause the detector to ‘‘walk’’ in a direction
transverse to the gravitational wave.21 The next section is
devoted to a detailed examination of this phenomenon.

V. MOMENT OF ENERGY

Through its unification of space and time, and energy
and momentum, special relativity fused together the once
disparate notions of angular momentum and center of
mass. In this section we review this idea in terms of local
currents, and offer an interpretation for the nonspatial
intrinsic spin currents s
0i. We also examine the local

exchange of moment of energy between the gravitational
field and an infinitesimal detector. In the Appendix, we
confirm that this phenomenon is also predicted by a ‘‘first
principles’’ description of the system.

A. Definitions and interpretation

It goes without saying that the nonspatial components
j0i


 and J0i

 are needed to form the Lorentz-covariant

20This microaverage carries the subscript
R
� to remind us that

the wave has been split into �-function pulses, rather than
Heaviside steps.
21This should not be confused with the motion associated with
the linear momentum that the probe gains according to (12).
There, a resonance between the detector and the incident wave
gives rise to a longitudinal acceleration, and the velocity gained
in this process remains after the wave has passed.
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currents j�	

 and J�	


; thus, at the most basic level, these

nonspatial components carry the interpretation of standard
‘‘spatial’’ angular momentum as seen by a moving
observer. Beyond this, the nonspatial components carry
an additional interpretation that is quite distinct from spa-
tial angular momentum. They are the current densities of a
conserved 3-vector quantity: the moment of energy.

To explain, let us first define the moment of energy Xi,
total linear momentum Pi, and total mass/energy M for
matter as

Xi � �
Z ffiffiffiffiffiffiffi�g

p
T0

0yid
3y; Pi�

R ffiffiffiffiffiffiffi�g
p

T0
id

3y;

M � �
Z ffiffiffiffiffiffiffi�g

p
T0

0d
3y;

(48)

noting that the center of mass xð0Þi is simply the moment of
energy normalized by the total mass/energy:

xð0Þi � Xi=M: (49)

The total nonspatial angular momentum of matter is thenZ ffiffiffiffiffiffiffi�g
p

J0i
0d3y �

Z ffiffiffiffiffiffiffi�g
p ðT0

iy0 � T0
0yiÞd3y

� �tPi þ Xi; (50)

where we have written y0 ¼ t.22 In the absence of the
gravitational field (h�	 ¼ 0) the angular momentum cur-

rents are conserved,

@
ð ffiffiffiffiffiffiffi�g
p

J�	

Þ ¼ ffiffiffiffiffiffiffi�g

p raJ�	
a ¼ 0; (51)

and as a result,

@tðXi � tPiÞ ¼ 0: (52)

Furthermore, the conservation of energy-momentum
[@
ð ffiffiffiffiffiffiffi�g

p
T


�Þ ¼ ffiffiffiffiffiffiffi�g
p raJ�

a ¼ 0] ensures that _Pi ¼ 0,

and leads to the following global conservation law:

_X i � Pi ¼ 0: (53)

This equation integrates to Xi ¼ tPi þ Xijt¼0, which on
substitution into (50) givesZ ffiffiffiffiffiffiffi�g

p
J0i

0d3y ¼ Xijt¼0; (54)

which is constant by definition. In other words, the total
nonspatial angular momentum is equal to the moment of
energy at t ¼ 0, a conserved quantity which we will refer

to by the acronym MoE, where the stipulation ‘‘at t ¼ 0’’
should be taken as given.
The same analysis can be performed for the gravitational

field in the absence of matter. Working in the background,
we define

X�
i �

Z
�00xid

3x; P i �
Z

�0id
3x;

Xs
i �

Z
s00id

3x; Xi � X�
i þXs

i :

(55)

Then the total nonspatial gravitational angular momentum
is given by Z

j0i
0d3x � Xi � tP i; (56)

which, due to @
j0i

 ¼ 0 and @
�



i ¼ 0, is conserved:

_X i � P i ¼ 0; (57)

Z
j0i

0d3x ¼ Xijt¼0: (58)

We conclude from this that the j0i

 are the current densities

of the conserved quantitiesXijt¼0 that constitute the gravi-
tational MoE.
As (55) makes clear, the nonspatial spin densities s00i

shift the gravitational MoE by Xs
i , displacing it from the

value X�
i that would have been expected from �00 alone.

This suggest that the s00i represent an ‘‘internal displace-

ment of energy’’ at a point (analogous to the notion of s0ij
as ‘‘internal spinning motion’’ at a point) so that the field’s
energy lies locally off center. The value of �00ðpÞ still
represents the density of gravitational energy at the point
p, but an asymmetry in the distribution of the energy
‘‘within the point,’’ quantified by s00i, shifts the MoE by

a small amount.23 Because s00i ¼ 0 for any transverse-

traceless gravitational field, these internal displacements
rarely arise when describing the energetics of the gravita-
tional field in vacuum. However, as TT gauge cannot be

adopted where �T�	 � 0, the s00i inevitably play an active

role in the exchange of MoE between matter and gravity.

B. Moment of energy exchange

When matter and gravity interact, neither j0i

 nor J0i




are independently conserved, and MoE is exchanged
between them according to (14). Consequently, the con-
servation laws (53) and (57) are broken,

_X i � Pi � � _Xi � 0; (59)

22Note that we use the same symbol t to represent the value of
the time coordinate y0 in physical spacetime and the time
coordinate x0 of the background. This has the advantage of
allowing us to drop the distinction between the physical quan-
tities Xi, Pi, M, xð0Þi , and their background representations
��ðXiÞ, ��ðPiÞ, ��ðMÞ, ��ðxð0Þi Þ: the first set are functions of
y0 only, the second set of x0 only, and the two sets are numeri-
cally equal when x0 ¼ y0.

23This pointwise internal structure (spinning motion and dis-
placements) presumably takes place in the tangent space of the
manifold, where the gravitational field is defined.

LOCALIZING THE ANGULAR MOMENTUM OF LINEAR GRAVITY PHYSICAL REVIEW D 86, 084012 (2012)

084012-9



_X i � P i � � _Xi � 0; (60)

but the extent to which they are broken is exactly equal and
opposite24:

� _Xi þ � _Xi ¼ 0: (61)

To understand this process in general, we turn once
again to our preferred testing ground: an infinitesimal
detector in the path of a gravitational plane wave. Unlike
our analysis of angular momentum for this system
(Sec. IV) we will not employ the microaverage here. The
reason for this is simple: the microaverage does not pro-
duce a gauge-invariant description of the exchange of
MoE. In contrast to angular momentum and energy-
momentum, the gauge-invariant modes of the gravitational
field do not deliver MoE evenly across the whole detector;
they are biased by a dipole term proportional to @i�ð ~xÞ.25
The microaverage is therefore unable to capture the
exchange properly, as it can only produce quantities pro-
portional to �ð ~xÞ. This is a notable qualitative difference
between the exchange of angular momentum and MoE, but
in reality it poses no practical difficulty: we can still
remove the gauge dependence by insisting that the incident
field is transverse traceless.

With this in mind, we consider the same system as
described in Sec. IV with one exception: the incident field
is an arbitrary transverse-traceless plane wave,

hwave�	 ¼ BTT
�	ðt� x1Þ; BTT

0	 ¼ BTT
1	 ¼ BTT ¼ 0; (62)

rather than a pulse. Taking the same steps that were used to
derive (42) of Ref. [1], and deploying the distributional
identity xi�ð ~xÞ ¼ 0, we find that the local exchange of
nonspatial angular momentum is

@
j10

 ¼ t@
�
1; (63)

i ¼ 2; 3: @
ji0

 ¼ BTT

ik ð _Ikj � LkjÞ@j�ð ~xÞ=2: (64)

As the longitudinal (63) and transverse (64) equations
represent two very different phenomena, we shall examine
them separately.

Equation (63) is essentially trivial: it accounts for the
extra MoE that arises from the exchange of linear momen-
tum in the x1 direction. To demonstrate this, let us take the
time derivative of (56):

_X i � P i � t _P i ¼
Z

@0j0i
0d3x ¼

Z
@
j0i


d3x: (65)

Unlike the noninteracting case, we now have

_P i ¼
Z

@0�
0
id

3x ¼
Z

@
�


id

3x; (66)

which is nonzero in general. Consequently,

� _Xi � _Xi � P i ¼
Z

t@
�


i þ @
j0i


d3x: (67)

Thus, the quantity that describes the local exchange of
MoE is in fact the sum

t@
�


i þ @
j0i


; (68)

as it is this combination which contributes the extra in-
crease in Xi beyond what would be expected from simply
integrating P iðtÞ with respect to time. Because the gravi-
tational wave only deposits momentum in the longitudinal
direction [see Eq. (12)] this argument has no effect on the
interpretation of (64); however, Eq. (63) reveals that

t@
�


1 þ @
j01


 ¼ t@
�


1 þ ð�t@
�



1Þ ¼ 0; (69)

confirming that there is no exchange of MoE in the x1

direction, only the exchange of linear momentum. The
center of mass of the detector will accelerate in the x1

direction, but this acceleration will be exactly what one
would expect from the linear momentum transfer discussed
in Ref. [1].
In comparison, the exchange of transverse MoE (64) is

considerably less trivial. The first complication is that
@
ji0


 / @j�ð ~xÞ, indicating that the transfer of MoE occurs

within a dipolelike distribution, taking opposite signs at
opposite ends of the detector. In general, these effects will
partially cancel each other, so a more pertinent quantity to
calculate (rather than the local exchange) is the total MoE
exchange over the whole detector:

� _Xi ¼ �� _Xi ¼ �
Z

t@
�


i þ @
j0i


d3x

¼ _BTT
ik ðtÞð _Ik1 � Lk1Þ=2; (70)

for i ¼ 2, 3. This equation describes the transverse drift in
gravitational MoE, and via (61), the opposite drift in the
matter MoE.
In general, the center of mass of the detector (49) will

move according to

_x ð0Þ
i ¼ ð� _Xi þ PiÞ=M� Xi

_M=M2; (71)

under the influence of the gravitational wave. Focusing our
interest on the transverse directions (for which Pi ¼ 0 for
all time) we note that the last term in (71) is the product of
two small quantities (Xi and _M) and can therefore be

24This global exchange equation follows directly from the local
exchange equations: multiply Eq. (14) by ��ð ffiffiffiffiffiffiffi�g

p Þ ¼ ffiffiffiffiffiffiffi� �g
p þ

OðhÞ, discard terms Oðh3Þ, and integrate over the spatial coor-
dinates. This gives � _Xi þ� _Xi � tð _P i þ _PiÞ ¼ 0, and _P i þ
_Pi ¼ 0 follows from the local exchange of linear momentum
(4) by exactly the same method.
25This can be seen in Eq. (64) below.
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neglected in comparison to the first term, which only
contains one small quantity (� _X).26 Making these simpli-
fications, and substituting (70) into (71), we finally arrive at
a formula for the transverse motion of the detector’s center
of mass:

i ¼ 2; 3: _xð0Þi ¼ _BTT
ik ð _Ik1 � Lk1Þ=2M: (72)

It is important to realize that this motion is not simply a
‘‘coordinate effect.’’ If we were to place a free particle at
rest at the origin, then because the plane wave is TT,
this reference point will remain at ~x ¼ 0 indefinitely.
Equation (72) therefore predicts the displacement of the
center of mass relative to this reference point, and the
proper distance between the two points will be, to lowest
order, equal to the Euclidean distance in the background.

In passing we also note that, when Iij ¼ 0, the accelera-

tion of the center of mass is exactly that of a spinning test
particle (of mass M and angular momentum Lij) as pre-

dicted by the linearized Papapetrou-Dixon equations
[16,17] in transverse-traceless gauge:

M €xð0Þi ¼ �LjkRi0jk=2þOðh2Þ ¼ �Lk1
€BTT
ik =2þOðh2Þ;

(73)

where, because the probe begins at rest, we have taken

_xð0Þi ¼ OðhÞ. Thus (72) generalizes this equation to include
the effect of the quadrupole moment Iij of the particle.

Because this quantity is time dependent, this allows for
the possibility of resonance between the probe and the
wave, the consequence of which we shall explore in the
following example.

1. Example: rotating rod

Let us consider the probe depicted in Fig. 1, a light rod
(length 2l) with bobs of mass m=2 at each end, spinning
with angular frequency ! about the x3 axis. A valuable
feature of Eq. (72) is that one only needs the unperturbed
motion of the detector (as captured by Iij and Lij) to

calculate the motion of the center of mass to lowest order
in h�	; this is not true of a ‘‘first principles’’ approach to

the problem (see the Appendix) which complicates that

calculation considerably. The unperturbed locations of the
two masses are, in the background,

~x ð1Þ ¼ lðcos!t; sin!t; 0Þ ¼ � ~xð2Þ; (74)

and assuming that the speeds are not relativistic (for the
sake of simplicity) it is easy to confirm that

_Iij � Lij ¼ m!l2
� sinð2!tÞ cosð2!tÞ � 1 0

cosð2!tÞ þ 1 sinð2!tÞ 0

0 0 0

0BB@
1CCA

ij

:

Inserting this into (72) and setting the total mass/energy
M ¼ m under the nonrelativistic assumption, we conclude
that center of mass of the spinning rod moves according to

_x ð0Þ
i ¼ !l2

2
_BTT
i2 ðtÞðcosð2!tÞ þ 1Þ; (75)

in the transverse directions i ¼ 2, 3. For a generic gravita-
tional wave, this equation predicts an oscillation in the
center of mass that averages to zero over many wave-
lengths. If the wave is of frequency 2!, however, a reso-
nance occurs in which the detector can steadily ‘‘walk’’ in
the transverse direction. A gravitational wave of the form

B22

B23

 !
¼ �þ

��

 !
sinð2!ðt� x1ÞÞ (76)

gives rise to an average transverse velocity

h _xð0Þ2 i
h _xð0Þ3 i

0@ 1A ¼ !2l2

2

�þ
��

 !
: (77)

One of the most surprising aspects of this phenomenon is
that the walking motion (77) is not associated with any
transverse momentum: P2 ¼ P3 ¼ 0. The detector moves
without being pushed, as it were: due to a careful con-
spiracy between the probe’s internal motion, and the
stretching and squeezing of space, the center of the probe
is displaced with each period.
To understand this on an intuitive level, let us imagine

for a moment that the rod joining the masses does not exist,
but that at t ¼ 0 the masses have the same positions and
velocities as before. Because the gravitational wave is
invariant under translations in the transverse directions,
the transverse momentum (i.e., the transverse components

FIG. 1. A toy model detector: two masses, connected by a light
rod, rotate in the x3 ¼ 0 plane; a gravitational plane wave,
propagating in the x1 direction, disturbs its center of mass in
both the longitudinal and transverse directions.

26To argue this more rigorously, suppose that the incident wave
has amplitude B and frequency �, and that the internal motions
of the probe have frequency ! and amplitude l. We require B 	
1 in the linear approximation,�l 	 1 to ensure that the probe is
much smaller than the gravitational wavelength, and !l < 1 so
that the internal motions are not superluminal. It follows from
(70) that the first term � _X=M� Bl2�!, and from (12)
that the second term X _M=M2 ¼ ðX=MÞðR @
�
0d

3x=MÞ �
ðX=MÞBl2�!2. The factor X=M ¼ R

� _Xdt=M can be no larger
than ð� _XÞmax�t=M� Bl2�!�t, where �t is the duration of the
interaction. From this we conclude that the second term
X _M=M2 & B2l4�2!3�t is negligible in comparison with the
first unless the wave and the probe interact for a very long time
�t� ðBl2�!2Þ�1. This becomes completely impossible as the
length scale of the probe l ! 0.

LOCALIZING THE ANGULAR MOMENTUM OF LINEAR GRAVITY PHYSICAL REVIEW D 86, 084012 (2012)

084012-11



of the momentum covectors) of the two particles will be
conserved, and hence the total transverse momentum
remains zero. However, the velocity vectors of the masses
are related to their conserved momentum covectors by the
physical metric gab, which varies in the x

1 direction. Thus,
because the physical metric differs between the positions
of the two masses, while their momenta are equal and
opposite, their velocities will not be. In this fashion, a
gradient in the gravitational field across the detector can
cause a drift in the center of mass of the system. The role of
the rod in our detector is simply to apply equal and oppo-
site forces to the masses (again, having no effect on the
total transverse momentum) so that once t ¼ �=2! and
the gradient of the gravitational wave across the detector
has reversed, the masses are now at the same value of x1,
and the drift that has occurred in the first quarter wave-
length will not be undone.

In the Appendix, we substantiate this intuitive picture
with a detailed rederivation of Eq. (70) from first prin-
ciples. Not only does this further aid our understanding of
the phenomenon, it should assuage any concerns that this
unfamiliar effect might simply be an unphysical artifact of
our formalism. In fact, the subtlety and complexity of this
calculation emphasizes the computational advantage of our
approach, not only for MoE, but for angular momentum
and energy-momentum also.

VI. GRAVITATIONAL PLANE WAVES

As a final exploration of our formula (32) for gravita-
tional intrinsic spin, we shall evaluate s
�	 for a plane

wave. The motivation for this endeavor is to point out a
number of interesting features, and to allow for a compari-
son with other descriptions of gravitational angular
momentum.

A transverse-traceless gravitational plane wave

h�	 ¼ h�	ðk
x
Þ; k� ¼ ð1;�1; 0; 0Þ;
h�0 ¼ h�1 ¼ h ¼ 0;

(78)

has an extremely simple spin tensor:

s
�0 ¼ s
�1 ¼ 0; �s
23 ¼ k
ðh� _hþ � hþ _h�Þ;
(79)

where h� ¼ h23 and hþ ¼ h22 ¼ �h33 are the transverse
components of the wave. As one would expect, s
�	

describes transverse spatial spin flowing in the direction
of propagation of the wave. Furthermore, the amplitude of
s
23 quantifies the internal spinning motion of the field, as

can be seen when we consider a monochromatic wave
where the ‘‘plus’’ and ‘‘cross’’ polarizations differ by a
phase �:

hþ ¼ Aþ cosð!ðt� x1ÞÞ;
h� ¼ A� cosð!ðt� x1Þ � �Þ: (80)

In this case, the spin density is constant over spacetime,

�s023 ¼ !A�Aþ sin�; (81)

and is greatest in magnitude when the wave is circularly
polarized, that is, when � ¼ 
�=2. Note that a wave with
a purely linear polarization will carry no spin at all.
In Ref. [1], we saw that the energy-momentum tensor of

a TT gravitational plane wave was independent of the
timelike vector u� that defines the wave’s TT frame (8).
A similar property holds for the spin tensor, but it is
complicated by the fact that spin is constrained to be spatial
with respect to the TT frame, that is, u	s
�	 ¼ 0. As we

shall see, the longitudinal and nonspatial spins do trans-
form as the TT frame is changed, and in doing so they
adapt the spin tensor to obey the spatial constraint for the
new u�; however, the transverse spatial spin current s
23 is

left invariant. To demonstrate this invariance, we perform a
gauge transformation on the field (78) that maintains its
plane wave form,

�h�	 ¼ @ð�ð�	Þðk
x
ÞÞ ¼ 2kð� _�	Þ; (82)

and note that the spin tensor changes by

��s
�	 ¼ k
k½�ðh	�� €�� � _h	�� _��

þ k�ð _�	� €�� � €�	� _��ÞÞ; (83)

confirming that �s
23 ¼ 0.
Now suppose that the gravitational field (78) has been

transformed to a newTT frame, so that in someotherLorentz

coordinate system fx�0 gwe have h�000 ¼ h�010 ¼ 0. Then by

the same calculation that led us to (79) the transformed spin

tensor s0abc will obey s0
0
�000 ¼ s0
0

�010 ¼ 0 exactly as the

original tensor did in the original coordinate system. The
only nonzero component of the transformed tensor (in

the primed basis) will be s0
0
2030 , and this quantity will

also be gauge-invariant by the same argument we used for
s
23. These two gauge-invariant currents are related by the

constant factor 2�½20
2�

30�
3, where�

�0
	 is the Lorentz trans-

formation between the two coordinate bases:

s
23 ¼ s0
23 ¼ ��0
2�

	0
3s

0

�0	0 ¼ ð2�½20

2�
30�

3Þs0
2030 :

(84)

This constant of proportionality ensures that sabc and s
0a
bc

describe exactly the same spatial transverse spin current in

either basis: s
23 ¼ s0
23 and s

0
2030 ¼ s0
0

2030 . Thus, the

only effect of a change in TT frame is to reexpress the same
physical information (the transverse spin current of the
wave) in terms of spin that is spatial with respect to a new
rest frame. In the absence of somematerial body (a detector
or a source, for example) the massless gravitational plane
wave cannot define a preferred rest frame, and so the spatial
nature of its intrinsic spin will always have this ambiguity.
As a consequence of this, while a plane wave region can

‘‘sew together’’ two different TT frames to form a seamless
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picture of the propagation of gravitational energy-
momentum (as described in Sec. III D of Ref. [1]) the
same cannot be done for angular momentum: there will
always be a discontinuity where the spatial spin of one
frame is converted into the spatial spin of the other. Even
so, one can construct a gravitational spin pseudovector

s
 � �
��	s��	=2; (85)

which is truly independent of TT frame, and will therefore
give a continuous description of gravitational spin within
the sewing region. The invariance of s
 follows directly
from the totally antisymmetric part of (83): �s½
�	� ¼ 0.

The physical interpretation of this pseudovector is not
immediately clear, but suffice it to say that for a plane
wave, s
 captures only the spin that is linearly independent
of the wave vector k�.27 For the plane wave (78) we have
been studying, the spin pseudovector is

�s
 ¼ k
ðh� _hþ � hþ _h�Þ; (86)

capturing all the physically pertinent information of (79) in
a completely frame-independent fashion.

Finally, we should highlight the major difference that
exists between the gravitational spin currents in (79) and
the corresponding quantities given by the traditional
approaches, including the Landau-Lifshitz tensor [4]
and the integrand of the Arnowitt-Deser-Misner (ADM)
energy-momentum [5]. In these descriptions, the local
energy-momentum and spin of the gravitational field are
packaged together in a single object, a Belinfante energy-
momentum tensor t�	 � @h@hþ h@2hþOðh3Þ.28 The

local angular momentum currents are then x½�t	�

 alone,

with no extra ‘‘intrinsic’’ component. According to this
viewpoint, there is no transverse angular momentum
within a harmonic-gauge plane wave: x½2t3�


 ¼ 0.29 This

differs dramatically from our description (79) and stands
opposed to the intuitive notion of intrinsic spin as quantify-
ing the internal spinning motion of the field. Without
separating gravitational energy-momentum and spin into

two separate tensors, ��	 and s
�	, the intrinsic spin

carried by a (harmonic-gauge) plane wave can never be
manifestly present within the wave.
To be clear, the Belinfante-style descriptions still cor-

rectly quantify the total angular momentum of the wave,
but they assign this angular momentum to the wave’s
boundary, not its interior.30 Considering that the angular
momentum currents along this boundary are given by
x½2t3�


 as always, and are thus explicitly dependent on

x�, even these currents cannot be thought of as a local
and intrinsic property of the field. This perverse picture, in
which all the spin of a gravitational wave resides on the
edge of the wave, and this supposedly intrinsic quantity
depends on the coordinate distance from the origin,
only emphasizes what was already well known: the
Landau-Lifshitz tensor and the integrand of the ADM
energy-momentum should not be taken seriously as local
descriptions of gravitational energy-momentum or spin.
While they certainly define meaningful global quantities
[19], the gauge freedom of these Belinfante tensors cannot
be fixed in a natural manner, and they commonly display
negative energy density and spacelike energy flux.

VII. CONCLUSION

Together, the energy-momentum tensor ��	 and the spin

tensor s
�	 completely characterize the energy, momen-

tum, and angular momentum carried locally by the line-
arized gravitational field:

� ���	 ¼ 1

4
@�h
�@	 �h


�; (87)

�s
�	 ¼ 2 �h�½	@½
 �h��
��: (88)

The gauge freedom of this description is highly constrained
by the harmonic gauge condition,

@� �h�	 ¼ 0; (89)

which arose as a consequence of the derivation of ��	; the

last remnant of this freedom is then eliminated by insisting
that the incident gravitational field be transverse traceless,
a program motivated in part by appealing to the gauge-
invariant exchange of energy-momentum between gravity
and an infinitesimal probe, and also distinguished by the
numerous desirable properties that the tensors display in
transverse-traceless gauge: positive energy density, causal
energy flux, and spatial spin.

27We also note that s
 bears a resemblance to the Pauli-
Lubanski pseudovector S
 � �
��	P�L�	=2, which character-
izes the total spin of a particle or matter field, and reduces in the
particle’s rest frame to (mass times) the familiar axial angular
momentum vector of nonrelativistic mechanics [18].
28A Belinfante energy-momentum tensor can be constructed
from any energy-momentum tensor and spin tensor, including
our own: t�	½�; s� � ��	 þ @
ðs�	


 þ s	�

 � s
�	Þ=2. We

perform this calculation in Ref. [2] and compare the result
with the Landau-Lifshitz and ADM Belinfante tensors discussed
here.
29This follows from simple index combinatorics. Within the
plane wave t�	 � kk _h _hþkkh €hþOðh3Þ, and because k�k� ¼ 0
and k� �h�	 ¼ 0, both the free indices must occur on the wave
vectors, i.e., t�	 / k�k	. This continues to be true at higher
order, where the terms in t�	 are of the form kk _h _h hn�2 þ
kk €hhn�1. Consequently, the transverse angular momentum van-
ishes exactly: x½2t3�


 / x½2k3�k
 ¼ 0.

30To avoid a discussion of the boundary at infinity, suppose the
plane wave is in fact restricted to a spatially compact region; in
this case, one will find that x½2t3�


 � 0 at the boundary of the
region, and the spatial integral of x½2t3�

0 will amount to the same
total angular momentum described by s023. In fact, it is generally
true that (under suitable boundary conditions) t�	½�; s� gives the
same global measure of energy-momentum and angular momen-
tum as ��	 and s
�	; see Ref. [2] for details.
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We developed this framework around a simple principle:
wherever the energy, momentum, or angular momentum of
matter is changed under the influence of gravity, there must
be an equal and opposite change in the energy, momentum,
or angular momentum of the gravitational field. This idea,
and the requirement that ��	 be symmetric and free of

second derivatives, was enough to determine the energy-
momentum tensor (87) and the field condition (89). To
determine the spin tensor uniquely, we demanded that it
satisfy two physically motivated conditions: first, the spin
of a gravitational plane wave must flow in the direction of
propagation of the wave (24); second, a transverse-
traceless field must possess a traceless spin tensor (31).
The latter condition ensures that local field redefinitions
suffice to cast ��	 and s
�	 as sources of gravity in a

quadratic approximation to general relativity (29). The
resulting spin tensor (89) displays a number of notable
properties that were not required of it: the Newtonian
potential has vanishing spin tensor (28) and any
transverse-traceless field carries purely spatial spin (27).

The microaverage, which defines the gauge-invariant
exchange of energy-momentum between gravity and an
infinitesimal probe, also renders the exchange of spatial
angular momentum gauge-invariant (47) without the need
for gauge-fixing. In the same system, the exchange of
nonspatial angular momentum can displace the center of
mass of the detector, beyond that which would be expected
due to the exchange of linear momentum alone (72).
Indeed, if the internal motions of the probe resonate with
the incident wave, the detector may ‘‘walk’’ in a transverse
direction, and acquire a net displacement over many wave-
lengths. We have explored this phenomenon for the spe-
cific example of a rotating rod (75) and rederived our
predictions from first principles (see the Appendix).

Unlike ��	, the spin tensor of a gravitational plane wave

is not completely independent of the TT frame in which the
wave is prepared. While the current density of transverse
spatial spin (in any frame) is invariant, the full tensor
adapts so as to remain spatial with respect to whichever
TT frame is used. Thus, if a plane wave region is used to
sew together two TT frames and produce a seamless
picture of energy-momentum propagation, there will
inevitably be a discontinuity in s
�	 where the spin is

projected from one spatial hypersurface to another; how-
ever, a spin pseudovector can be defined (85) that is
conserved across this interface.

The spin carried by a plane wave (79) is also an excel-
lent example with which to compare our framework to
the familiar ‘‘Belinfante’’ energy-momentum tensors of
Landau and Lifshitz, and Arnowitt, Deser and Misner.
Whereas s
�	 describes spin that is manifestly present

within the wave, the density of which depends on the
rotational motion of h�	 at each point, the Belinfante

tensors assign all angular momentum to the boundary of
the wave, and its density there is not simply a function of

h�	 (as a truly local intrinsic property of the field would

be) but is also dependent on the distance of the point from
the origin.
Returning to our previous paper [1], it becomes clear

that many of the remarkable properties of our gravitational
energy-momentum tensor (including its positive energy
density and causal energy flux) owe their existence to the
careful separation of gravitational energy-momentum and
gravitational spin. Now that we have made this separation
explicit, and derived a formula for s
�	, we have all the

ingredients necessary to understand the broader theoretical
picture in which our description resides. This is the task of
our next paper [2], the results of which, in many respects,
are the main reward for our work here.
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APPENDIX: MOMENT OF ENERGY EXCHANGE
FROM FIRST PRINCIPLES

In order to rederive Eq. (70) from first principles, we
shall consider a detector, centered at the origin, composed
of a set of N test particles connected by some form of
‘‘light’’ mechanical apparatus.31 The nth particle has mass
mn, proper time �n, and follows a worldline y

�
n ð�nÞ in the

physical spacetime; its 4-velocity u
�
n � dy

�
n =d�n has unit

norm: uanu
b
ngab ¼ �1. In this approach, the detector is not

truly infinitesimal, but we stipulate that the length scale of
the detector l� yin be sufficiently small that we may ignore
terms Oðl3Þ in our calculation, leaving us with a quadru-
pole approximation of the probe. As usual, a weak gravi-
tational plane wave is incident upon the detector,
represented in transverse-traceless gauge in the back-
ground: h�	 ¼ hwave�	 as given in (62). As @2h�	 ¼
@3h�	 ¼ 0, the physical spacetime is isometric under

translations in the y2 and y3 directions of the fy�g coor-
dinate system; for this section, we will reserve the index
k ¼ 2, 3 for these transverse directions.
In the physical spacetime, the energy-momentum tensor

of the particles is

ðTparticlesÞab¼
XN
n¼1

1ffiffiffiffiffiffiffi�g
p

Z
d�n�ðy��y

�
n ð�nÞÞuanpnb; (A1)

where pna � mngabu
b
n is the 4-momentum of the nth

particle. For the purposes of defining the moment of energy

31The adjective ‘‘light’’ is used to indicate that the total energy-
momentum of the apparatus is negligible compared to that of the
particles.
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of the detector, we assume that the energy-momentum of
the light apparatus is negligible:

Xi ¼ �
Z ffiffiffiffiffiffiffi�g

p ðTparticlesÞ00yid3y ¼ �XN
n¼1

pn0yni: (A2)

In terms of background quantities, this is

Xi ¼ �XN
n¼1

mnð�0
 þ hn0
Þx0
n xni ¼
XN
n¼1

mnx
00
n xni; (A3)

where x�n ð�nÞ are the coordinates of the particles in the
background spacetime, primes indicate differentiation with
respect to �n, and hn�	 � h�	ðx
n ð�nÞÞ is the gravitational
field evaluated at the nth particle. The rate of change of the
moment of energy is therefore

_X i ¼
XN
n¼1

mn

�
x000n xni
x00n

þ x0ni
�
: (A4)

The normalization of the 4-velocity,

� 1 ¼ �ðx00n Þ2 þ ðhnij þ �ijÞx0inx0jn ; (A5)

ensures that x00n �Oð1Þ and x000n �Oðl2Þ, so the first
term (A4) is Oðl3Þ and can therefore be neglected.
Consequently,

€X i ¼
XN
n¼1

mnx
00
ni

x00n
þOðl3Þ: (A6)

The accelerations x00ni in (A6) are caused by both the
gravitational field and the mechanical forces exerted on the
particles by the apparatus. Our aim is to infer €Xi without
assuming any detailed model of the latter. This might seem
an impossible task, as it appears that we will need to know
the motions of the particles (or the forces from the appa-
ratus) to first order in h�	 if we wish to calculate the first

order contribution to €Xk. Fortunately, because the appara-
tus is light, and the transverse momentum is conserved,
only the unperturbed motions of the particles will be
required. To see this, we start by calculating the linear
momentum of the probe:

Pi ¼
Z ffiffiffiffiffiffiffi�g

p ðTparticlesÞ0id3y ¼ XN
n¼1

pni; (A7)

where once again we assume that the momentum of the
apparatus can be neglected. Because the physical space-
time is isometric under translations in the y2 and y3 direc-
tions, the transverse momentum Pk will be conserved

32:

0 ¼ _Pk ¼ @t

 XN
n¼1

mnð�ki þ hnkiÞx0in
!

¼ XN
n¼1

mn

x00n
ðx00nk þ @�nðhnkix0inÞÞ; (A8)

which is equivalent to the statement that the mechanical
forces on the particles (due to the apparatus) balance
one another.33 Substituting this constraint into Eq. (A6)
we find that

€X k ¼ �XN
n¼1

mn

x00n
@�nðhnkix0inÞ þOðl3Þ

¼ @t

 
�XN

n¼1

mnhnkix
0i
n

!
þOðl3Þ; (A9)

which is easy to integrate34:

_X k ¼ �XN
n¼1

mnhnkix
0i
n þOðl3Þ: (A10)

This is the equation we sought: every instance of x0in is
multiplied by h�	, so only the unperturbed motions are

needed to determine _Xk to linear order in the gravitational
field.
The last step is to relate the hnki to the gravitational field

at the origin:

hn�	 ¼ h�	ðt; ~0Þ þ xin@ih�	ðt; ~0Þ þOðl2Þ
¼ BTT

�	ðtÞ � x1n _BTT
�	ðtÞ þOðl2Þ; (A11)

as a result, Eq. (A10) becomes

_Xk ¼ �BTT
ki

 XN
n¼1

mnx
0i
n

!
þ _BTT

ki

 XN
n¼1

mnx
1
nx

0i
n

!
þOðl3Þ

¼ �BTT
ki ð _XkÞ þ _BTT

ki

 XN
n¼1

mnx
1
nx

0i
n

!
þOðl3Þ

¼ _BTT
ki

 XN
n¼1

mnx
1
nx

0i
n

!
þOðh2Þ þOðl3Þ: (A12)

This simplifies even further when we notice that

32This follows from the standard argument: @kg
� ¼ 0 guar-
antees that ð@kÞa is a Killing vector, rðað@kÞbÞ ¼ 0, and thus
0 ¼ ffiffiffiffiffiffiffi�g

p raðTa
bð@kÞbÞ ¼ @
ð ffiffiffiffiffiffiffi�g

p
T


kÞ, the spatial integral of
which is _Pk ¼ 0.

33Although the total momentum of the apparatus is assumed to
be negligible, we have not made any assumptions about the local
flux of momentum between the apparatus and the particles, and so
the individual mechanical forces on each particle cannot be
neglected. The constraint (A8) arises because the apparatus has
much lessmass than the particles, and so anymomentum itwere to
gain would send it off with a very large velocity that would be
impossible tomaintain while in contact with the particles; in order
to stay connected to the particles, the momentum of the apparatus
must remain very small, and the forces acting on the apparatus
must (approximately) sum to zero.
34The constant of integration is set to zero by the initial
conditions: the probe is at rest ( _Xi ¼ 0) before the wave arrives
(h�	 ¼ 0).
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_Iij�Lij¼@t

�
�
Z ffiffiffiffiffiffiffi�g
p ðTparticlesÞ00yiyjd3y

�
�2

Z ffiffiffiffiffiffiffi�g
p ðTparticlesÞ0½jyi�d3y

¼@t

 XN
n¼1

mnx
00
n x

i
nx

j
n

!
�2

XN
n¼1

mnx
0½j
n xi�n þOðhÞ

¼2
XN
n¼1

mnx
0ði
n x

jÞ
n �2

XN
n¼1

mnx
0½j
n xi�n þOðhÞþOðl4Þ

¼2
XN
n¼1

mnx
j
nx0inþOðhÞþOðl4Þ; (A13)

which gives us our final result:

_X k ¼ _BTT
ki ð _Ii1 � Li1Þ=2þOðh2Þ þOðl3Þ; (A14)

exactly as predicted by Eq. (70).

It should be clear that our formalism provides a much
more direct route to this result: one needs only to produce
(64) and integrate, a straightforward operation that lacks
the ‘‘insightful’’ steps of the first principles calculation,
such as invoking conservation of transverse momentum
(A8) to remove degrees of freedom from (A6). However,
the moral of this Appendix is not simply that our method is
more computationally efficient; equally important is the
intuitive power that our framework confers. Working from
first principles, it is hard to imagine that one would have
thought to derive (A14) in the first place, as there is no
obvious reason to expect that a gravitational wave would
produce a transverse motion in the detector’s center of
mass. In comparison, our unified picture of local gravita-
tional energetics brought this phenomenon to mind as
readily as the exchange of energy, momentum, or angular
momentum.
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