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Here we consider two phenomena in the vicinity of a black hole deformed by the tidal gravitational

force of surrounding matter and by a strong magnetic field: equatorial motion of charged particles and the

decay of a test scalar field. We were able to analyze both phenomena with analytical and simple numerical

tools, which was unexpected given the low symmetry of the system. We show that both the tidal

gravitational force and the magnetic field strongly enhance the release of the binding energy for the

matter spiralling into the black hole. In the presence of the magnetic field, the left- and right-handed

rotations of charged particles are not equivalent and for sufficiently large jqjB there are stable anti-Larmor

orbits very close to the event horizon, although Larmor orbits are only stable at some distance from the

black hole. The larger the tidal force, the closer the innermost stable orbit to the black hole for both types

of rotation. It is also shown that the real oscillation frequencies of the characteristic quasinormal modes

are considerably suppressed by the tidal force.
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I. INTRODUCTION

Although the interior of black holes is invisible, there are
reports on observations of astrophysical black holes owing
to their intense interactions with the surrounding matter,
which are manifest around galactic black holes interacting
with the Active Galactic Nucleus. Accretion disks create
gravitational tidal forces as well as electric and magnetic
fields around black holes. Accurate physical descriptions
of such processes usually involve complex numerical mod-
eling using supercomputers and present a number of chal-
lenges connected to explanations of various observed
processes, including for example, the origin of jets around
black holes. Here we adopt a more theoretical framework,
which, although far from being an accurate astrophysical
description, could be a bridge between the mathematical
theory of black holes and the numerical modeling in
astrophysics.

An important constituent of a black hole’s environment
is a magnetic field, which can be as strong as 104–108 G
near the black hole [1]. The magnetic fields near a black
hole can extract its rotational energy (Blandford-Znajek
effect [2]), affect the quasinormal spectrum [3] and
Hawking radiation [3,4], and induce an external electric
charge on its surface [4]. At the same time, there is no
evidence that the magnetic field could be strong enough to
deform the geometry of a black hole significantly. Thus,

the most interesting effects associated with the presence of
the magnetic field occur on charged particles and fields.
Indeed, the factor which stipulates the Lorentz force during
the particle’s motion is qB=� [4], where � is the mass of
the particle and B is the asymptotic value of the magnetic
field strength.
Another essential factor representing the black hole

environment is a tidal gravitational force produced by all
the surrounding matter. Unlike magnetic fields, tidal forces
can be strong enough to deform (albeit minimally) the
geometry of a galactic black hole as well as black holes
of stellar masses having a star companion.
The perturbative solution to the Einstein-Maxwell equa-

tions which allows us to study, the magnetic field and the

tidal gravitational force, was found in Ref. [5] by Preston

and Poisson with the help of the light-cone gauge formal-

ism [6]. They considered a system consisting of a black

hole and a mechanical structure (a giant torus or long

solenoid) at some distance around it, which was the source

of the gravitational tidal force and the strong magnetic

field. Thus, the background which we shall study here,

the Preston-Poisson space-time, has three parameters:

mass M, magnetic field B and tidal force E.
We investigated two basic properties of particles and

fields in the vicinity of such a magnetically and tidally
deformed black hole: the proper oscillation frequencies in
the black hole’s response to the perturbation, termed qua-
sinormal modes (QNMs), and the motion of the charged
particles. The quasinormal modes do not depend on*konoplya_roma@yahoo.com
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the kind of perturbation but only on the parameters of
space-time and are therefore termed the fingerprints of
the space-time. The quasinormal modes are studied in
various disciplines such as black hole physics, gauge/
gravity correspondence, gravitational wave astronomy [7],
cosmology [8] and quantum gravity [7].

Particle motion and the quasinormal modes have been
studied for black holes immersed in a strong magnetic field
[3,4,9–16]. We previously investigated motion of neutral
particles in the vicinity of the Preston-Poisson space-time
[17]. Further studies on particle motion, accretion and
thermodynamic properties around black holes in a mag-
netic field was performed in Refs. [18–22]. In the presented
work we estimate quasinormal modes of a test scalar field
propagating in the background of the Preston-Poisson
black hole [5], when the magnetic component of the de-
formation vanishes. This is a good approximation, since
the gravitational tidal force is usually much stronger than
the deformation caused by the magnetic field. In the eiko-
nal regime, quasinormal modes usually have a kind of
universal behavior for different boson fields, such that the
spectrum of the neutral scalar field considered here could
reveal some features of the gravitational spectrum. The
latter is much more difficult for analysis due to the insepa-
rability of variables in the perturbation equations.

The motion of charged particles is essentially influenced
by the magnetic component. Therefore, in the first part of
our work, when considering equatorial motions of charged
particles, we have taken both the gravitational tidal force
and the space-time deformation due to the magnetic field
of the torus into consideration. The angular variables in the
Hamilton-Jacobi equation in the Preston-Poisson space-
time can be decoupled only in the equatorial plane, by
which our analysis of particle motion is limited. In par-
ticular, we show that the tidal gravitational force as well as
the magnetic field strongly enhance the release of the
binding energy for a particle spiralling into the black
hole. The region of stability is also significantly affected
by the tidal force and magnetic field and is qualitatively
different for left- and right-handed rotations. We shall
discuss these issues in detail in Sec. IV.

The scalar field equation also does not allow for a
complete separation of variables in the general case.
Nevertheless, we used the fact that the astrophysically
motivated low-laying quasinormal modes are ‘‘localized’’
near the peak of the effective potential and therefore
‘‘averaged’’ the tidal force near the peak by its value in
the maximum. This allowed us to decouple variables and
estimate the dominant quasinormal modes for the first and
higher multipoles ‘ � 1. We have shown that the real
oscillation frequencies are considerably suppressed by
the tidal force in the vicinity of the magnetic field.

The paper is organized as follows. In Sec. II we sum-
marize some basic relations for the Preston-Poisson space-
time. In Sec. III the effective potential for the equatorial

motion is deduced on the basis of the Hamilton-Jacobi
formalism. Properties of particle’s motion are studied in
Sec. IV with consideration of various particular cases, such
as zero tidal force, zero magnetic field, and the approxi-
mation of the neglected ‘‘geometric’’ influence of the
magnetic field. Section V is devoted to the decoupling of
variables in the test scalar field equation for the Preston-
Poisson metric with vanishing magnetic field. In Sec. VI,
the angular part of the scalar field equation is studied.
Section VII presents calculations of quasinormal modes
for the above case. In Sec. VIII we summarize the obtained
results and discuss the questions which remain for further
study.

II. PRESTON-POISSON METRIC

The Preston-Poisson space-time describes the system
consisting of a large mechanical structure, such as a giant
solenoid or a torus which surrounds a black hole and
produces an asymptotically uniform magnetic field of
strength B. The mass of the structure is M0 and the radius
is of order �a, while the mass of the black hole is M. The
electromagnetic four-vector has the following form:

A� ¼ 1

2
B��; (1)

where �� ¼ ð0; 0; 0; 1Þ. Further, it is implied that the
perturbation created by the magnetic field is small, i.e.,

r2B2 � 1; (2)

where r is the distance from the black hole, and only the
interior of the mechanical structure is under consideration
r < a. For our purposes it is sufficient to study the inner
region of the system which starts at the black hole horizon
(rh ¼ 2M) and ends far from the black hole, still being far
from the edges of the torus,

rh � r � a: (3)

The latter condition can always be fulfilled, because the
torus is supposed to be situated in the region of the weak
gravitational field of the black hole,

M

a
� 1: (4)

As r2B2 � 1 and r < a, it is implied that a2B2 � 1,
though the relative scales of M=a and a2B2 can be arbi-
trary. First of all, we are interested in the case

M=a � a2B2; (5)

i.e., in the situation when there is an asymptotic region
M � r < a, where the influence of the magnetic field on
the space-time geometry is negligible. The mechanical
structure of massM0 produces the gravitational tidal force,
parametrized by E, near the black hole,
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E �M0

a3
: (6)

In the above approach the tidal force can be much larger, of
the same order or much smaller than B2.

Preston and Poisson used the light-cone gauge for con-
structing the perturbed metric, which is adapted to incom-
ing light cones v ¼ constant that converge toward r ¼ 0.
For zero tidal force and magnetic field, v takes its
Schwarzschild value v ¼ tþ rþ 2M lnðr=2M� 1Þ. In
the (v, r, �, �) coordinates the Preston-Poisson metric
has the following form:

ds2 ¼ gvvðr; �Þdv2 þ 2dvdrþ gv�ðr; �Þdvd�
þ g��ðr; �Þd�2 þ g��ðr; �Þd�2; (7)

where

gvv ¼ �f� 1

9
B2rð3r� 8MÞ

� 1

9
B2ð3r2 � 14Mrþ 18M2Þð3cos2�� 1Þ

þ Eðr� 2MÞ2ð3cos2�� 1Þ þO½B4; E2�; (8)

gvr ¼ 1þO½B4; E2�; (9)

gv� ¼ 2

3
B2r2ðr� 3MÞ sin� cos�

� 2Er2ðr� 2MÞ sin� cos�þO½B4; E2�; (10)

g�� ¼ r2 � 2

9
B2r4 þ 1

9
B2r4ð3cos2�� 1Þ þ B2M2r2sin2�

þ Er2ðr2 � 2M2Þsin2�þO½B4; E2�; (11)

g’’ ¼ r2sin2�� 2

9
B2r4sin2�þ 1

9
B2r4sin2�ð3cos2�� 1Þ

� B2M2r2sin4�� Er2ðr2 � 2M2Þsin4�
þO½B4; E2�; (12)

and fðrÞ ¼ 1� ð2M=rÞ. The above metric was obtained in
Ref. [5] by the perturbation of the Einstein-Maxwell equa-
tion in orders of (E, B2). The parameter E is the Weyl
curvature, that is, the tidal gravitational field, of the asymp-
totic space-time measured by an observer comoving with
the black hole in the regionM � r � 1=B. The perturbed
event horizon is given by

rh ¼ 2M

�
1þ 2

3
M2B2sin2�

�
: (13)

It is essential that the event horizon is affected by B and
not by E.

Although in the above space-time only the dominant
order of the magnetic field is considered, the same relation
as for the Ernst black holes takes place

B� 10�21 M

M�
B0; (14)

where M and M� are the mass of a black hole and of the
sun, respectively, and B0 is the external magnetic field in
units of Gauss. From the above relation one can see that the
magnetic field deforming the space-time geometry signifi-
cantly would be as strong as B ¼ 1012 G for galactic black
holes with mass M� 109M�.

III. EQUATIONS OF MOTION AND THE
EFFECTIVE POTENTIAL

The transformations

v ¼ tþ FðrÞ; F0ðrÞgvvðr; �Þ þ 1 ¼ 0; (15)

reduce the metric (7) to the following form:

ds2 ¼ �gvvðr; �Þ�1dr2 þ gvvðr; �Þdt2
þ g��ðr; �Þd�2 þ C; (16)

where C is the part of the metric which vanishes on the
equatorial plane � ¼ �=2 as it contains d�. The metric
coefficients gvv and g�� depend on the radial and angular

coordinates r and �, the black hole massM, magnetic field
B and the tidal force parameter E. The above metric is
diagonal on the equatorial plane and convenient for further
analysis of geodesic motions with the help of the
Hamilton-Jacobi formalism.
The Hamilton-Jacobi equations for the timelike and null

geodesics in curved space-time are

1

2
g��

�
@S

@x�
� qA�

��
@S

@x�
� qA�

�
¼ @S

@s
: (17)

Here s is an invariant affine parameter. The action is

S ¼ � 1

2
�2s� Etþ L�þ SrðrÞ þ S�ð�Þ;

and E and L are constants of motion, the particle’s energy
and angular momentum, respectively (p0 ¼ �E, and p3 ¼
L) while p1 ¼ Sr and p2 ¼ S� are functions of r and �,
respectively. In the general case the angular variables in the
Hamilton-Jacobi equations cannot be decoupled.
Nevertheless, one can decouple variables for motion in
the purely equatorial plane � ¼ �=2.
In the equatorial plane the Hamilton-Jacobi equation for

the metric (16) takes the form

�g�1
vv

�
@S

@t

�
2 þ gvv

�
@S

@r

�
2 þ g�1

��

�
@S

@�

�
2 þ q2g�1

��A
2
� � 2qA�g

�1
��

@S

@�
¼ �2: (18)
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Implying the normalization � ¼ �s, where � is the
proper time, the first integrals of motion are

��gvv
dt

ds
¼ E; �

dr

ds
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 �U2

effÞ
q

;

�
d�

ds
¼ Lþ 1

2Bqg��

g��

: (19)

The qualitative analysis of the motion can be made by
considering the effective potential

U2
eff ¼ ��2gvv

�
1þ ðLþ 1

2Bqg��Þ2
�2g��

�
: (20)

The effective potential for various parameters is shown in
Fig. 1. Let us takeM ¼ 1 and consider the situation when,
L 	 Bq and at the same time B � 1, E � 1, � � 1.
Expansion in terms of small �, B and jqjB=L shows that
for sufficiently large values of L, the effective potential has
a local minimum at

r

�
2L

jqjB
�
1=2
�
1�

�
1þqB

L

�
Eþ

�
7qB2

L
þ10qB

L
þ3

�
E2

�
:

(21)

For small values of the angular momentum L the effective
potential is a monotonically growing function of r. For
more general cases, which are not limited by small values
of�, it may be useful to introduce the angular momentum,
charge and energy ‘‘normalized’’ by mass,

L ! L=�; q ! q=�; E ! E=�:

Then, the effective potential can be written as

V2
eff ¼

U2
eff

�2
¼ �gvv

�
1þ ðLþ 1

2Bqg��Þ2
g��

�
: (22)

Further, we shall use this form of the effective potential and
the ‘‘normalized’’ values of the energy, angular momentum
and charge.

The effective potential, and consequently the motion of
particles, is not the same for opposite charges of particles

q, that is, the left-hand and right-hand rotations are not
equivalent due to the presence of the magnetic field: the
rotation which corresponds to the Lorentz force directed
from the black hole is called the anti-Larmor rotation,
while the rotation with a Lorentz force directed towards
the black hole is the Larmor one. In the next section, we
shall show that negative (positive) charge and the positive
(negative) angular momentum corresponds to the Lorentz
force directed from the black hole (anti-Larmor motion),
and, when the signs of the charge and of the momentum
coincide, the motion is Larmor.
From Fig. 1 one can see that the effective potential of

positively charged particles is higher than that of the
negatively charged ones at all r. Thus, the magnetic field
allows negative particles to penetrate the barrier at energies
smaller than those for the Schwarzschild black hole.
Now, we are in position to study properties of the

equatorial motion of charged particles.

IV. PROPERTIES OF PARTICLE MOTION

Here, we shall concentrate on circular orbits of charged,
massive particles. The case of massless and neutral parti-
cles was considered, though in a different coordinate sys-
tem, in Ref. [17].

A. The case where the influence of the magnetic
field on the black hole’s geometry vanishes

We shall first neglect the deformation of the black hole
geometry due to the magnetic field, that is, we shall take
B ¼ 0 in formulas (7) for gvv and g�� and keep B � 0 in

the generalized derivatives of the Hamilton-Jacobi equa-
tions (17). This approximation is quite good, taking into
account that the magnetic field around the black hole
decays quite quickly with r, so that its overall influence
on the geometry can indeed can be neglected for small qB.
The parameters of the circular orbits can be determined

from the requirements

dr

ds
¼ 0;

d2r

ds2
¼ 0: (23)

FIG. 1 (color online). (a) Left panel: Effective potentials U2
eff for L ¼ 3, � ¼ 0:1, E ¼ 0:001, B ¼ 0:01, M ¼ 1, q ¼ �10, 0, þ10

(from bottom to top), (b) middle panel: Effective potentials for L ¼ 3, � ¼ 0:1, E ¼ 0:001, 0.005, 0.01 (from bottom to top),
B ¼ 0:01, M ¼ 1, q ¼ þ10, (c) right panel: Effective potentials for L ¼ 3, � ¼ 0:1, E ¼ 0:001, 0.005, 0.01 (from bottom to top),
B ¼ 0:01, M ¼ 1, q ¼ �10.
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These equations mean that on the circular orbits one has

Veff ¼ E;
dV2

eff

dr
¼ 0; (24)

that is, circular orbits take place only on the turning points
of the effective potential. Next, let us consider the two
particular cases: (1) vanishing tidal force and (2) vanishing
magnetic field.

1. The case E ¼ 0

In the case of vanishing tidal force, E ¼ 0. Solutions to
the system of Eq. (24) allow us to find the values of energy
E and momentum L as a function of the rest of the
parameters B, M, q and coordinate r,

E2 ¼ ðr� 2MÞ2ðB2q2ðr� 2MÞr2 þ 2r� 6M� Bq
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ðB2q2r4 þ 4M2ðB2q2r2 � 3Þ þMð4r� 4B2q2r3ÞÞp Þ

2rðr� 3MÞ2 (25)

L ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ðB2q2r4 þ 4M2ðB2q2r2 � 3Þ þMð4r� 4B2q2r3ÞÞp � BMqr2

6M� 2r
: (26)

When B ¼ 0, the above expressions (25) and (26) for the
energy and momentum reduce to their Schwarzschild
values

E2 ¼ ðr� 2MÞ2
rðr� 3MÞ ; L ¼ �

ffiffiffiffiffi
M

p
rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r� 3M
p : (27)

Note that L, E and q are ‘‘normalized’’ by mass �.
Under positive q, the upper sign corresponds to the anti-
Larmor motion (A), while the lower sign to the Larmor one
(L). Negative q gives opposite correspondence for Larmor
and anti-Larmor rotations. Indeed, asymptotic behavior at
large (far from the black hole) r, gives the following
asymptotic values for the energy and momentum:

E2
A ! 1; LA ! � 1

2
Bqr2; r 	 M; (28)

E2
L ! B2ð3M2 þ r2Þq2 þ 1; r 	 M; (29)

LL ! 1

2
Bqð6M2 þ 2rMþ r2Þ; r 	 M: (30)

The Larmor motion is a kind of cyclotron rotation in a
uniform magnetic field, when the magnetic field is directed
to the center of the orbit. The Larmor motion does not
require a black hole, so that a black hole just perturbs the
existing Larmor orbits. On the contrary, to the Larmor
rotation anti-Larmor motion takes place only in the pres-
ence of the black hole, when the Lorentz force is directed
outwards from the center.

2. The case B ¼ 0

The case of vanishing magnetic field is more trivial as
the motion of charged particles is qualitatively the same as
those of the neutral ones. The energy and momentum
expanded until the first order in E have the following form:

E2 ¼ Eð8M2 � 7rMþ 2r2Þðr� 2MÞ2
ðr� 3MÞ2 þ ðr� 2MÞ2

rðr� 3MÞ
þOðE2Þ; (31)

L ¼ � Eð�6M4 � 2rM3 þ 9r2M2 � 5r3Mþ r4Þr
2
ffiffiffiffiffi
M

p ðr� 3MÞ3=2

�
ffiffiffiffiffi
M

p
rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r� 3M
p þOðE2Þ: (32)

It is evident that the above expressions reduce to their
Schwarzschild values as E ¼ 0.

3. The case B � 0 and E � 0

For a more general case B � 0 and E � 0 (but still in the
approximation of the neglected geometrical influence of
the magnetic field onto the metric), the explicit expressions
for the energy and momentum are rather cumbersome,
therefore Figs. 3–6 were used to depict the dependence
of energy and momentum on the radius of circular orbits.
In Figs. 3 and 5 one can see that the energy E and

absolute values of the momentum L increase when the
tidal force E increases. Usually, the effective potential
has two extrema: one at the maximum of the potential
barrier (corresponding to an unstable orbit and not far
from the black hole), and one at the minimum which is
farther from the black hole (corresponding to a stable
orbit). At some minimal values of the angular momentum,
these two extrema coincide, which corresponds to the
innermost stable circular orbit. Thus, the minimum of the
absolute value of angular momentum L in Figs. 3–6) is
located at the innermost stable circular orbit. As it is shown
in Figs. 3 and 5, the larger the tidal force E, the closer the
innermost stable orbit to the black hole. This could be
explained by the fact that the tidal force E of the surround-
ing structure is opposite to the gravitational attraction of
the black hole, such that the ‘‘effective’’ gravitational
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attraction becomes weaker and particles can come closer to
the black hole yet still remain in a stable orbit.

The dependence on charge q is more complicated as the
situation depends on the direction of the Lorentz force.
Thus, the anti-Larmor motion (when the Lorentz force is
directed outward from the black hole) corresponds to
positive q and negative L or to negative q and positive L.
The energy and momentum for various q are shown in
Figs. 4 and 6. The positive and negative angular momenta
show opposite dependence of the energy on charge q: for
negative L, lines of energy for negative q always lay above
those for positive q, while for positive L the situation is
reversed, that is, negative charges correspond to smaller E
than positive ones. The same dependence takes place for
the absolute value of the angular momenta. In summary,
the energy E and the absolute value of the angular momen-
tum j L j grow with the increasing absolute value of charge
j q j for Larmor orbits and decreases for anti-Larmor ones.
As the magnetic field B is coupled to the charge q, the
dependence on B is qualitatively similar to the dependence
on q. As the dependence on the magnetic field for neutral
particles was considered earlier in Ref. [17], we focused on
the dependence of various quantities on the charge and
the tidal force. For the relatively small q (when qB is

still small) and E, considered in Figs. 3 and 6 and in
Tables I and II, one cannot tell the difference in the location
of the innermost stable Larmor and anti-Larmor orbits.
That is why we have only one set of values of r in
Tables I and II: the corrections to those values are of the
orderOðB4; E2; B2EÞ. This is certainly not the case for large
q for which the location of Larmor and anti-Larmor orbits
are quite different. We shall consider the regime of large q
in the next subsection.
In order to learn how much energy could be extracted

from a particle slowly spiralling toward the center, it is
necessary to know what the energy of the particle at the
innermost stable circular orbit is. For this purpose it is
convenient to use a function called the binding energy,
which is the amount of energy released by the particle
going from the stable circular orbit located at r to the
innermost stable circular orbit ris. Thus, the binding energy
(in percent) is

Binding Energy ¼ 100
EðrÞ � EðrisÞ

EðrÞ : (33)

The binding energy can tell us how much energy the
matter (for instance an accretion disk) will release before
plunging into the black hole. For the Schwarzschild black
hole (taking M ¼ 1) the energy on the innermost stable

orbit is EðrisÞ ¼
ffiffiffiffiffiffiffiffi
8=9

p
, so that for a particle coming from

the asymptotic region (E ¼ 1), the binding energy is about
5.7%. For the Preston-Poisson space-time there is no
asymptotically flat region, so that, the binding energy
released at the transition from a given stable orbit r (instead
of infinity for the Schwarzschild case) to the innermost
stable orbit ris is meaningful. Figures 7 and 8 depict how
the binding energy depends on the charge q, tidal force E
and magnetic field B as a function of r.
In Fig. 7 the line for negative L lays above the line for

positive L, if q is negative, and below, if q is positive. Thus,
the Larmor orbits have greater binding energy than the
corresponding anti-Larmor ones. Comparison with the
blue curve for the Schwarzschild case (B ¼ E ¼ 0) in
Fig. 7 demonstrates that the magnetic field and its coupling
with the charge strongly enhance the release of the binding

FIG. 3 (color online). Energy E� (left) and momentum L� (right) as a function of circular orbit radius for various values of E ¼ 0,
1=300, 1=200, 1=100 (from bottom to top for energy E� and from top to bottom for the negative angular momenta L�), B ¼ 1=100,
M ¼ 1, q ¼ 1.

FIG. 2 (color online). Effective potential U2
eff for L ¼ 0, 0.1,

0.4, 0.8 (from top to bottom on the right side),M ¼ 1,� ¼ 0:01,
B ¼ 0:01, E ¼ 0:001, q ¼ �5.
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energy. This property was also observed in Ref. [13] for the
black hole in the absence of the tidal force. The tidal force
also strongly increases the binding energy, as can be seen
from comparison with the Schwarzschild case in Fig. 8.
There, the negative momenta correspond to a slightly
smaller binding energy than the positive one in Fig. 8,
where the small difference is due to the small Bq. Thus,
the Larmor and anti-Larmor orbits are almost indistin-
guishable in the regime of tiny Bq. In the next subsection
we discuss the regime of large charge, when Bq is not
necessarily small.

B. The general case with all nonvanishing parameters

When the charge q is large enough, so that the term Bq is

no longer small, one cannot safely neglect the geometric

influence of the magnetic field, because even subdominant

terms containing Bq can be quite large in comparison, for

instance, with the tidal force corrections �E. Thus, we
considered the full metric (7) with a nonzero magnetic field

both in the metric coefficients and in the Hamilton-Jacobi

equation for large q. As shown in Table III, the locations of

Larmor and anti-Larmor orbits already differ a lot for

FIG. 5 (color online). Energy Eþ (left) and momentum Lþ (right) as a function of circular orbit radius for various values of E ¼ 0,
1=300, 1=200, 1=100 (from bottom to top), B ¼ 1=100, M ¼ 1, q ¼ 1.

FIG. 4 (color online). Energy E� (left) and momentum L� (right) as a function of circular orbit radius for various values of the
particle charge q ¼ �5 (green), 0 (red), 5 (blue), from top to bottom for the energy E� and from bottom to top for the negative angular
momenta L�; E ¼ 1=100, B ¼ 1=100, M ¼ 1..

FIG. 6 (color online). Energy Eþ (left) and momentum Lþ (right) as a function of circular orbit radius for various values of the
particle charge q ¼ �5 (green, bottom), 0 (red), 5 (blue, top), E ¼ 1=100, B ¼ 1=100, M ¼ 1..
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Bq� 1. At the same time, the data for Bq� 10�2 (the first

line in Table III) still almost coincide with the approxima-

tion of the neglected ‘‘geometric contribution’’ of B con-

sidered above. Another distinction from the above small

charge approximation is that, while for small Bq the

energy at the innermost stable orbit is only slightly smaller

for the anti-Larmor orbits than for the Larmor ones

(Tables I and II), for moderate Bq, this difference is very

large (see last line in Table III) and the Larmor orbits may

have one order larger energy and momentum than the anti-

Larmor ones.
In the case of large q, the binding energy of Larmor

orbits is not always greater than the anti-Larmor ones as
it depends on a stable orbit from which the particle
plunges into the black hole. For more distant stable orbits

[see Fig. 9] the binding energy of the anti-Larmor orbits
can be larger than the corresponding Larmor ones. If one
remembers that the Larmor motion is a cyclotron rotation
in a uniform magnetic field perturbed by a black hole,
then, it becomes clear that in the case of large Bq the
‘‘perturbation’’ by the black hole is relatively small, so
that the rotation is almost purely cyclotronic, especially at
a relatively large distance from the black hole.
Finally, let us discuss the radial stability of the consid-

ered circular orbits. The condition of the radial stability can
be written as

@2Ueff

@r2
> 0 -stability condition: (34)

From numerical study of the above inequality [whenUeff is
given by its most general expression (22)], we conclude
that at sufficiently large jqjB, the region of stability of anti-
Larmor orbits can approach the event horizon,

r > rh -anti-Larmor; highjqjB; (35)

while Larmor orbits are only stable for r * 4:2M for zero
tidal force E ¼ 0, approaching r * 3:6M at E ¼ 1=50M,

r *
4:2MðE ¼ 0Þ

3:6MðE ¼ 1=50MÞ
� �

-Larmor; highjqjB: (36)

This is in good agreement with the r * 4:3M limit
observed in Ref. [4] for the Ernst solution in the absence
of the tidal force. The small difference between (36) and a
similar equation in Ref. [4] is apparently due to the ne-
glected contribution of orders B3 and higher in the Preston-
Poisson metric. The new feature here is that the tidal force
can considerably expand the region of stability of the
Larmor orbits making them closer to the black hole hori-
zon. This can also be seen from Table II.

V. SCALAR FIELD PERTURBATIONS IN THE
PRESTON-POISSON SPACE-TIME

The aim of our study of a test scalar field in the Preston-
Poisson space-time is to find the proper oscillation fre-
quencies (quasinormal modes) which dominate in the
response to the perturbation at late time. As shown in
Ref. [23], the quasinormal modes of black holes, when

TABLE I. Energies Eþ and E� and the angular momenta Lþ
and L� at the innermost stable circular orbit for various values of
charge q; B ¼ E ¼ 10�3, M ¼ 1.

q r Lþ L� E� Eþ
�10 5.2745 3.64979 �3:78766 0.99508 0.95882

�3 5.2841 3.69291 �3:73427 0.98163 0.97076

�1 5.2849 3.70624 �3:72003 0.97792 0.97432

0 5.2850 3.71308 �3:71308 0.97612 0.97612

1 5.2849 3.72003 �3:70624 0.97432 0.97794

3 5.2841 3.73427 �3:69291 0.97432 0.97794

10 5.2753 3.78766 �3:64979 0.95882 0.99508

TABLE II. Energies Eþ and E� and the angular momenta Lþ
and L� at the innermost stable circular orbit for various values of
charge E; B ¼ 10�3, q ¼ 1, M ¼ 1.

E=10�3 r Lþ L� E� Eþ
0 5.9997 3.47018 �3:45818 0.94119 0.94445

0.5 5.5277 3.60380 �3:59086 0.95811 0.96156

1 5.2849 3.72003 �3:70624 0.97432 0.97794

1.5 5.1213 3.82919 �3:81458 0.99046 0.99425

2 4.9982 3.93531 �3:91988 1.00684 1.01080

2.5 4.8994 4.04064 �4:02438 1.02366 1.02779

3 4.8168 4.14672 �4:1296 1.04105 1.04537

FIG. 7 (color online). The binding energy as a function of r for q ¼ �10 (left), q ¼ 0 (middle) and q ¼ 10 (right), E ¼ B ¼ 10�3,
M ¼ 1; red is for negative L and green is for positive L, blue line is for the Schwarzschild orbit.
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considered in the astrophysical context, are essentially
independent of the behavior of the master wave equation
far from the black hole. The explanation is straightforward:
quasinormal modes are poles of the reflection coefficient of
the scattering process which occurs near the peak of the
effective potential, so that the low-laying, dominating
modes are ‘‘localized’’ near the maximum of the effective
potential. For the Schwarzschild solution this happens at
r ¼ 3M, while for the Preston-Poisson space-time this
value is only slightly corrected. The wave equation does
not have physical meaning at r ¼ 1, because for astro-
physical processes of this kind, ‘‘infinity’’ effectively is
situated at the distance which is much larger than the radius
of the black hole. In our case, ‘‘infinity’’ is at least quite a
few times larger than the black hole radius and still far
from the edge of the torus, rh � r � a. We have consid-
ered the same spatial region when analyzing particle’s
motion.

For a test neutral scalar field, influence of the magnetic
field B can usually be neglected, because the energy den-
sity of the magnetic field is much smaller than that of the
gravitational one. When B ¼ 0, the coefficients of the
Preston-Poisson metric (7) are simplified as follows:

gvv ¼ �fþ Eðr� 2MÞ2ð3cos2 � 1Þ; (37)

gvr ¼ 1; (38)

gv� ¼ �2Er2ðr� 2MÞ sin� cos�; (39)

g�� ¼ r2 þ Er2ðr2 � 2M2Þsin2�; (40)

g’’ ¼ r2sin2�� Er2ðr2 � 2M2Þsin4�: (41)

The Klein-Gordon equation in a curved space-time has
the following form:

h� ¼ @

@x�

�
g�� ffiffiffiffiffiffiffi�g

p @�

@x�

�
¼ 0:

In the general case, the variables in the Klein-Gordon
equation cannot be decoupled for the above metric.
However, a further assumption can remedy the situation.
We shall assume, that as the torus is situated far from the
black holeM � a, the tidal force E, being relatively small,
acts almost homogeneously in a small region where the
low-laying quasinormal modes are ‘‘localized,’’ that is near
the peak of the effective potential

r ¼ rmax ¼ pM; p ¼ 8

3
; ‘ ¼ 0; (42)

p ¼ 3

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ ‘ð‘þ 1Þð14þ 9‘ð‘þ 1ÞÞp � 3

2‘ð‘þ 1Þ ;

‘ � 0:

In other words, the tidal force at the potential peak does not
change much when one slightly moves away from the peak
r 
 rmax. Thus, we assume that M � a holds ‘‘with a
margin,’’ being also rmax � a. In this case, being inter-
ested only in the region near the peak, we can expand the
perturbed part of the Preston-Poisson metric (37)–(41)
(i.e., the terms containing E) in powers of (E, (r� rmax)).
Further we neglect the corrections to the Schwarzschild
metric of order Eðr� rmaxÞ and higher, which means that,
as we assumed, the tidal force barely changes near the
peak. Although such an approximation does not allow us to
make accurate calculations of quasinormal spectrum, we
can still estimate the dominating modes numerically. In
reality the tidal force is smaller on the left (at the black hole
side) of the peak and larger on the right of it, so that the
used expansion in powers of (E, (r� rmax)) is a kind of
‘‘averaging’’ of the tidal force in the small region of the
localization of the dominant modes.
In the above approximation the metric can be reduced to

the diagonal form

TABLE III. Energies Eþ and E� and the angular momenta Lþ
and L� at the innermost stable circular orbit for various large
values of charge q; B ¼ E ¼ 10�3, M ¼ 1.

q rþ r� Lþ L� E� Eþ
�10 5.27452 5.27527 3.64981 �3:78768 0.995088 0.95882

�50 5.04704 5.11032 3.49905 �4:19065 1.08802 0.90389

�100 4.86491 4.61837 3.46307 �4:87639 1.23937 0.85679

�1000 2.74943 4.32074 5.20535 �24:8736 5.90001 0.59092

FIG. 8 (color online). The binding energy as a function of r for q ¼ 1, E ¼ 0:5� 10�3 (left), E ¼ 1:5� 10�3 (middle) and
E ¼ 3� 10�3 (right), B ¼ 10�3, M ¼ 1; red is for negative L and green is for positive L, blue line is for the Schwarzschild orbit.
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ds2 ¼ gvvdt
2 � 1

gvv
dr2 þ g��d�

2 þ g’’d’
2; (43)

through the following transformations:

v ¼ tþ FðrÞ; F0ðrÞgvvðr; �Þ þ 1 ¼ 0; (44)

where

gvv ¼ �f; gv� ¼ 0: (45)

The determinant of the diagonal metric (43) isffiffiffiffiffiffiffi�g
p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g��g’’
p 
 r2 sin�þOðE2Þ:

Due to the Killing vectors in t and �, the stationary
ansatz for the perturbation is implied,

�ðt; r; �; ’Þ ¼ eim’�i!t ~�ðr; �Þ:
The wave equation can be written as follows:

!2

�
1� 2M

r

��1
r2 ~�þ @

@r

��
1� 2M

r

�
r2

@ ~�

@r

�
þ S ~� ¼ 0;

where

S ~� ¼ 1

sin�

 
@

@�

 ffiffiffiffiffiffiffiffiffi
g’’
g��

s
@ ~�

@�

!
þ ð�m2Þ ~�

ffiffiffiffiffiffiffiffiffi
g��
g’’

s !
:

Expansion of
ffiffiffiffiffiffi
g��
g’’

q
and

ffiffiffiffiffiffi
g’’
g��

q
in powers of (E, (r� rmax))

yieldsffiffiffiffiffiffiffiffiffi
g’’
g��

s
¼ sin�� ðp2 � 2ÞEM2sin3�þOðEðr� rmaxÞ; E2Þ;

ffiffiffiffiffiffiffiffiffi
g��
g’’

s
¼ 1

sin�
þ ðp2 � 2ÞM2E sin�þOðEðr� rmaxÞ; E2Þ:

Then, the angular part can be rewritten as

1

sin�

@

@�

�
sin�

@ ~�

@�

�
� ðp2 � 2ÞEM2

sin�

@

@�

�
sin3�

@ ~�

@�

�

�m2

�
1

sin2�
þ ðp2 � 2ÞEM2

�
~�

¼ S ~�: (46)

Introducing the ‘‘tortoise’’ coordinate r, which is de-
fined by the relation dr ¼ dr

fðrÞ , together with a new wave

function ~� ¼ �
r , one can reduce the wave equation to the

Schrödinger wavelike form with an effective potential
Vðr; SÞ,

d2�

dr2
þ ð!2 � Vðr; SÞÞ� ¼ 0; (47)

where

Vðr; SÞ ¼
�
1� 2M

r

��
S

r2
� 2M

r3

�
: (48)

The latter effective potential is identical to that of the
Schwarzschild, up to the different angular eigenvalues S,
which will be calculated in the next section. The effective
potential is plotted in Fig. 10 for various values of the tidal
force and multipole and azimuthal numbers.

VI. ANGULAR WAVE EQUATION

The eigenvalues of the angular Eq. (46) can be calcu-
lated via two methods: the convergent and accurate
Frobenius method and the method of expansion into the
associated Legendre polynomials. Here we shall imply that
the maximum of the effective potential is situated at its
Schwarzschild distance rmax given by (42) for each value of
the multipole number ‘, i.e., we shall neglect tiny displace-
ment of the peak induced by the tidal force E. This ap-
proximation is fully justified as the inclusion of (E, B)
corrections to the maximum’s location contributes only at
the subdominant orders, as discussed in Sec. VII.

A. Frobenius method

Equation (46) is reduced to the Heun’s equation by
setting x ¼ sin2� and thus giving

d2 ~�

dx2
þ2�3x�4x�þ5x2�

2ðx�1Þxð�x�1Þ
~�

dx
� m2þSxþm2x�

4ðx�1Þx2ð�x�1Þ
~�

¼0; (49)

where

� ¼ ðp2 � 2ÞEM2:

The above expression for � will be considered as a con-
stant in the further calculations, which is justified by the
approximation (42). In this way, we are only able to find
even eigenfunctions for � ! ��. The odd eigenfunctions

must be found separately. Setting ~� ¼ x
m
2c ðxÞ, one can

transform Eq. (49) into the Heun’s equation

d2c

dx2
þ
�
�

x
þ 	

x� 1
þ 


x� aH

�
dc

dx
þ ��x� q

xðx� 1Þðx� aHÞ c
¼ 0; (50)

with

� ¼ mþ 1; 	 ¼ 1

2
; 
 ¼ 1;

q ¼ m2 þmþ ~Sþ 2m2�þ 2m�

4�
; � ¼ m

2
;

� ¼ mþ 3

2
; aH ¼ 1

�
;

and

! ¼ �þ 	� 1 ¼ �þ �� 
 ¼ mþ 1

2
:

The solution to the Heun’s equation can be expanded as
follows:
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c ðxÞ ¼ Xþ1

n¼�1
cnynðxÞ;

if cn satisfies the recurrence relations

Fncn�1 þGncn þHncnþ1 ¼ 0;

where

Fn ¼ ðnþ �� 1Þðnþ �� 1Þðnþ �� 1Þðnþ!� 1Þ
ð2nþ!� 2Þð2nþ!� 1Þ ;

Gn ¼ �
nðnþ!Þð�� 	Þ þ ðnðnþ!Þ þ ��Þð2nðnþ!Þ þ �ð!� 1ÞÞ
ð2nþ!þ 1Þð2nþ!� 1Þ þ nðnþ!ÞaH þ q;

Hn ¼ ðnþ 1Þðnþ!� �þ 1Þðnþ!� �þ 1Þðnþ 	Þ
ð2nþ!þ 2Þð2nþ!þ 1Þ ;

with n ¼ ‘�m
2 . Since the coefficients of cn�1, cn and cnþ1

vanish independently, the eigenvalue can be obtained by
taking Gn ¼ 0,

S ¼ � ‘ð1þ ‘Þð3� 4‘� 4‘2 þ 2‘�þ 2‘2�� 6m2�Þ
ð�1þ 2‘Þð3þ 2‘Þ :

(51)

The above formula has been derived here for the ‘‘even’’
modes, i.e., modes with even values of ‘� jmj, though,
using the expansion in terms of the associated Legendre
polynomial, we show that this formula is valid also for odd
eigenfunctions.

B. Expansion in terms of the associated
Legendre polynomial

Introducing a new variable x in a different way,
x ¼ cos�, Eq. (46) can be written as

d2 ~�

dx2
þ 2xð2x2�� 2�þ 1Þ

ðx� 1Þðxþ 1Þðx2�� �þ 1Þ
d ~�

dx

þ�m2x2�þ Sx2 �m2��m2 � S

ðx� 1Þ2ðxþ 1Þ2ðx2�� �þ 1Þ
~�

¼ 0: (52)

Since the Preston-Poisson solution is accurate through the
order of E, one can expand the angular eigenfunction
function and the corresponding eigenvalues in terms of
� ¼ ðp2 � 2ÞEM2 as

~� ¼ P‘
m þ �

� X
‘�jmj

C‘
mP

‘
m

�
þO½�2�; (53)

S ¼ ‘ð‘þ 1Þ þ �S0; (54)

where ‘ ¼ 0; 1; 2; . . . . and m ¼ �‘;�‘þ 1; . . . ; ‘� 1; ‘.
Substituting Eqs. (53) and (54) into the wave

equation (52), one can obtain the S0 values, which are
summarized for lower ‘ and m in Table IV.
Table IV shows that the formula (51) is indeed valid for

the low-laying even and odd modes. With this data for the
angular eigenvalues at hand, we can start numerical calcu-
lations of the quasinormal modes.
In principle, one can have a slightly better approxima-

tion of the estimation of the angular eigenvalue S, if the
tiny shifts of the value of the radial coordinate r in the
maximum of the effective potential due to nonzero values
of E are taken into account, when calculating the tidal force
in the potential maximum. This means that instead of
Eq. (42) for p, one could use a general solution for the
maximum of the effective potential (48),

p ¼ �3þ 3Sþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð9þ Sð14þ 9SÞÞ=2S

p
: (55)

Comparison of the QNMs computed with the
Schwarzschild values of p and with (55) for lower values

TABLE IV. The eigenvalues of ‘ ¼ 0, 1 and 2.

‘ ¼ 0 1 2

m ¼ 0 �1 0 1 �2 �1 0 1 2

S0 ¼ 0 4
5 � 8

5
4
5

24
7 � 12

7 � 24
7 � 12

7
24
7

FIG. 9 (color online). The binding energy as a function of r for
q ¼ �1000, E ¼ B ¼ 10�3, M ¼ 1, red line corresponds to the
orbit with a negative momentum (Larmor for q < 0), green
corresponds to a positive (anti-Larmor).
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of ‘, reveal a very small difference of about 0.01%, which
cannot be distinguished in Figs. 11 and 12. In the next
section, the more accurate value given in (55) shall be used.

VII. ESTIMATIONS OF THE
QUASINORMAL MODES

An essential moment in the determination of the quasi-
normal modes is the agreed notion of asymptotical region,
‘‘infinity,’’ which is simply a distance much larger than the
black hole radius. Once the near horizon and far regions are
defined, we can formulate the boundary conditions for
quasinormal modes. Quasinormal modes are solutions to
the wavelike Eq. (47) which are purely ingoing waves at

the event horizon and purely outgoing waves at the far
asymptotic region,

�� e�i!r ; r ! �1; �� eþi!r ;

r ! far asymptotic region.
(56)

Thereby, no incoming waves are allowed either from the
horizon or from the far region. This means that quasinor-
mal modes correspond to the proper oscillations of the
black hole’s response to the external perturbation at late
time, that is, when the source of the initial perturbation
does not act anymore. In other words, the perturbation is
considered as a ‘‘momentary.’’

FIG. 11. Real (left) and imaginary (right) parts of QNMs for ‘ ¼ 1, m ¼ 0 (bottom) and ‘ ¼ 1, m ¼ 1 (top).

FIG. 10. Effective potentials for (a) ‘ ¼ 1,m ¼ 0, E ¼ 0, 1=10, 2=10 (from the top to bottom), (b) ‘ ¼ 1,m ¼ 1, E ¼ 0, 1=10, 2=10
(from bottom to top). The potential barrier is raised by the tidal force for nonzerom ¼ �1 and is lowered at the lowest modes (m ¼ 0).

FIG. 12. (a) Left panel: real part of ! for ‘ ¼ 2, m ¼ 0 (bottom), m ¼ 1, and m ¼ 2 (top), (b) Right panel: imaginary part of ! for
‘ ¼ 2, m ¼ 0 (bottom), m ¼ 1, and m ¼ 2 (top).
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In order to calculate quasinormal modes defined above,
one can use the WKB formula, which takes into consid-
eration the behavior of the perturbation near the top of the
effective potential. The asymptotic region is located at a
distance, which is at least one-order larger than the black
hole radius, such that one could qualitatively model the
processes far from the black hole. At the same time, such a
defined ‘‘infinity’’ must be located at a distance which is
quite a few times smaller than the radius of the giant torus.
The latter is necessary to avoid influence of the boundary
effects near the torus of matter. Thus, there should be a
‘‘valley’’ far from the black hole and far from the edge of
the torus, rh � r � a which could model an asymptotic
region.

The QN spectrum is one of the essential characteristics
of a black hole because it depends only on the black hole
parameters and not on the way by which modes were
excited. Supposing �� e�i!t, quasinormal modes can
be written in the form

! ¼ !Re �!Imi;

where positive !Im is proportional to the decay rate of a
damped QN mode. The low-laying QN frequencies have
the smallest decay rates in the spectrum and thus dominate
in a signal at a sufficiently late time. They can be calculated
by the WKB approach [24,25]. Introducing Q ¼ !2 � V,
the sixth order WKB formula reads

iQ0ffiffiffiffiffiffiffiffiffi
2Q00

0

q �Xi¼6

i¼2

�i ¼ nþ 1

2
; n ¼ 0; 1; 2 . . . ; (57)

where the correction terms �i were obtained in
Refs. [24,25]. Here Qi

0 means the ith derivative of Q at

its maximum with respect to the tortoise coordinate r?, and
n labels the overtones. The WKB formula (57) was effec-
tively used in a lot of papers (see Ref. [26] and references
therein).

As an additional check of the WKB data, we used the
time domain integration scheme, which was related, for
instance, in Ref. [27] and used in a number of other works
(see Ref. [28] and references therein). The obtained time
domain data shows about a 0.1% difference with the WKB
values in the worst cases when ‘ ¼ 1 and E is moderate.
The usage of the WKB formula is quite efficient here,
because it has a very good accuracy for ‘ > n, while the
potentially ‘‘unsafe’’ WKB mode ‘ ¼ n ¼ 0 is not ef-
fected by the tidal force in the used approximation and
coincides with the Schwarzschild one.

The low-laying quasinormal modes for various values of
‘ and m are shown in Figs. 11 and 12). The modes with
‘ ¼ m are noticeably different from those with ‘ > m:
while the first are monotonically increasing when E in-
creases, the second one decreases. Such behavior of the
spectrum can be explained as follows: the height of the
potential barrier is lowered by the tidal force for ‘ > m,
which means that it becomes easier penetrable for waves,

leading to smaller real oscillation frequencies and longer
living modes. At the same time ‘ ¼ mmodes are governed
by the potentials raised by the tidal force, so that both real
and imaginary parts of ! grows, as E increases. The
lowered potential for all modes, except the one with the
highest azimuthal number m ¼ ‘, can be explained by a
smaller resultant gravitational attraction near the top of the
potential due to the tidal gravity, which is opposite to the
gravitational attraction of the black hole. The nonmono-
tonic ‘‘splash’’ of the imaginary part of ! in Fig. 11 could
probably be explained by approaching the limit of validity
E � 1.
In the limit of large multipole numbers ‘ 	 m 	 1,

which is the eikonal regime, the peak of the effective
potential is situated at

rmax ¼ 3M� 2M

3ð2� 7M2EÞ‘2 þOð‘�4Þ: (58)

Then, the first-order WKB formula,

! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V � i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�2V00

0

q
ðnþ 1

2
Þ

s
; (59)

expanded in powers of 1=‘, gives

! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 7

2 EM
2

q
3
ffiffiffi
3

p
M

�
‘þ 1

2

�
� i

�
nþ 1

2

�
þOð1=‘Þ: (60)

In the limit E ¼ 0, the above expression reduces to the
well-known form for the Schwarzschild black hole [29].
The quasinormal modes do not depend on m in the first
two dominant orders: the dependence on m is in terms of
order �1=‘. The imaginary part of ! does not depend
on E in the eikonal regime, which is in concordance with
the very slight dependence of the imaginary part on E in
Figs. 2 and 3. It is well known that the eikonal formulas
similar to (60) work very well already for moderate values
of ‘ and, in the eikonal regime, a universal behavior for all
bosonic fields takes place. Therefore, expression (60) is
likely to be valid not only for scalar but also for other boson
fields in the eikonal regime.
An interesting question is the gravitational stability of

the considered system of a torus and a black hole. The full
assessment of the stability issue should be performed by
considering the gravitational perturbations of the system,
yet, as we can see from the above data, the scalar field
shows no unstable modes. A tendency to the instability
shows ‘ ¼ m modes through the decreasing of the damp-
ing rate, which however cannot be extended to sufficiently
large values of E as our effective potential was obtained for
the regime of relatively small tidal force.

VIII. CONCLUSIONS

The black hole deformed by the surrounding matter and
the magnetic field is a background with a relatively low
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symmetry, so that one could not expect the separability of
variables in either Hamilton-Jacobi or Klein-Gordon equa-
tions. Using a few justified approximations, we have de-
coupled variables in both equations and made the problems
of particle motion and quasinormal modes solvable with
relatively simple analytical and numerical tools.

Initially we have studied motion of charged, massive
particles in the equatorial plane. Two approximations were
used here: (1) we considered only a limited spacial region
which starts at the event horizon and finishes at some large
distance from the black hole, being still quite far from the
place where the tidal force becomes significant; (2) we
were limited by relatively small values of the magnetic
field and tidal force. These approximations were stipulated
by applicability of the perturbatively obtained Preston-
Poisson metric [5] and was, therefore, unavoidable.
Consideration of motion only in the equatorial plane was
due to the inseparability of the Hamilton-Jacobi equation
in the general case. This limitation is also justified, be-
cause, as it was shown in Ref. [4] for the Ernst solution,
motion in the equatorial plane would be stable against
small perturbations perpendicular to the plane, so that the
particle which started to move in the equatorial plane,
would continue moving in it. However, an analysis of the
stability against nonequatorial perturbations, though simi-
lar to Ref. [4], is lacking.

Motion of particles is qualitatively different for left- and
right-handed rotations due to the opposite direction of
the Lorentz force: when the signs of the particle’s charge
and angular momenta coincide (Larmor motion) we
have a kind of cyclotron rotation in the magnetic field
‘‘perturbed’’ by a black hole, while in opposite rotation
(anti-Larmor motion), the presence of the black hole is
essential. We have found the energy and angular momen-
tum, the binding energy and the region of radial stability on
circular orbits for the Preston-Poisson space-time. From
this we conclude that the tidal force, as well as the mag-
netic field, considerably enhances the release of the bind-
ing energy and makes the region of stability of circular
orbits closer to the black hole.

The second part is devoted to perturbations of the mass-
less scalar field in the Preston-Poisson background, namely,
to the estimations of the characteristic quasinormal modes.

As the decoupling of variables is impossible for the Klein-
Gordon equation in the general Preston-Poisson space-
time, we used an additional approximation based on
the fact that the low-laying quasinormal modes are
‘‘localized’’ near the peak of the effective potential.
Therefore, we performed a kind of averaging of the tidal
force by its value at the peak of potential. We found a
significant decrease in the real oscillation frequency with
the tidal force. A simple analytical expression for the
frequency has been obtained in the eikonal regime.
Taking into consideration possible similarities between
the quasinormal spectrum of a scalar field with the spectra
of gravitational and other long-range neutral boson fields,
we neglected the influence of the magnetic field when
studying the quasinormal modes. Although we managed
to estimate the modes with ‘ � 1, the monopole mode is,
unfortunately, undistinguishable from its Schwarzschild
value in the approximation. All the limitations of our
analysis are a price for the simplicity afforded by the
approximations employed. A more accurate numerical in-
vestigation would require very time consuming computa-
tions and mathematical modeling of the above system.
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