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In Reference [V. P. Frolov and A.A. Shoom, Phys. Rev. D 84, 044026 (2011)], equations of the

modified geometrical optics for circularly polarized photon trajectories in a stationary spacetime are

derived by using a (1þ 3)-decomposed form of Maxwell’s equations. We derive the same results by using

a four-dimensional covariant description. In our procedure, the null nature of the modified photon

trajectory naturally appears and the energy flux is apparently null. We find that, in contrast to the

standard geometrical optics, the inner product of the stationary Killing vector and the tangent null vector

to the modified photon trajectory is no longer a conserved quantity along light paths. This quantity is

furthermore different for left- and right-handed photon. A similar analysis is performed for gravitational

waves and an additional factor of 2 appears in the modification due to the spin-2 nature of gravitational

waves.
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I. INTRODUCTION

Light propagation in the gravitational field of a rotating
body has been a topic of study in the past several years.
One phenomenon of interest is rotation of the polarization
vector, known as gravitational Faraday rotation [1–7]. This
effect does not manifest in the gravitational field of a
nonrotating body, such as Schwarzschild spacetime [8],
while it does occur for Kerr spacetime. This fact suggests
that the existence of helicity-rotation coupling and the
propagation of circularly polarized electromagnetic waves
depends on the helicity. Its occurrence has been confirmed
by analyzing Maxwell’s equations in curved spacetimes
created by rotating bodies [9–11]. This effect is also dis-
cussed based on the gravitational Larmor’s theorem
[12,13].

In Ref. [14], Frolov and Shoom reported that the spi-
noptics in a gravitational field created by a rotating massive
compact object can be described by a modified geometrical
optics approximation. They used a (1þ 3)-decomposed
form of Maxwell’s equations and also considered a stan-
dard geometrical optics approach. In their setting of the
base vector field for the circular polarization, a phase shift
appears that depends on the helicity. They proposed a
modification in which the ordering of the equations asso-
ciated with the geometrical optics approximation is
changed so that the phase shift is absorbed in the eikonal
of the eikonal ansatz. This treatment also leads to a modi-
fication of the photon trajectory depending on the helicity.
Using this procedure, scattering of circularly polarized
light by a rotating black hole is discussed in Ref. [15].

In this paper, we derive the same equations of the
modified geometrical optics as in Ref. [14] by using an-
other description in which four-dimensional covariance is
maintained. In our procedure, we can easily see the

four-dimensional picture of the photon propagation. In
addition, this procedure can be easily applied to the case
of gravitational waves, as will be explicitly shown (see also
Ref. [13]).
This paper is organized as follows. In Sec. II A, we

review the standard geometrical optics approximation for
Maxwell’s equations in a stationary spacetime. We intro-
duce a circular polarization base vector field in Sec. II B
using an identical method to that in Ref. [14]. We then
discuss the transport equation for the polarization vector
using the circular polarization base vector field in Sec. II C.
The photon trajectory, transport equation and energy flux
in the modified geometrical optics are given in Sec. III. In
Sec. IV the procedure is applied to the case of gravitational
waves. Sec. V is devoted to a summary and discussion.

II. STANDARD GEOMETRICAL OPTICS

A. Trajectory, transport equation and energy flux

In this paper we focus on a stationary spacetime mani-
fold ðM; gÞ, whereM is a four-dimensional manifold with
a smooth Lorentzian metric g which has a smooth one-
parameter groupG of the isometry generated by the Killing
vector field �. Following Ref. [14], we write the line
element of the stationary spacetime as follows:

d s2 ¼ �hðdt� ĝidx
iÞ2 þ h�̂ijdx

idxj; (1)

where i, j run from 1 to 3 and h, ĝi and �̂ij are functions of

xi. The stationary Killing vector field is given by

� ¼ @

@t
; ���� ¼ �h < 0: (2)

Using the action of the isometry group G on M, we can
define the orbit space associated with the Killing vector
field � as N :¼ M=G. We define the normalized Killing
vector field u by*yoo@yukawa.kyoto-u.ac.jp
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u� :¼ ��=
ffiffiffi

h
p

: (3)

For later convenience, we define the projection tensor � by

��� :¼ g�� þ u�u�: (4)

Then, �ij ¼ h�̂ij and � gives the naturally induced metric

on N .
Note that in this paper, we consider the region in which h

is positive definite. This condition may not be satisfied for
regions within the ergosphere of a Kerr black hole.
Therefore, as with the formalism in Refs. [14,15], our
formalism cannot be straightforwardly applied to the er-
goregion with the Killing vector field which is tangent to
the world line of the static observer at the infinity.

In Ref. [14], Maxwell’s equations are reduced to the
master equations on the orbit space N with the metric �̂.
We do not follow the same procedure and instead use the
four-dimensional covariant form of the equations. We con-
sider the vector potential A� which satisfies the Lorenz

gauge condition given by

r�A
� ¼ 0; (5)

and the wave equation given by

r�r�A� � R�
�A� ¼ 0; (6)

where R�� is the Ricci curvature tensor. Following the

standard method (e.g., Refs. [16,17]), we write the eikonal
ansatz as follows:

A� ¼ ða� þ �b� þOð�2ÞÞeiS=�; (7)

where � is a bookkeeping parameter that we take to be
small during our manipulations; at the end of our calcu-
lations we reset it to � ! 1, so that S becomes the actual
phase function.

Substituting the ansatz (7) into Eq. (5), we obtain the
following equation from the order of ��1:

a�k� ¼ 0; (8)

where k� is defined by

k� :¼ r�S: (9)

From the order of ��2 in Eq. (6), we obtain

k�k� ¼ 0: (10)

Rewriting Eq. (10) as

H :¼ 1

2
g��r�Sr�S ¼ 0; (11)

we can regard this equation as a Hamilton-Jacobi equation
for S. Since the four-velocity of the corresponding dynami-
cal system to Eq. (11) is given by k�, we can regard the
Hamiltonian equation for the Hamiltonian (11) as
the equation for the ray trajectory generated by k�. The
Hamiltonian equations are given by

k�r�k
� ¼ 0: (12)

Hence trajectories are given by null geodesics. This equa-
tion can be simply derived by differentiating Eq. (10) and
using Eq. (9).
The order of ��1 in Eq. (6) gives the following transport

equation:

k�r�a
� þ 1

2
a�r�k

� ¼ 0: (13)

Following convention, we divide a� into the real amplitude
a and the complex polarization vector ‘� as follows:

a� ¼ a‘�; ‘� �‘� ¼ 1; a 2 R; (14)

where �‘� denotes the complex conjugate of ‘�. Then,

contracting �‘� with the transport equation (13), from the

real part, we obtain

r�ða2k�Þ ¼ 0: (15)

Substituting this equation into (13), we obtain

k�r�‘
� ¼ 0: (16)

Eq. (15) describes the conservation of the photon number
and Eq. (16) indicates that the polarization vector ‘� is
parallel-transported along the ray trajectory.
The field strength F�� of the vector potential (7) is

given by

F�� ¼ Refr�A� �r�A�g ’ 2aRefieiSk½�‘��g; (17)

at the leading order of the geometrical optics approxima-
tion, where square brackets denote anti-symmetrization.
Then, the energy-momentum tensor T�� is given by

T�� ¼ 1

4�

�

F�
�F

�� � 1

4
g��F��F

��

�

¼ a2

8�
k�k�ð1� Refe2iS‘�‘�gÞ: (18)

Averaging over several wavelengths, we obtain

hT��i ¼ a2

8�
k�k�: (19)

This expression indicates that the energy flux is propor-
tional to k� and null at the leading order of the standard
geometrical optics approximation.

B. Base vector fields

Taking stationarity into account, we impose

L �k
� ¼ ��r�k

� � k�r��
� ¼ 0; (20)

whereL� is the Lie derivative with respect to �. Using this
equation and r�k� ¼ r�k�, we obtain

r�ð��k�Þ ¼ 0: (21)
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We define the frequency ! as follows:

! :¼ ���k�: (22)

We introduce the spacelike unit vector along the ray
direction n�, given by

n� :¼
ffiffiffi

h
p
!

k� � u�: (23)

This satisfies

n�n� ¼ 1; n�u� ¼ 0: (24)

To set an orthonormal base system, we define two addi-
tional unit spacelike vector fields e

�
1 and e

�
2 , given below.

First, at a point, we set e�A such that the following con-

ditions are satisfied:

g��e
�
Ae

�
B ¼ 	AB; u�e

�
A ¼ n�e

�
A ¼ 0; (25)

where A ¼ 1, 2. Then, following Ref. [14], we extend e�A
along the integral curve of n� by imposing the following
condition:

F ne
�
A : ¼ n�D�e

�
A þ e�Aðn�D�n�Þn� � ðe�An�Þn�D�n

�

¼ 0 , n�D�e
�
A ¼ �e�Aðn�D�n�Þn�

¼ n�n�n
�D�e

�
A; (26)

where the action of D� on a vector field v� is defined by

D�v� ¼ ��

��

�r
v�: (27)

We can check that the condition Eq. (26) is equivalent to
Eq. (85) in Ref. [14], which gives Fermi transport on
ðN ; �̂Þ. In addition, we extend the base vector fields along
the integral curve of � by the Lie transport as follows:

L �e
�
A ¼ 0: (28)

Then, Eq. (25) is satisfied at any point of the spacetime.
Finally, we define the circular polarization base vector

field as follows:

m� ¼ ðe�1 þ i�e�2 Þ=
ffiffiffi

2
p

; (29)

where � ¼ �1 specifies circular polarization. Then, we
have

e�1 ¼ ffiffiffi

2
p ðm� þ �m�Þ; (30)

e�2 ¼ �i�
ffiffiffi

2
p ðm� � �m�Þ: (31)

m� and �m� also satisfy Eq. (26) and are Lie-transported
along the � direction.

C. Parallel transport of the polarization vector

As shown in Eq. (16), the polarization vector ‘� is
parallel-transported along the null geodesic generated by
k�. Using the circular polarization base vector fieldm�, we
can write

‘� ¼ m�ei’; (32)

where ’ is a real function of xi. Then, Eq. (16) can be
rewritten as

k�r�ðm�ei’Þ ¼ 0 , m�k�r�ðei’Þ ¼ �ei’k�r�m
�:

(33)

Contracting with �m�, we obtain

ik�r�’ ¼ m�k�r� �m�: (34)

Using (23), we find

ik�r�’ ¼ !
ffiffiffi

h
p m�ðn� þ u�Þr� �m�

¼ !
ffiffiffi

h
p m�n�r� �m� þ!

h
m���r� �m�

¼ !
ffiffiffi

h
p m�n�D� �m� þ!

h
m���r� �m�

¼ !

h
m���r� �m�

¼ !

h
m� �m�r���; (35)

where we have used F n �m
� ¼ 0 and L� �m

� ¼ 0. Since
r��� is antisymmetric, we obtain

k�r�’ ¼ �
!

h
e
½�
1 e��2 r���

¼ 1

2
�
!

h
u
n�"

��
�r���

¼ 1

2
�u
k�"

��
�r�u�; (36)

where "��
� is the completely antisymmetric tensor with
"0123 ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detg
p

. Performing (1þ 3) decomposition,
we can check that Eq. (36) is equivalent to Eq. (102) in
Ref. [14]. This is the well-known gravitational analogue of
the Faraday rotation [1–7].

III. MODIFIED GEOMETRICAL OPTICS

A. Modification of the eikonal

The guiding principle of the modification is that the
phase term ei’ should be included in the eikonal (see

Eqs. (7), (14), and (32)), that is, the modified eikonal ~S
should be given by

S ! ~S� Sþ ’: (37)

Before modification, the Hamiltonian of the ray trajectory
is given by

H ¼ 1

2
g��k�k� ¼ 1

2
g��r�Sr�S: (38)

The modification of the eikonal (36) and (37) suggest the
following Hamiltonian:
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~H ¼ 1

2
g��ðr�

~S� �’�Þðr�
~S� �’�Þ; (39)

where we have defined

’� :¼ 1

2
"��
�u

�r
u�: (40)

This expression was first derived by a group at Osaka City
University [18] in a different way.

Our aim is to modify the ordering of the field equations
so that Eq. (39) is obtained. It will be seen in Eq. (55) that
our procedure eliminates the phase shift Eq. (36). We do
not change the form of the eikonal ansatz (7) but formally
put the tilde ‘‘~’’ on all quantities, as follows:

A� ¼ ð~a� þ �~b� þOð�2ÞÞei~S=�: (41)

To obtain the Hamiltonian (39) we change the orders of
significance in the geometrical optics approximation by
rewriting the gradient operator as follows:

r� ! r� � i��1�’� þ i�’�: (42)

Then, the Lorenz gauge equation and wave equation be-
come

r�A
� ¼ 0 ! ðr� � i��1�’� þ i�’�ÞA� ¼ 0; (43)

r�r�A� ¼ Oð�0Þ
! ðr� � i��1�’� þ i�’�Þ

� ðr� � i��1�’� þ i�’�ÞA�

¼ Oð�0Þ: (44)

This modification is trivial if we take � ! 1, but this
enhances the effect of the circular polarization to the lead-
ing order.

From the order of ��1 in Eq. (43), we obtain

~a �q� ¼ 0; (45)

where

q� ¼ r�
~S� �’�: (46)

This means that the polarization vector ~a� is perpendicular
to the ray direction given by q�.

From the order of ��2 in Eq. (44), we have

q�q� ¼ 0: (47)

This equation is identical to ~H ¼ 0 and ~H is simply the
Hamiltonian for the ray trajectory.

In the same way as with Eq. (20), we extend the vector
q� with the Lie transport along the integral curves of ��,
that is,

L �q
� ¼ 0: (48)

Then, we define the frequency ~! as follows:

~! :¼ ���q�: (49)

It should be noted that this frequency is not constant in
general, in contrast to ! ¼ ���k�. Since q

� depends on

the helicity �, ~! also depends on �. We define the space-
like unit vector along the modified ray direction ~n� as
follows:

~n � :¼
ffiffiffi

h
p
~!

q� � u�: (50)

Following the same procedure as in Sec. II B, we can define
the modified circular polarization base vector ~m� associ-
ated with ~n�.
From the order of ��1 in Eq. (44), we obtain

q�r�~a
� þ 1

2
~a�r�q

� þ i�q�’�~a
� ¼ 0: (51)

We divide ~a� into the real scalar amplitude ~a and the

circular polarization vector ~‘� :¼ ~a�=a ¼ ~m�ei~’.
Contracting with �~m�, we obtain

q�r�~aþ i~aq�r� ~’þ ~a �~m�q
�r� ~m

� þ 1

2
~ar�q

�

þ i�~aq�’� ¼ 0: (52)

Similar to Eqs. (35) and (36), the third term of this equation
can be rewritten as

�~m�q
�r� ~m

� ¼ � ~!
ffiffiffi

h
p ~m�ð~n� þ u�Þr�

�~m�

¼ � ~!
ffiffiffi

h
p ~m�u

�r�
�~m�

¼ � ~!

h
~m��

�r�
�~m�

¼ � ~!

h
~m� �~m�r���

¼ �i�q�’�: (53)

Then, from the real and imaginary parts of Eq. (52), we
obtain the following two equations:

r�ð~a2q�Þ ¼ 0; (54)

q�r� ~’ ¼ 0: (55)

Eq. (54) describes the photon number conservation and
Eq. (55) indicates that the phase ~’ is constant along the ray
trajectory. Eq. (55) is the desired result for the
modification.
From the Hamiltonian (39), we obtain the following

equation of motion for the ray trajectory:

q�r�q
� ¼ �f��q

�; (56)

where

f�� ¼ r�’� �r�’�: (57)
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Performing (1þ 3)-decomposition, we can derive
Eq. (112) in Ref. [14].

We also perform the replacement (42) in the expression
(17). We obtain

F�� ¼ Refðr� � i"�1�’� þ i�’�ÞA�

� ðr� � i"�1�’� þ i�’�ÞA�g
’ 2aRefiei~Sq½� ~‘��g (58)

at the leading order of the modified geometrical optics
approximation. Then, the energy-momentum tensor T��

is given by

T�� ’ ~a2

8�
q�q�ð1� Refe2i~S ~‘� ~‘�gÞ: (59)

Averaging over several wavelengths, we obtain

hT��i ’ ~a2

8�
q�q�: (60)

This expression indicates that the energy flux is propor-
tional to q� and null at the leading order of the modified
geometrical optics approximation.

IV. GRAVITATIONAL SPINOPTICS

A. Standard geometrical optics

The eikonal ansatz for the metric perturbation is given
by follows:

h�� ¼ ða�� þ �b�� þOð�2ÞÞeiS=�: (61)

Hereafter we work in the transverse-traceless gauge.
The transverse gauge equation and the wave equation are
given by

r�h
�� ¼ 0; (62)

r
r
h�� þ 2R
���h

� ¼ 0: (63)

From the order of ��1 in Eq. (62), we obtain

a��k
� ¼ 0; (64)

where k� is given by (9). From the order of ��2 in Eq. (63),

we obtain the same equation as Eq. (10) and (12). From the
order of ��1 in Eq. (63), we obtain

k
r
a�� þ 1

2
a��r
k


 ¼ 0: (65)

As in Eq. (14), we divide a�� as follows:

a�� ¼ �‘��; ‘�� �‘�� ¼ 1; � 2 R: (66)

We can then obtain the following two equations:

r
ð�2k
Þ ¼ 0; (67)

k
r
‘�� ¼ 0: (68)

Eq. (67) describes the graviton number conservation and
Eq. (68) indicates parallel transport of the polarization
tensor ‘�� along the null geodesic generated by k�.

From Isaacson’s formula [19,20], the effective energy-
momentum tensor for gravitational waves can be written as

hTðGWÞ
�� i ¼ 1

32�
hRefr�h
�gRefr�h


�gi: (69)

At the leading order of the geometrical optics approxima-
tion, we obtain

hTðGWÞ
�� i ’ 1

64�
�2k�k�: (70)

This expression indicates that the energy flux of the gravi-
tational waves is proportional to k� and null at the leading
order of the standard geometrical optics approximation.

B. Base setting and parallel transport of
the polarization tensor

Let us consider the base tensor fields for linear polar-
ization tensors given by

e
��
þ ¼ 1

ffiffiffi

2
p 	ABe

�
A e

�
B; e

��
� ¼ ffiffiffi

2
p

e
ð�
1 e�Þ2 ; (71)

where round brackets around indices denote symmetriza-
tion. These satisfy

g��g
�e
�

� e��� ¼ 1; g��g
�e

�

þ e��þ ¼ 1;

g��g
�e
�

� e��þ ¼ 0; g
�e

�

þ e��� ¼ e

½�
1 e


�
2 :

(72)

For the circular polarization specified by �, we can define
the polarization base tensor m�� by

m�� ¼ 1
ffiffiffi

2
p ðe��

þ þ i�e��
� Þ: (73)

This satisfies

m��m
�� ¼ 1; �m�� �m�� ¼ 1;

�m��m
�� ¼ 0; m�
 �m


� ¼ i�e½�1 e��2 :
(74)

Using this circular polarization base tensor, we can write

‘�� ¼ m��e
ic : (75)

Parallel transport of the polarization vector means that

k
r
ðm��e
ic Þ ¼ 0 , m��k


r
ðeic Þ ¼ �eic k
r
m��:

(76)

Contracting with �m��, we obtain

ik�r�c ¼ m��k
r
 �m��: (77)

Using Eq. (23), we have
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ik�r�c ¼ !
ffiffiffi

h
p m��ðn
 þ u
Þr
 �m��

¼ !
ffiffiffi

h
p m��n
r
 �m�� þ!

h
m���
r
 �m��

¼ !

h
m���
r
 �m��

¼ 2
!

h
m�� �m�


r
��

¼ 2i�
!

h
e
½�
1 e


�
2 r
��

¼ i�u
k�"
��
�r�u�

¼ 2ik�r�’; (78)

where we have used e
�
An

�r� �m�
 ¼ 0, L� �m�� ¼ 0 and

Eq. (74).

C. Modified geometrical optics

Eq. (78) suggests the Hamiltonian

~H gw ¼ 1

2
g��ðr�

~Sgw � 2�’�Þðr�
~Sgw � 2�’�Þ; (79)

for the modified geometrical optics. The extra factor 2
compared with Eq. (39) is expected from the spin-2 nature
of gravitational waves. We do not change the eikonal
ansatz for the metric perturbation

h�� ¼ ð~a�� þ �~b�� þOð�2ÞÞei~Sgw=�: (80)

As for Eqs. (43) and (44), we rewrite the transverse gauge
equation and the wave equation as follows:

r�h
�� ¼ 0 ! ðr� � 2i��1�’� þ 2i�’�Þh�� ¼ 0;

(81)

r
r
h�� ¼ Oð�0Þ ! ðr
 � 2i��1�’
 þ 2i�’
Þ
� ðr
 � 2i��1�’
 þ 2i�’
Þh��

¼ Oð�0Þ: (82)

From the order of ��1 in Eq. (81), we obtain

~a ��p
� ¼ 0; (83)

where

p� ¼ r�
~Sgw � 2�’�: (84)

From the order of ��2 in Eq. (82), we obtain

p�p� ¼ 0: (85)

This equation is identical toH gw ¼ 0. In the same way as

for III A, we impose

L �p
� ¼ 0; (86)

and define the frequency ~!gw as follows:

~! gw :¼ ���p�: (87)

Then, we define the spacelike unit vector along the modi-
fied ray direction ~n

�
gw by

~n
�
gw ¼

ffiffiffi

h
p
~!gw

p� � u�: (88)

We can then obtain the modified circular polarization base
tensor ~m�� associated with ~n

�
gw.

From the order of ��1 in Eq. (82), we obtain

p
r
~a�� þ 1

2
~a��r
p


 þ 2i�p
’
~a�� ¼ 0: (89)

We replace ~a�� by � ~m��e
i ~c . Contracting Eq. (89) with

�~m��, we obtain

p�r��þ i�p�r�
~c þ � �~m��p


r
 ~m
�� þ 1

2
�r�p

�

þ 2i��p�’� ¼ 0: (90)

Similar to Eq. (78), the third term of this equation can be
rewritten as

�~m��p
r
 ~m�� ¼ � ~!gw
ffiffiffi

h
p ~m��ð~n
gw þ u
Þr


�~m��

¼ � ~!gw
ffiffiffi

h
p ~m��u


r

�~m��

¼ � ~!gw

h
~m���


r

�~m��

¼ �2
~!gw

h
~m�� �~m�


r
�� ¼ �2i�p�’�:

(91)

Then, from the real and imaginary parts of Eq. (90), we
obtain the following two equations:

r�ð�2p�Þ ¼ 0; (92)

p�r�
~c ¼ 0: (93)

Eq. (92) describes the graviton number conservation and

Eq. (93) indicates that the phase ~c is constant along the ray
trajectory. The equation of motion for the ray trajectory can
be derived from the Hamiltonian (79) as follows:

p�r�p
� ¼ 2�f��p

�; (94)

where f�� is defined in Eq. (57).
We also perform the replacement (42) in the expression

(69), and find that

hTðGWÞ
�� i ’ 1

64�
�2p�p�: (95)

This expression indicates that the energy flux is propor-
tional to p� and null at the leading order of the modified
geometrical optics approximation.
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V. SUMMARYAND DISCUSSION

Using a four-dimensional covariant description, we
have derived the equations of the modified geometrical
optics in a stationary spacetime, previously derived in
Ref. [14]. In the modified geometrical optics, the
three-dimensional photon trajectory is modified de-
pending on the photon helicity. In Ref. [14], the au-
thors used a reduced form of Maxwell’s equations on
the three-dimensional orbit space associated with the
stationary Killing vector field. In this description, the
four-dimensional picture is not clear. In contrast, in
our procedure, the null nature of the photon trajectory
in the modified geometrical optics naturally appears
and the energy flux is apparently null. We can also see
that, in contrast to the standard geometrical optics, the
inner product of the stationary Killing vector and the
tangent null vector to the modified photon trajectory is
no longer a conserved quantity along light paths. This
quantity is furthermore different for left- and right-
handed photon. The same procedure can be easily
applied to the case of gravitational waves and we
found that an additional factor of 2 appears in the
modification between the circularly polarized photon
and the graviton because of the spin-1 and -2 nature

of electromagnetic waves and gravitational waves,
respectively.
It is clear that the origin of the modification is in the

choice of the circular polarization base vector field.
Following Ref. [14], we have taken a circular polarization
base vector field based on the Fermi transport along the
photon trajectory projected on the three-dimensional orbit
space. However, it is still not clear whether this choice of
base vector field is valid for describing the circularly
polarized photon trajectory. Other choices of the base
vector field may give rise to different modifications.
Clearly we need to justify the choice of base vector field
based on observations. This could be done by comparing
the electromagnetic fields given by the modified geomet-
rical optics with those given by directly solving the wave
equations. We leave this issue to a future work.
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