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We study a model of a scalar field minimally coupled to gravity, with a specific potential energy for the
scalar field, and include curvature and radiation as two additional parameters. Our goal is to obtain
analytically the complete set of configurations of a homogeneous and isotropic universe as a function of
time. This leads to a geodesically complete description of the Universe, including the passage through the
cosmological singularities, at the classical level. We give all the solutions analytically without any
restrictions on the parameter space of the model or initial values of the fields. We find that for generic
solutions the Universe goes through a singular (zero-size) bounce by entering a period of antigravity at
each big crunch and exiting from it at the following big bang. This happens cyclically again and again
without violating the null-energy condition. There is a special subset of geodesically complete nongeneric
solutions which perform zero-size bounces without ever entering the antigravity regime in all cycles. For
these, initial values of the fields are synchronized and quantized but the parameters of the model are not
restricted. There is also a subset of spatial curvature-induced solutions that have finite-size bounces in the
gravity regime and never enter the antigravity phase. These exist only within a small continuous domain of
parameter space without fine-tuning the initial conditions. To obtain these results, we identified 25 regions

of a 6-parameter space in which the complete set of analytic solutions are explicitly obtained.
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I. INTRODUCTION

Scalar-tensor theory has been one of the most popular
tools for building models in cosmology. It is sufficiently
simple while having a variety of applications. One com-
mon application is to describe early universe inflation
[1-3] where the scalar plays a central role in driving a
period of accelerated expansion that solves the homoge-
neity (horizon) and the flatness problems, and generates the
primordial density perturbation that seeds the subsequent
growth of the large-scale structure [4-7]. Alternatively,
ekpyrotic [8,9] and tachyacoustic [10] models for the early
universe models also utilize scalar-tensor theories to pro-
duce a period of a slow contracting phase before a big crunch
that eliminates the horizon problem, and solves the flatness
problem as well. With some specific matching rules inspired
by a colliding two-branes picture, ekpyrotic models can also
generate scale-invariant density perturbations as observed
today. Another application of scalar-tensor theories is to
produce the late-time acceleration of the Universe that is
inferred from type IA supernova observations [11]. Such
models are called guintessence models where a small non-
zero dynamical vacuum value of a scalar potential replaces
the cosmological constant [12]. In addition, by using a
conformal transformation, it has been shown that modified
gravity theories, such as f(R) gravity, are equivalent to
scalar-tensor theory with a specific scalar potential [13].

Despite such broad applications of scalar-tensor theories,
only a few isolated examples of analytic solutions have been
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found so far. This is because the coupled second-order
nonlinear differential equations are hard to solve analyti-
cally. Our goal in this paper is to provide a full set of analytic
solutions that give all possible configurations of a homoge-
neous and isotropic universe as a function of time. This
expands on our previous work in Refs. [14-16] by including
additional degrees of freedom, in particular radiation.
The effects of anisotropy are discussed elsewhere [17,18].

Our overall approach in this paper is in contrast to
specific analytic, approximate or numerical solutions that
are usually fine-tuned from the point of view of initial
conditions and/or the potential energy function V(o) for
the scalar field, to force a solution in which the Universe
has a particular desired behavior as motivated by prejudi-
ces and observations. Instead, we would like to understand
the global structure of solution space that can emerge from
a class of theories, so that we can gain a better under-
standing of how the features of our own universe could
emerge. Obtaining the full set of classical solutions can
provide some such insights. Indeed through our solutions
we gain new understanding about general generic behavior
as we will see below.

We can obtain the full set of analytic solutions of the
scalar-tensor theory for several forms of the potential
energy function V(o) for the scalar field. In this paper
we concentrate on the case:

V(o)= (%)2 |: csinh? (\Fj"’) + beosh? (\/;(6‘20) ] (1
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where the parameters b and ¢ are dimensionless free

parameters, and «~ ! is the reduced Planck mass k™! =

ghe. = 2.43 X 10" S¥ We note that this potential has
C

familiar features. For example, if (b + ¢) > 0, depending
on the various values and signs of b, ¢, V(o) has a single
well or double well with stable minima, similar to other
potentials used in cosmological applications. Because
our analysis has a broad range of applications beyond
cosmology, we will classify all the solutions regardless
of the physical application. In other papers, including
Refs. [17,18], the role of these solutions is discussed
in a cosmological setting. Some of these cases will be
pointed out briefly later in the paper. In a separate paper
we will present the analytic solutions for the potentials

V(o) = %ibezf’K”/\/g for arbitrary p and V(o) = g—i X

(be=2x0/V6 4 co=4ka/N0) where b, c, p are dimensionless
real parameters.

For the potential 1, we can solve the Friedmann equa-
tions exactly for all time intervals before or after the big
bang. The method, which is based on conformal symmetry,
was introduced in previous papers [14-18]. It was applied
to the cases of the flat and curved isotropic Friedmann
universes without radiation or matter [15]. It was also
applied to the case of an anisotropic universe in the absence
of the potential energy, but with the inclusion of radiation
[18]. In this paper, we further generalize our method for the
isotropic universe to include both curvature and radiation
with the potential, where radiation is taken in the form of a
perfect fluid. The inclusion of radiation is a simple mathe-
matical exercise beyond our previous paper [15], but it
describes richer physics, and leads to more complicated
analytic expressions for the solutions. So, the reader may
wish to first understand the previous work in a simpler
setting [15].

Including radiation, the model is defined by 4 parame-
ters, namely (b, ¢) in the potential, the curvature parameter
K in the metric, and p,, the energy density of radiation
when the scale factor is a = 1. The two fields of interest
are the time-dependent scale factor a(7) and the scalar field
o (7). Their initial conditions (a(7g), a(ry), o(7y), (7))
introduce four more parameters which enter the general
solution to second order. However, the zero-energy condi-
tion including gravity (or Friedmann equation) eliminates
one of the initial values, and one other initial value can be
absorbed into a redefinition of the initial time 7, by using
the time translation symmetry of the differential equations.
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Hence the complete set of solutions are described by 4 +
2 = 6 parameters given by (b, ¢, K, p,, E, a(7,),) where a
single energy parameter E is used conveniently instead of
the two related initial velocities a(7g), (7). We will give
all the analytic solutions without putting any conditions on
these six parameters at any 7. It turns out that there are
25 distinct regions of this parameter space in which the
solutions take different analytic forms in terms of Jacobi
functions. The 25 regions and the corresponding solutions
are given explicitly in the Appendix. If an unstable poten-
tial with (b + ¢) <0 is of interest there would be more
regions and corresponding solutions; with appropriate
modifications these can be obtained from those available
in the Appendix.

As in our previous work [15,16], we find that in the
Einstein frame the generic solutions are geodesically in-
complete at the cosmological singularity (see Egs. (3) and
(4) in Ref. [15]). We will then find that the knowledge of
the full set of solutions suggests how to complete the space
and make it geodesically complete for the generic solution.
This completion includes time intervals during which the
gravitational field effectively acts like a repulsive force
(antigravity) rather than an attractive force (gravity), where
these two regions are connected smoothly in a two-
dimensional field space as shown in Fig. 1. So, the generic
solution has alternating time intervals of gravity and anti-
gravity as graphically illustrated in Fig. 2. In this figure,
each time the trajectory crosses the 45° lines, the Universe
transits from gravity to antigravity or vice versa. There is
however a subset of nongeneric solutions that are geodesi-
cally complete in the Einstein frame without ever entering
the antigravity region. These are of two types: (i) singular
zero-size bounces at the cosmic singularity without violat-
ing the null-energy condition as shown in Fig. 3 and
(i1) nonsingular finite-size bounces as shown in Figs. 23
and 24 in Ref. [15].

Tables I, 11, I1I, and I'V describe the nongeneric solutions
that are geodesically complete in the Einstein frame with-
out entering an antigravity regime. The zero-size bounces
(i), which are classified in Tables I and III, and IV with the
related analytic expressions in the Appendix, are obtained
by synchronizing and/or quantizing some initial values.
These tables provide the most general parameter subspace
(within the 6-parameter set) for which the geodesically
complete singular bounce occurs without antigravity.
The parameter subset consists of 4 continuous and one
quantized parameter, which is obviously smaller than the

TABLE 1. Conditions when K = 0 for bouncing at zero size.
b c E P, Equation
1 <0 >0 >0 =0 bE+p) _ -1 { n=123. ifp >0 Eq. (A5)
cE nt’ n=234. ifp,=0"
2 >0 >0 >0 =0 LEL=1 n=123.., Eq. (A6)
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TABLE II. Conditions when K > 0 for bouncing at finite size.
b c E+p, Equation
1. >0 >0 =0, =X <& (ro)l = /& Eq. (A15)
2 >0 <0 >0, < £ 4 (o)l = £, Is(ro)] = 16 ()] Eq. (A21)

available continuous 6-parameter set. Despite the fact that
this subset of solutions may be considered a set of measure
zero as compared to the full set, it is distinguished as the
only zero-size bounce set of solutions that are geodesically
complete in the Einstein frame, and do not enter the anti-
gravity region at any time in any cycle.

The finite-size-bounces (ii), which are classified in
Table II, with the related analytic expressions in the
Appendix, describe a universe that contracts up to a mini-
mum nonzero size, at which point the spatial curvature
causes the Universe to bounce back into an expanding
phase. This kind of spatial curvature-induced bounce is
already familiar in cosmology. Here we provide analytic
solutions for the finite-size bounces. As the Universe turns
around to repeat such cycles, the minimum size is not
necessarily the same in each cycle, as this depends on the
parameters. Such solutions occur when the parameters
satisfy, p, <K?/16b and ¢2. (79) > K/4b > sk (70)
(see Table II). Note that there are still 6 parameters, so
this is a continuous set, but it is a restricted region of
parameter space or initial values.

The solutions above—the generic case, type (i) or type
(i) bounces—are the exact and complete set of solutions
in the absence of anisotropy. Although anisotropy can be
neglected as the Universe expands, it can grow to be a
dominant effect near the singularity. We do not consider
those cases here; they are described in Refs. [17,18] where
it is proven that there is an attractor mechanism that is
independent of initial conditions. The attractor distorts the
zero-bounce solutions, both the generic or nongeneric type
(i), to behave in a unique way such that these solutions
must undergo a big crunch/big bang transition by contract-
ing to zero size, passing through a brief antigravity phase,

shrinking to zero size again, and reemerging into an
expanding normal gravity phase.

This paper is organized as follows. In Sec. II, we in-
troduce the standard scalar-tensor theory, with a single
minimally coupled scalar field o(x), as the gauge-fixed
version of a locally scaled (Weyl) invariant reformulation
of Einstein’s theory of gravity that contains two confor-
mally coupled scalar fields ¢(x), s(x). This Weyl lifted
version has an extra scalar field as well as a local Weyl
symmetry that compensate each other, so that the physical
degrees of freedom are the same number as in the standard
formulation of the theory. This model and method of
solution emerged directly from the 2T-physics formulation
of gravity [19-21]. The model was also inspired in the
context of braneworld notions [22,23] that led to the col-
liding brane scenario for cosmology [8,9,24,25]. Recently
't Hooft also motivated the same Weyl invariant theory
because of its ability to give a better description of black
and white holes in a convenient gauge [26]. Such gauge
choices, including the E, y, ¢ and s gauges discussed
in this paper, are just a small subset of examples of
(3 + 1) dimensional shadows that 2T-physics yields as
dual forms of the same parent theory that unifies them in
4 + 2 dimensions.

The Weyl lifted version has no dimensionful constants,
not even the gravitational constant. The extra scalar field
can be eliminated by gauge fixing it to a dimensionful
constant, thus reaching what we call the Einstein gauge
(E-gauge), the standard formulation of the theory in the
Einstein frame with the usual gravitational constant and the
scalar field o. The advantage of the Weyl lifted version is
that it allows us to choose another more convenient gauge
that we call the 7y-gauge, in which the cosmological

TABLE III. Conditions when K > 0 for bouncing at zero size.
b c E+p, P Equation
(1+15E) X K —1(1-1%(E+p,))"!72) n=123. ifp,>0
= = K K — y “ r
! =0 =0 =0 =0 (1-19(E+p )X K1+ E) 7172 "1n=1234. if p,=0 E=0 Eq. (A13)
) V2(1+18E) /4 X KA+ (E+p,))~1/2)
K 2 2 2\g2 T — j—
2 >0 =0 >1ep =0 (%(E’;p,.))wxac(%—gl+%E)*1/2) =nn=123... Eq. (A16)
3 -0 ~0 -0 _ (B XK (G ray1 =g E+pD ) {n =12 3..2. Bq. (AL4)
- B T GTEE ) s LE+ p = 1 ()l < '
P VAT 2 K+ L [ E+p) (1= 12,30,
4 >0 <0 >m =0 Y. ‘74><[K o 1+£J—1_1 =n, K2 ~E>0 |S (T )l < K Eq (A20)
CHE+p,) (GH3/1+555 7' =1 16(—¢) > Py M0 4(=c)
. (1) 4 X K+ (E+p, )1 2) 2
K 2 27 2\g2 — 1. _K
5 >0 <0 > =0 K K =Lgg<E Eq. (A23)

2(E+p,) X K+ (—5E) 17

083542-3



BARS et al.

PHYSICAL REVIEW D 86, 083542 (2012)

TABLE IV. Conditions when K < 0 for bouncing at zero size.

b c E+p, P Equation
(50 X XG0S+ ) [n=123... if p,>0
Lo =<0 =0 >0 =0 T K EE ) " n=234... itp, =0 L0 Ea @A
1+16ep)1/4 X K (A +L(18h(E+p,))~1/2
2 >0 >0 >0 =0 ORI SE) ) =1,23..., E>0 Eq. (A27)

VERET p ) X KK 5E) 1)

equations greatly simplify and can be solved analytically.
The full set of solutions is then mapped to the Einstein
frame by a gauge transformation from the y-gauge to the
E-gauge, and verified that they are the solutions of the
Friedmann equations. In this process we only add gauge
degrees of freedom to Einstein’s theory. But in the presence
of the gauge degrees of freedom we find naturally the
geodesically complete space and understand much more
clearly the nature of the complete space of solutions. In
particular we learn that geodesic completeness requires an
extension of the domain of the original fields in the scalar-
tensor theory in the Einstein frame, such that with this
extension, the same fields can describe also an antigravity
region not captured at first sight.

In Sec. III we show how the complete set of solutions of
the Friedmann equations, including curvature and radia-
tion, are obtained analytically without constraining the
6-parameter space. The complete set of solutions is explic-
itly given in the Appendix, where in 25 different regions of
the parameter space the analytic expressions take different
forms. These solutions are all cyclic and geodesically
complete in an enlarged domain as described above.

The nongeneric solutions of type (i) with zero-size
bounces, and type (ii) with finite-size bounces, which never
enter the antigravity regime, are still geodesically complete
in the gravity domain. In Sec. IV we determine the con-
straints on parameter space and initial conditions that dis-
tinguish the geodesically complete solutions in the restricted
Einstein frame. The corresponding parameter spaces are
classified in Tables I, II, and III, and IV.

In Sec. V we comment on the generic solutions that are
geodesically complete provided an antigravity regime is
included.

In Sec. VI we summarize our results. In the Appendix
we list all the analytic cosmological solutions predicted by
our model introduced in Sec. II.

II. THE WEYL LIFTED MODEL

Our approach begins with the standard action typically
used in cosmological models that describe a scalar field
o (x*) minimally coupled to gravity

1 |
Sgravity = fd4xv _gE{WR(gE) - Egg (9#0'(?,,0'
— V(o) + radiation + matter, } (2)

where the subscript E refers to the Einstein (E)-gauge (see
below). We are able to solve for the complete set of
homogeneous, isotropic, cosmological solutions of this
model when the potential V(o) is given as in Eq. (1).
Through these solutions we discover the geodesic comple-
tion of the space through the cosmological singularity.

To solve the equations and to understand the geodesic
completion we will use a device that we call Wey! extension
in which the model is enlarged by adding gauge degrees of
freedom that are compensated with a local scaling (Weyl)
symmetry. The local scaling symmetry does not allow the
usual Einstein-Hilbert term R(gz)/2«?, but allows confor-
mally coupled scalars. The following action, which will be
shown to be related to the one above by a gauge choice,
contains two conformally coupled scalars, ¢, s, interacting
with the curvature term with the coefficient % dictated by
the gauge symmetry

1 1
S = '[d“x«/—g(Eg“”aMd)a,,d) — Eg’“’aﬂsa,,s

1 s
+—(¢p> — sH)R(g) — 4<—>>. 3
5 (¢" ~sIR() ¢f¢ 3)
The function f(z) is determined by the scalar field potential
(see below) and, in general, can be an arbitrary function of
the gauge invariant ratio z = % and still maintain the Weyl

symmetry. The metric g, can differ from the metric gﬁ,,
in Eq. (2) by an arbitrary conformal factor because of the
gauge symmetry under the following local transformation:

¢ — O,

where ()(x) is an arbitrary function of spacetime. (Note the
metric here undergoes a field rescaling rather than a coor-
dinate transformation.)

This action was described as the conformal shadow of
the 2T-Gravity action [20,21] in 4 + 2 dimensions. In this
setting, it was shown that the local scaling gauge symmetry
is a remnant of general coordinate transformations in the
extra 1 + 1 dimensions.

We draw attention to the fact that ¢ has the wrong sign
kinetic term while s has the correct sign. It appears as if ¢
is a ghost; however, since the ghost disappears for some
choices of gauge (e.g., the gauge that restores the Einstein
gravity form of the theory), there is no real problem with
ghosts or unitarity. In this connection, note also that there is
no gravitational constant; rather, the factor %((bz —s%)
effectively behaves like a gravitational parameter which

s— Qs, 8ur = Q78,0
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replaces the usual expression (167G)~! = (2«?)~! where
G is the Newton constant. If ¢ had the opposite sign
kinetic term, then this factor would become purely nega-
tive £ (— #* — 5?) in order to maintain the Weyl symmetry,
but then the gravitational parameter would have the wrong
sign. This is the reason why ¢ must be introduced initially
with the wrong sign, so that the gravitational parameter % X
(¢ — s?) is positive at least in some regions of field space.
Fermionic and gauge fields, as well as more conformally
coupled scalars, can be added, to construct a completely
Weyl invariant model, such as the Standard Model of
particle physics. The Higgs field must also couple as a
conformal scalar to preserve the Weyl symmetry. The
Higgs mass term is not allowed by the gauge symmetry,
but it can be generated by coupling the Higgs doublet H to
the singlets ¢, s in Weyl invariant quartic terms of the form
HYH(a¢? + Bs?). There are various possible models for
the effective Higgs mass by choosing the parameters «, 3.
One possibility is related to the fact that (¢p% — s2)
gets fixed to a constant in the Einstein gauge of Eq. (6).
Another possibility emerges from our solutions, by noting

that cosmologically sp = @ sinh(%(g—)) evolves to a field

sg ~ o(7) which is much smaller than the Planck scale,
and at late times behaves almost like a constant that can
mimic the Higgs mass term. This might also explain the
mass hierarchy [27,28].

We discuss here four gauge choices that are useful for
finding solutions and interpreting them: Einstein gauge
(E-gauge), the y-gauge, the supergravity gauge (c-gauge)
and the string gauge (s-gauge). To distinguish the fields in
each gauge we denote them by the subscripts E, vy, ¢, s
respectively. We also define the following Weyl gauge
invariant quantity y which plays an important role in our
discussion:

K> |
X =" (i — ). o)
Another gauge invariant is the ratio s/¢.

E-gauge: The usual FEinstein gravity in Eq. (2) is
obtained in the E-gauge, in which we denote the fields
by ¢g(x), sg(x), g’ (x) with a subscript E. In this gauge
the gravitational parameter is gauge fixed to the usual
Newton constant for all spacetime x*

1 _
- (pF(x) — sp(x0) = 271 )
Then parameterizing this gauge with a single scalar field o,

brlx) = = @ coSh(Kc;%x))’

(6)
splx) = = g sinh(K(\T/(gx))

we find that the conformally gauge invariant action (3) yields
the familiar action in Eq. (2) with an Einstein-Hilbert
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term #R(gE) and a minimally coupled scalar field
o, just as in Eq. (2). The gauge invariant y in the E-gauge
becomes

x = (—gp) (7)

In a cosmological solution with the metric
dst = a%(7)(—d7? + ds3), 3)

where the 3-dimensional metric ds3 will be discussed later,
(—gp)iis just the scale factor of the Universe, y = a%(7),
so y must vanish at the cosmological singularity at the time
of the big bang ag(75) = 0. This shows that the big bang
corresponds to y(75) = 0, and since y is gauge invariant,
the cosmological singularity is at y(75) = 0 in all gauges.

Note that the geometry completely collapses at the sin-
gularity at time 75 in the E-gauge since (—ggz(75))=0, and
this is why geodesics are incomplete. However, we will see
that the geometry does not collapse at all at y(75) = 0 in
the other gauges, and this is how we are able to complete the
geodesics and the geometry.

y-gauge: In the y-gauge we choose (—gy)% = constant
for all 7. Since the cosmological FRW metric in the
E-gauge is conformally flat (even when the curvature is
nonzero), dsz = ax(7)(—e’d7* — ds3grw), We can at first
discuss the general conformally flat metric which can al-
ways be put into the form ds* = a*(x*)m,,,, where 7,,, is
the Minkowski metric. A conformally flat metric becomes
fully flat in the y-gauge ds*> = n uvs Namely the gauge
choice a,(x) = 1, leading to R(g,) = 0. Hence the degrees
of freedom in the y-gauge are ¢,, s, in a flat Minkowski
geometry. The gauge invariant y now takes the form

K2
M) = (3 = ) ) ©)

and the gauge invariant action in (3), taken with any con-
formally flat metric, reduces to a gauge-fixed action in flat
Minkowski space

5= [ @] 30,2 = @507 - ()]
" o)

where ¢, (x) is a ghost since it has the wrong-sign kinetic
energy. However, this ghost is removed as follows: before
choosing the y-gauge we recall that there was an Einstein
equation for the metric, G,,(g) = T,,, which must be
imposed for any metric in the y-gauge as well. For the
conformally flat metric in the present case, the curvature
vanishes in the vy-gauge, R,,\,(7) =0, leading to
G,.,(n) = 0, and therefore T, (¢, s,,) = 0. The vanishing
of the stress tensor for the action S, is a constraint that
removes the ghost ¢,,.
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To include the effect of both anisotropy and curvature,
the 3-dimensional part of the FRW metric, (ds3)grw, must
be replaced by the corresponding 3-dimensional parts of
the Kasner metric, Bianchi IX metric, Bianchi VIII metric,
when K = 0, K > 0, K < 0 respectively. We parameterize
the Kasner metric (K = 0) as follows:

(d5D)kasner = € V2300 (g2
+ e\/zw’m“(e‘/z’““(a’x)2 + o~ V2xa (dy)?),

where a;(x*) and a,(x*) are the anisotropy fields that are
taken to depend only on time in the homogeneous case
considered in this paper. The Bianchi IX and VIII metrics
contain the same « ,(x*), as well as the nonzero curvature
parameter K that is included by generalizing (dx, dy, dz) to
(do,, doy, do,). Both of these Bianchi metrics reduce to
the Kasner metric when the curvature K vanishes.

In the homogeneous limit, with an anisotropic cosmo-
logical metric of the form given above, ds*> = a?(1) X
(—e%dr? — ds3), the Weyl invariant action reduces to the
following effective action for the homogeneous cosmologi-
cal degrees of freedom

Sar = [[arl =5, 0 ad)? + 50 as)P

K2

+ @(dﬂ — sM)a*(ad + &3)
0t 1(5) + oo 5@ - Datutaan |}

(1)

where p, is the radiation density when the scale factor
a = 1. The effective action is invariant under time-
dependent Weyl transformations

a(r) = Q" (r)a(7),

(@(7), 5(7)) = Q(7)(p(7), 5(7)),
while @, and e are Weyl invariant. Here v(a, «;) is the
anisotropy potential which emerges from the curvature
term (¢* — s*)R(g)

K

1 — 4sign(K)
X [e“‘\/%"“l + 4e2\/%"“'sinh2(\/§1<a2)

(12)

v(ay, ay) =

— 4sign([()e‘\/2%"“l cosh(\/zkaz)]. (13)

In the isotropic limit the anisotropy potential reduces to a
constant 1imal,2—»ov(011y a,) = K. For the Kasner metric
the potential energy term is absent even if anisotropy is
present since K = 0.

For the cosmological solutions discussed in this paper we
will concentrate on the isotropic case a; , — 0, and therefore
v(a|, @y) — K The generalization of our discussion to ho-
mogeneous and anisotropic universes is given in Refs. [17,18].
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In this action e(7) is related to the lapse function which
is a part of the metric g,,(x). Its presence insures
T-reparameterization symmetry. The equation of motion
with respect to e imposes a constraint on the degrees of
freedom. This constraint is equivalent to the Gy, = Ty
Einstein equation. One may choose a gauge for 7, such that
e(7) = 1, in which case the action simplifies.

In the Einstein gauge of Eq. (6) the cosmological
action is

T 6 ., 1, 1, 1.,
St = ,[dT{E[_TKza% + Eaéaz + Ea%a% + Ea%a%]
6
_ e[a‘};V((r) +p,— 7.8 atv(a,, a2)]}. (14)

In this action note that the az(7) degree of freedom has the
wrong-sign kinetic energy term, and therefore it is poten-
tially a ghost. However, the Hamiltonian derived from this
action in the e(7) = 1 gauge is required to vanish as a
result of the constraint, and this is just sufficient to com-
pensate for the ghost. This constraint equation, which is
called the zero-energy condition, is the same as the first
Friedmann equation.
The y-gauge is defined by fixing

a,(r) =1, (15)
for all 7 In the y-gauge, the cosmological action is

Ir 1., 1 K2
Sk = fdf{g[—§¢%, + 255 + E(<;s27 — s3)(af + ag)]

= Bir5,/ 8+ 0, =38 = Pt @) |}

(16)

When V(o) is given as in Eq. (1), then ¢‘;f(s7/q§y) =
b3 + cs5 is purely quartic. In this action the ¢., degree
of freedom has the wrong-sign kinetic energy term.
However, as in the case of ag in the previous paragraph,
due to the 7-reparameterization symmetry, and the corre-
sponding zero-energy constraint that follows from the
equation for e, this potential ghost is eliminated.

We can relate the E-gauge and y-gauge degrees of
freedom to each other by a gauge transformation. More
easily, we identify the gauge invariants y and s/¢ in both
gauges, and from them we extract

2 \/6 (
2 2
(17)

|¢5 — 551, 0'=ﬂln

From this, we see that, what appeared as a cosmological
singularity in the E-gauge at a%(73) = 0 does not show up
at all as a geometrical singularity in the y-gauge since
R,.00(n) = 0. Of course, the big bang of the E-gauge
must reflect itself again as the gauge invariant y(75) = 0,
which becomes (3 — s2)(73) — 0 however this is not a
singularity of the equations within the y-gauge.

¢y+s7
by~ sy
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The absence of a geometrical singularity in the y-gauge,
and the simplicity of the equations of motions for ¢, s, is
the key for being able to solve all the cosmological equa-
tions and finding the complete set of solutions analytically.
This is also what permits us to understand geodesic com-
pleteness. The geodesically complete geometry includes
spacetime regions of antigravity. In the antigravity regions
the gravitational parameter 11—2 (¢? — s?) that appears in the
general action becomes negative. The switching of the sign
in generic solutions of the theory occurs precisely at
x(75) = 0, which appears as the cosmological singularity
in the E-gauge, but this is a completely smooth point for
the geometry in the y-gauge, as well as all other gauges,
except the E-gauge.

Supergravity gauge (c-gauge): In the c-gauge [20], we
fix ¢, = ¢y where ¢ is a constant for all x*. Then in (3)
or (11) there is only one scalar s.(x) while the curvature
term takes the form 5 (43 — s2(x))R(g.(x)). We see that
the @3 term plays the role of the Hilbert-Einstein term
while the overall structure 5 (¢3 — s?)R(g,) is similar to
that found in supergravity, including the Kéhler potential.
In fact, this model can be regarded as a toy model for the
scalar sector of a full supergravity model. Then the term
(—s2R(g.)) allows us to identify s2(x) as the analog of the
Kéhler potential in supergravity. The gauge invariant be-
comes y = %(—gc)i(d)% — s2(x)), and for a cosmological
solution it takes the form

KZ
X = g((ﬁé — s2(1))a’(7). (18)

Since we have all the solutions, we can verify that the
cosmological singularity x(75) =0, which in the
Einstein frame is at ag(7z) = 0, occurs when s2(75) =
¢35, rather than a?(73) = 0. Hence the metric g~ in this
gauge is not singular at the big bang. This is because the
quantity s./¢o = s,/ ¢, = sp/¢g is gauge invariant and
takes the value (s/¢)(75) — 1 at the singularity in any
gauge. (The reason that the E-gauge 15 (% (x) — s3(x)) =
(2x%)~! can remain finite even at the singularity y(75)=0,
is because in the expression (¢p% — 52)(75) = ¢p2(75) X
(1 — 5s2/¢2)(75), when the second factor vanishes, the
factor ¢%(75) blows up so that (¢% — s2) remains
unchanged at all x*, including at the singularity at time
7p.) This shows that, similar to 5 (¢3 — s2)R(g.), the
effective gravitational constant in the curvature term in
the action of a supergravity theory is typically expected
to switch sign at the big crunch or big bang. So the
phenomena we discuss here, including antigravity regimes
related to geodesic completeness, are expected generically
in typical supergravity theories.

String gauge (s -gauge): We also discuss the string
gauge (s-gauge) to connect to the typical structures in
string theory. The string frame in d dimensions is defined
by the following form of Lagrangian:
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1 - d—2
_ _e—x/%'—z<D<R(g5) + Tg#”aﬂcbaycb

Lstring gauge 2K2

- VS(CD))). (19)

Note the wrong sign and unusual normalization of the
kinetic term for the dilaton ®. When the transformation
from the string-frame to the E-frame is performed by the
substitution

()0 = VT2 (gp) ® =220, (20)

then the right sign and normalization of the Einstein-frame
o field emerges

uv

1 1 .,
LEinstein gauge <2—K2R(gE) - Egg ap.a-avo' - V(U'))-

21

The string gauge in Eq. (19), for d = 4, is obtained from
our Weyl invariant action (3) by choosing the following
gauge in which ¢, s, are expressed in terms of a single
scalar @ (this is analogous to ¢, sg given in Eq. (6)):

b,(x) = ﬁe—%‘b(") cosh(\/I(ID(x))’
K 12
5,(x) = ge—%cp(x) sinh(Jli:CD(x)),

while the metric g5 is labelled with the letter s to distin-
guish it from the metric in another Weyl gauge. This shows
how the dilaton field ® of the non-Weyl invariant string
theory can be related to the fields ¢, s in the Weyl invariant
theory.

Then the effective cosmological action in the string
gauge takes the form of Eq. (11) where the gauge fixed
form for (¢, s;) is inserted. The remaining degrees of
freedom in the string gauge are then (a,, o), where o is
the same field as the one in the Einstein gauge except for
the overall normalization in Eq. (20), while a; is related to
ag simply by the transformation in Eq. (20) for d = 4

al=-e 2"2"61%, d = v2«20. (22)

Therefore, by using the relation between the E-gauge and the
y-gauge in (17), we can relate the s-gauge degrees of free-
dom, a;, ®, to the y-gauge degrees of freedom as follows:

2 5

) _ K ¢yt 2 _ 2
%% by — S5y (P =) ’
b, +s, (23)

® =3I

by =5y

The expressions given above are consistent with the gauge
invariants y, (s/¢), ad,as, as expressed in the s, vy, E,
c-gauges, such as a;p; = agpp = a.p. = a, ¢, ete.

In solving the cosmological equations various gauge
choices turn out to be useful. In particular, for the cases
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we have solved, the y-gauge turned out to be the most
useful. By using the relations between gauges displayed
above, the solutions for ¢(7), s,,(7) imply the solutions of
the degrees of freedom in the other gauge choices.

III. SOLVING THE EQUATIONS WITH RADIATION
AND CURVATURE

The crucial step introduced in Ref. [14], as suggested
by 2T-physics, is to take advantage of the gauge symmetry
of the conformally invariant action (3). The Einstein equa-
tions derived from the action (3), taken with only
time-dependent isotropic fields, yields gauge covariant
cosmological equations for three fields a(7), ¢(7), s(7)
in any gauge. If one chooses the Einstein gauge given in
Eq. (6) then the corresponding gauge fixed fields ag(7),
o(7) satisfy the Friedmann equations including radiation
P, as given below in Egs. (25)—(27). Instead, if one chooses
the y-gauge defined by a,(x) =1 the remaining fields
¢,(7), 5,(7) turn out to satisfy the decoupled equations
(28)—(30) that can be solved exactly. Then, by performing a
gauge transformation that relates the two gauge-fixed
configurations we obtain the full set of solutions of the
Friedmann equations.

The field redefinition from o, ap to ¢,, s,, is derived
from the gauge transformation that connects the £ and 7y
gauges [14] and is given in Eq. (17). Note that generically
x(x*) can be positive or negative. But the metric in the
Einstein gauge, in either the gravity or antigravity patches,
has always the correct signature metric, hence, the absolute
value in the relation for a% in Eq. (17). The inverse of the
transformation (17) involves four quadrants in the (qﬁy, sy)
space depicted in Fig. 1, and is given by

@mcosh(%) if x>0

by == ,
y S8 M sinh(=g), it x <0 s
S8 [Ty sinh(%), if x>0
s, = £ .
! & Xl cosh(sg), if x <0

As indicated in Fig. 1, in the gravity sector (left-hand/
right-hand quadrants) y(x*) is positive, while it is negative
in the antigravity sector (top/bottom quadrants).

The transformations (17) and (24) can be used by start-
ing directly from the original action (2) without ever
mentioning the Weyl symmetry or the Einstein gauge.
Furthermore, it can be used for any spacetime dependence
of the fields o(x), ag(x), ¢, (x), s,(x) to rewrite all equa-
tions in terms of ¢, (x), s, (x) rather than o (x), ag(x). If
used in that sense then it can be considered to be an analog
of what the Kruskal-Szekeres coordinates are to the
Schwarzchild coordinates in the description of the black
hole spacetime. Namely, they demonstrate that the spacetime
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FIG. 1 (color online). The gravity regime (d)% > s%/) is in the
left-hand and right-hand quadrants and the antigravity regime
(¢3 < s3) is in the top and bottom quadrants.

regions across the horizon are smoothly geodesically con-
nected. The analog here is that the field space regions
(2 — s2) > 0and (¢p2 — 53) < 0 are naturally connected
at ¢3 = s3; hence, the patches of spacetime x* in which
each inequality is satisfied are connected geodesically, as
seen in our purely time-dependent solutions. Note that, in
the ¢, (7), s,(7) form, the Friedmann equations (28)—(30)
do not display any singularities. Further thought suggests
that the connection ¢2(x*) = s2(x) (which corresponds to
the dashed 45 degree lines in field space in Fig. 1) can
occur only at spacetimes x* at which the curvature in the
Einstein frame diverges R(gg(x)) = oo.

Inserting the above field redefinition into the standard
Friedmann equations and equation of motion for ¢ in the
isotropic limit (derived from the action in (2) or (14)),

.0 2F -
ap k7 [ o2 pr] K

E_C | v+ 5 - 25
a3 [mg @Dral g @

ay at 3 Lad ay
g apo
i 2=+ V(o) =0, 27)
E ar

where the dots denote the derivative with respect to the
conformal time 7, we obtain

0=d,—4bp3 + Ko, (28)
0=35,+ 4cs§, + Ks,, 29)
0= —(ldﬂ — b} +1K¢2)
2 Y Y 2 Y

1 1
+ (E $2 + cst + 5Ks%) +p, (30)
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These are precisely the equations of motion derived from
the isotropic limit of the action (3) in the a, = 1 gauge
[14]. The fields ¢, s, are decoupled except for the zero-
energy condition in Eq. (30). These equations are valid not
only when y > 0 but also when y < 0, hence, they provide
a smooth continuation from the gravity sector to the anti-
gravity sector. The question is whether this continuation is
required by the dynamics as part of the evolution of the
Universe in a geodesically complete geometry. We dem-
onstrate that the generic geodesically complete solutions
do require this continuation.

Integrating the first two equations, and using the energy
constraint, leads to the following decoupled first-order
differential equations:

1. K
icb% — b(b‘;, +—2 ¢%, =Ey,
(3D

with a relation between the two integration constants
(E4, E) that reduces the unknowns to the single energy
parameter £

E,;=E  Ey=E+p, 32)

Equations (31) are analogous to the equations satisfied
by two nonrelativistic particles with position coordinates,
¢, and s,, moving independently from each other as
controlled by the potentials V(¢,) = —b¢] + 5 ¢2 and
V(s,) = cs5, + L3, at energy levels E, = E + p, and
E; = E respectively. So, the nature of the solution
and the corresponding physics is easily obtained through
this analogy. It is sufficient to draw a picture of the poten-
tials V(¢,), V(s,) and indicate the energy levels E, =
E + p, and E; = E on these pictures, and then let each
particle begin its motion at some arbitrary points. The
reader is invited to examine the figures in the Appendix
to follow our arguments below.

We can choose to begin the motion at 7, with initial
values ¢, (7y), s(7() that insure the gauge invariant factor
(1 — s2/¢?) is positive in all gauges at the initial time 7.
Due to the time translation symmetry one of these initial
values may be fixed once and for all without losing gen-
erality. For example, we may begin the motion somewhere
on the horizontal line in Fig. 1 which is in the gravity sector
in any gauge

(1 = s*(10)/ ¢*(7)) = (1 = 53(7)/ P3(70)) = 1 >0.
(33)

This motion begins in the right-hand or left-hand quadrants
and can be described initially by choosing the Einstein
gauge (6). The ensuing motion gives the time dependence
of the generic solution ¢, (7) and s,(7). The solution is
controlled by 6 parameters, namely the four parameters
that define the model (b, ¢, K, p,), one initial value energy
parameter E and one initial value ¢,(7)). We need to
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analyze various regions of the 6-parameter space because
the motion can be qualitatively different in different ranges
of the parameters. This is easily seen by staring at the
pictures of the potentials in the Appendix (see Ref. [15]
for the discussion).

The generic motion is oscillatory with each particle
moving independently with independent oscillation peri-
ods. Each particle may pass through zero at various times
independently from each other. Hence (¢3(7) — s5(7))
keeps changing sign in the 7y-gauge for the generic
solution. This shows that generically the gauge invariant
factor (1 — s(7)/¢2(7)), which is the same in every
gauge (1 = 52(r)/$2(r) = (1 — 2(r)/$(7)). changes
sign periodically at times 7 = 7, in every gauge, where
7, is defined by the zeros of the gauge invariant factor
computed in the y-gauge (1 —si(7,)/¢%(7,) =0
At precisely these times the scale factor in the Einstein
gauge vanishes as seen from Eq. (17), a%(r,) = %2 X
(¢2(7,) — s2(7,)) = 0, and hence, this is when there is a
big bang or a big crunch. In the Einstein gauge the generic
motion must be terminated artificially at these instants of
time since aZ is positive by definition. However, in the by,
s, space the motion continues smoothly to the antigravity
regime where ¢(7) < s?(7), which shows that the Einstein
frame is geodesically incomplete for the generic motion.
There exists a special subset of solutions that is geodesi-
cally complete in the Einstein frame without wandering
into the antigravity sector, but for now let us continue with
the generic motion.

We have seen that even though the motion began in the
gravity sector in Fig. 1 the particle reaches some point on
the light cone in (¢, s) space where ¢>(r;) = s>(7,) at
T = 7, in any gauge; it then moves smoothly into the
antigravity region where ¢2(7) < s%(7) for some period
of time 7 <7 <T,. It then turns around and passes
through some other point on the light cone at ¢*(7,) =
s*(7,) at T = 7,, thus reaching the gravity region again.
The generic motion continues periodically in this way,
oscillating back and forth between the gravity and the
antigravity regions. This generic motion is represented by
a curve in the (¢,, s,) plane. Since we have the analytic
solutions, we can construct the curve explicitly as a para-
metric plot ¢, (7), s,(7) as shown in Fig. 2. The precise
curve of the parametric plot is determined by the values of
the 6 parameters (b, ¢, K, p,, E, ¢(7y)). Generically the
curve winds around the (¢,, s,) plane since ¢, (7), s,(7)
are each periodic, although their periods are generically
incommensurate. The curve becomes a closed curve if the
ratio of the periods is a rational number. This indicates that
the generic solution has repeated big bangs and crunches
and can be cyclic when the periods are commensurate.
Within each cycle there is a period of antigravity sand-
wiched between every crunch and the following big bang.

The mathematical expressions of the solutions are given
in the Appendix. The methods we used here follow those of
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FIG. 2 (color online). The generic isotropic solution crosses
back and forth through the gravity (left-hand and right-hand
quadrants) and antigravity (top and bottom) quadrants.

Refs. [14,15]. The solutions are parametrized in terms of
Jacobi elliptic functions sn(z|m), cn(z|m), dn(z|lm) [29] in
combinations chosen appropriately in all the relevant
regions of the parameter space. For example, in a given
region of parameter space the solution looks like

T7+T7)
sn(—T |m)

T+7 ’
dn(—T |m)

with a similar expression for s,,(7), where the factors A, 7,
m are determined in terms of the six parameters
(b, ¢, K, p,, E, ¢(7y)). The interested reader will find these
expressions in our recent paper [15] for the case of p, = 0.
The only modification to generalize to p, # 0 is that
previously we had used E, = E; = E, while presently
we have E; = E and E4 = E + p,. Since E4 = E; due
to p, = 0, there are more cases to investigate depending on
the regions of the parameter space.

(1) =A (34)

IV. GEODESICALLY COMPLETE BOUNCES
WITHOUT ANTIGRAVITY

Are there solutions that avoid the antigravity period in
the cycle? Yes, there is a subset of the parameter space for
which the Universe completely avoids antigravity.
Although this behavior is not generic, such solutions can
be characterized as the only ones that are geodesically
complete in only the gravity regime of the Einstein frame,
which means they are fully described by the action (2) with
the additional condition of geodesic completeness. This
special subset is obtained by demanding that [¢,(7)| =
s, (7)| at all times. So for the solutions of ¢, (7) that
oscillate between positive and negative values, at the points
in time when |¢,(7)| vanishes [s,(7)| must also vanish.
This is possible only if the period of ¢ is an integer
multiple of the period of s. Since there is a time translation
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symmetry in the differential equations, without losing
generality we can choose that the first instance they both
vanish is at 7 = 0. Hence, for ¢,,(7), 5, (7) we must require
¢,(0) = 5,(0) = 0 which synchronizes their initial values
to be both zero. This point in time is the big bang since we
compute from Eq. (17) that at this time the scale factor
vanishes az(0) = 0. There are regions of parameter space
that yield such solutions, but as compared to the full
6-parameter space it may be considered a set of measure
zero. In the case of no radiation, p, = 0, this geodesically
complete subset of solutions is given analytically in
Ref. [15].

A special example of such a solution is given in the
parametric plot in Fig. 3 borrowed from [15]. This is a
solution in a region of the parameter space where there is
no radiation p, = 0; no curvature K = 0; special initial
conditions ¢, (0) = 5,(0) = 0; and a quantized relation
b = —c/n* for integer n. This quantization arises from
asking the relative quantization of the periods for ¢, s
Besides these restrictions the parameters are free to be in
the regions ¢ >0, E> 0 and n = 2.

In Fig. 3, with n = 6, the fields ¢y, s, start out initially
both vanishing ¢, (0) = 5,(0) = 0 at the big bang (the
arrow at the origin of the figure); then while ¢, (7) keeps
growing, the field s, (7) oscillates several times until ¢, (7)
reaches its maximum and turns around; then ¢, (7) de-
creases to zero while sy(T) oscillates several times and
vanishes at the same time as ¢,. This point in time
represents a big crunch. Then the motion continues
smoothly to negative values of ¢, and repeats the same
behavior of a big bang followed by a turnaround and big
crunch. The full cycle is repeated again and again periodi-
cally which is described by Eq. (AS5) in the Appendix. Note
the 5 nodes in this figure are determined by the choice of
the integer n = 6.

When p, >0, the quantization requirement for the
periods puts a less severe restriction on the parameters
(b, ¢, K, p,, E, (7)) Although the synchronization of
initial conditions ¢(0) = s(0) = 0 and the relative quanti-
zation of the periods are still necessary, these conditions no
longer require that b/c is quantized by itself because the
additional parameter p, also enters in the quantization of
the periods. Instead, the parameters (b, ¢, K, p,, E) collec-
tively are subject to one quantization condition; e.g., the

FIG. 3 (color online). Nongeneric, zero-size bounce cyclic
solution that never crosses into the antigravity region. This figure
is for b < 0 and ¢ > 0. If b, ¢ > 0 the figure extends to oo in the
¢ direction (see Ref. [15]).
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integration parameter £ may be quantized in terms of the
other four parameters plus an integer. An example of such a
solution with radiation (but with K = 0 for illustration) is

given in the first line of Table I, by the parameters that

b(E+pr) _

satisfy %, with n = integer This is solved by a

_ bpn*
e On the other

hand when p, vanishes we have, b(EEO) = _—4, where the
parameter E drops out and there is a solution like the one in
Fig. 3, only if the parameters of the model are quantized
b = —c/n*. The inclusion of radiation changes the para-
metric plot above in a simple way: the trajectory extends
further out in the ¢, direction as p, increases due to the
higher energy in the ¢, field.

We list below all the cases of parameter subspaces that
permit purely gravity (i.e., no antigravity regime) geodesi-
cally complete solutions and point out the corresponding
figures and formulas shown in the Appendix. All of these
describe a universe that always remains in the gravity
regime of the Einstein frame, and either: (i) bounces at
zero size for K = 0; (ii) bounces at zero size for K # 0; or
(iii) bounces at finite size for K > 0. These are found
by setting

quanuzed 1ntegrat10n parameter E, =

$(0) = 5(0) =0, (35)

(which implies 6 = 0) and then replacing E4 = E + p,
and E; = E,instead of £, = E; = E, We list below all the
cases in the quantization of the periods. These necessary
conditions cannot be satisfied for all the solutions given in
the figures in the Appendix; the cases that are compatible
with these conditions are indicated on the right-hand sides
of Tables I, II, and III, and IV.

(1) If K = 0, there are two regimes of parameter space
in which there can be a singular bounce without
violating the null-energy condition. See Table 1.

@i1) If K > 0, there exist two categories of cyclic solu-
tions, the ones that bounce at zero size without
violating the null-energy condition, and the ones
that bounce at finite size.

The conditions on the parameters for bouncing at
finite size are shown in Table II.

The conditions on the parameters for bouncing at
zero size are given in Table III. In these expressions
XK(m) = EllipticK(m) is a well-known special
function that corresponds to the quarter period of
the Jacobi elliptic functions, such as sn(z|m), with
label m [29].

@iii) If K <0, the conditions on the parameters for
bouncing at zero size are shown in Table IV.

(iv) In addition, for any values of b, c, there is the
special solution in which s,,(7) = 0 for all 7 (sitting
at the s = 0 extremum of V, = 1Ks? + c¢s*) while
¢(7) performs any motion at energy E, = p,.
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V. GEODESICALLY COMPLETE BOUNCES
WITH ANTIGRAVITY

In addition to the solutions described in the previous
section, there are ones that are geodesically complete
provided an antigravity regime is included (see Fig. 2).
In Refs. [17,18], we show that, when anisotropy is added to
the curvature and radiation, there is a strong attractor
behavior such that almost all solutions pass through the
origin and undergo a period of antigravity (a loop) between
each big crunch and big bang. This is illustrated in Fig. 4.
As discussed in Refs. [17,18], the zero-size bounce solu-
tions that evolved from crunch to bang in the purely gravity
region in the absence of anisotropy (as listed in Tables I,
III, and IV) and illustrated in Fig. 3, as well as the other
generic solutions in the Appendix illustrated in Fig. 2, are
strongly modified near the singularity by the anisotropy,
such that the trajectory cannot avoid the antigravity region.
Furthermore, given some initial conditions, the global
behavior of a trajectory, far away from the singularity,
can also be altered even by a small amount of anisotropy
[18]. The finite-size bounce solutions could avoid the
antigravity region despite anisotropy, but this may occur
only in a very narrow region of parameter space.

We are, therefore, faced with trying to understand physi-
cal phenomena in the antigravity regime. Since physical
intuition for gravity is developed mainly in the Einstein
frame, we begin with the Einstein gauge. When (¢? — 5?)
is negative, it is again possible to use the Weyl symmetry to
choose an Einstein gauge, ¢2 — s2 = —1/2«2, but this is
in a new domain of field space, namely in the top and
bottom quadrants of the (¢, s) space, as shown in Fig. 1.
The new ¢, s are given by interchanging the sinh and

cosh in Eq. (6), namely ¢g(x) = i*/?g sinh(ko(x)/~/6),
sp(x) = + % cosh(ka(x)/+/6), such that ¢ — 5% =
—1/2«>. Then the gauge-fixed form of the action (3) looks
like the action in Eq. (2), except that the first two terms

FIG. 4 (color online). Comparison of a solution without an-
isotropy (green dotted path) and with anisotropy added (red thick
solid curve). An attractor mechanism caused by the anisotropy
distorts the path so that it passes through the origin at the crunch
and undergoes a loop in the antigravity region, through the origin
again, and then reemerging in the gravity regime.
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change sign. The potential V(o) does not change sign, but
it is a new function V(o), which is related to Eq. (1) by
interchanging sinh and cosh. The metric g% in this gauge
has no signature change. Hence, for matter fields, including
radiation, the signs of their kinetic terms remain the same
in the gravity and antigravity sectors. The gauge-fixed
action in the antigravity regime looks as follows:

1 1
Santigravity = [d4x\/_g{_2—K2R(gE) + Eglwap,o-ava-
— V(o) + radiation + matter}. (36)

Because of the sign change in the first two terms, o now
looks like a ghost while the ar degree of freedom is no
longer a ghost. The zero total energy constraint (Goy = Ty
Einstein equation) compensates for one ghost, as it did in
the usual gravity regime, so there are no unitarity concerns
regarding the o degree of freedom. However, the other
fluctuations of the metric, namely the spin-2 gravitons,
now have the wrong-sign kinetic terms. Note that some
of the spin-2 degrees of freedom are in the form of the
anisotropy fields; including them does not seem to show
any particular instability or other unusual behavior [18].

The discussion of the relativistic harmonic oscillator, as
treated in Ref. [30], is a good toy model to understand how
to correctly quantize the theory while maintaining unitarity
when some degrees of freedom have the wrong-sign kinetic
energy. The basic technique is to interchange the roles
of creation-annihilation operators when the kinetic energy
has the wrong sign; then the resulting Fock space has only
positive norms. As seen in Ref. [30] a similar approach
also occurs in the construction of unitary representations
of noncompact groups by using oscillators. Similarly, in the
antigravity regime, the theory should be quantized without
negative norm ghosts by interchanging the roles of creation-
annihilation operators for gravitons. The price is that the
energy of the spin-2 gravitons is unbounded below, so poten-
tially there is an instability. At the linearized level, which
defines a perturbative Hilbert space, there is no consequence.
But when interactions are included, due to the availability of
negative-energy states, it may be possible to emit abundantly
spin-2 gravitons with negative energy; however this must be
accompanied with the emission of positive-energy matter to
maintain the zero-energy constraint. So the theory must react
in some interesting ways through the interactions as soon as
the antigravity regime is reached.

In the cases where there is anisotropy [17,18], we find
that the trajectory of the antigravity depends on the radia-
tion density such that, if p, increases due to the sponta-
neous production of negative-energy gravitons (as noted
above), the effect is to decrease the duration of the anti-
gravity period and return the Universe more rapidly to the
big bang and a period of pure gravity expansion. As noted
in Refs. [16,17] this is an indication that the dynamics tries
to minimize the effects of antigravity, but the details of how
this works is currently cloudy.

PHYSICAL REVIEW D 86, 083542 (2012)

Of course, quantum gravity effects need to be also
included. Therefore, it would be very interesting to study
similar circumstances in the framework of string theory. To
formulate the antigravity aspects in string theory we could
use the field transformations given in Eqs. (17) and (24),
but even better would be the inclusion of the analog of the
Weyl symmetry in the framework of string theory.

It is worth mentioning that it seems possible to connect
the state of the Universe before the crunch to the state of the
Universe after the crunch by solving our classical equations
analytically along a path in the complex 7 plane, such that
the path completely avoids the antigravity regime, and also
stays sufficiently far away from the singularities, so that
quantum corrections become negligible. Such an approach
is very desirable for the cyclic universe scenario. We will
report on this type of solution in a separate paper.

VI. SUMMARY

In this paper we have used analytic solutions of cosmo-
logical equations to discuss geodesic completeness
through the big bang singularity. In the context of the
path integral, our complete set of classical solutions pro-
vide a semiclassical approximation to the quantum theory.

The computations presented in this paper mostly ignored
anisotropy and used a special potential energy V(o) to
obtain all the analytic solutions of the Friedmann equa-
tions, in a model that includes radiation and spatial curva-
ture. The solutions are characterized by six parameters that
include initial values and model parameters. We learned
that the generic solution, in which none of the six parame-
ters are restricted, shows that the trajectory of the Universe
goes smoothly through the crunch/bang singularities while
traversing from gravity to antigravity spacetime patches,
and doing this repeatedly in a periodic manner. The generic
trajectory can cross the light cone in field space, shown in
Fig. 1, at any place. The crossing points on the light cone
depend on the values of the six parameters. Although our
general exact results are obtained in a specific model, the
presence of antigravity is likely to occur generically in any
model that is geodesically complete. Therefore, the phe-
nomenon of antigravity should be considered seriously in
discussing cosmology.

We found that it is possible to avoid antigravity and still
have a geodesically complete geometry within a smaller
(but still infinite) subset of solutions (Tables I, III, and V).
These are the only geodesically complete solutions con-
tained totally within the traditional Einstein frame. One
group of trajectories passes through the center of the light
cone repeatedly, resulting in a cyclic universe. These solu-
tions, which do not violate the null-energy condition,
provide a set of examples that bouncing at zero size is
possible classically in cosmological scenarios with or with-
out spatial curvature.

It should be emphasized that our new results transcend
the specific simple model above. The phenomena we have
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found should also be expected generically in supergravity
theories coupled to matter whose formulation include a
similar factor that multiplies R(g). In supergravity, that
factor is related to the Kahler potential, and this factor,
combined with the usual Einstein-Hilbert term, is not gen-
erally positive definite [31]. In fact, in a gauge that we call
the supergravity gauge, or c-gauge, in which ¢(x) is set to
a constant ¢, [18,20], our term (¢ — s*)R(g) reduces
precisely to the familiar form in supergravity including a
Kéhler-like potential. In the past, it was assumed that the
overall factor is positive and investigations of supergravity
proceeded only in the positive regime. A discussion of the
field space in the positive sector for general N = 2
supergravity can be found in Ref. [32]. However, our
results suggest that generically the overall factor can and
will change sign dynamically, in every gauge, and there-
fore antigravity sectors similar to our discussion in this
paper should be expected in typical supergravity theories.
This is illustrated with an example in Ref. [18].

Until better understood in the context of quantum grav-
ity, or string theory, our results should be considered to be a
first pass for the types of new questions they raise and the
answers they provide.

Much remains to be understood, including quantum
gravity and string theory effects, but it is clear that pre-
viously unsuspected phenomena, including antigravity,
come into play classically close to the cosmological
singularity. The technical tools to study such issues in the
context of a full quantum theory of gravity are yet to be
developed. This is an important challenge to the theory
community, since the results have profound implications
for both fundamental physics and our understanding of the
origin, evolution and future of the Universe.
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APPENDIX A: THE ANALYTIC SOLUTIONS

The intuitive approach for solving the Friedmann equa-
tions in the separable form Eqgs. (28)—(30) was described in
Sec. III. In Egs. (30) and (32) we showed that a first integral
of these second-order equations takes the form of the
analog problem of a particle in a potential, separately for
the particles ¢.,, s,,. Namely, 1 2 + V4 = E,4, and 152 +
Vi, = E,, with the potentials V4 = —be3 + 52 and
Vi = cs3 + 557, and also with the energy constraint gen-
erally solved by E; = E and Ey, = E + p, for any E.
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In this appendix we list the complete set of analytic solu-
tions to these equations in all possible regions of the six
parameter space (b, ¢, K, p,, E, ¢(7p)). In this appendix,
we restrict ourselves to the case b + ¢ > 0, which corre-
sponds in the Einstein frame to a potential V(o) in Eq. (1)
that is bounded from below. The generalization to unstable
potentials is straightforward.

Eqgs. (A5)—(A9) and (A13)-(A32) below represent the
potentials V, (solid line) and V, (dashed line) and the
energy levels E,, E; they are drawn in the various regions
of parameter space. The ¢-level Ey = E + p, is higher
than the s-level E; = E because the radiation energy den-
sity p, is positive. The parameter E is allowed to slide
vertically within the physical range permitted for the
s-particle’s motion in the potential V. From the figures alone
one can obtain the intuitive solution by invoking the analogy
of a particle moving in a potential for either s, or ¢,,. Next to
each figure we give the corresponding analytic solution to
Egs. (28)-(30) We did not include separately some trivial
cases such as the case when the fields sit still at the top or
bottom of the potential extrema, or in the cases of b = 0 or
¢ = 0 where Egs. (28)-(30) become linear differential equa-
tions with simple trigonometric solutions. These cases are
recovered in the appropriate limit of the expressions below.

In the analytic expressions below instead of the free
parameter ¢ (7o) for an arbitrary initial value, we have
inserted the arbitrary phase shift parameter 6. Note also
that we have used the time translation symmetry of the
equations to choose a specific value for the initial value for
s,(7) at 7=0. In this way we give here the generic
solutions that describe all possible geodesically complete
trajectories of the Universe, including those that move
between the gravity and antigravity regions.

A subset of solutions stay only in the gravity sector with
geodesically complete trajectories. They are obtained by
putting constraints on the parameters. These include setting
6 = 0 (synchronized initial conditions for ¢, s) and requir-
ing a quantization of the periods of ¢ relative to the period
of s. The corresponding parameter space is given in Sec. IV.

The reader can verify that the following expressions
solve the differential equations and that the plots of ¢(7),
s(7) as functions of 7 correspond to the motion intuitively
expected for a particle in the corresponding potential at the
given energy level. To verify the solution the following
properties of the Jacobi elliptic functions sn(z|m), cn(z|m)
and dn(zlm) are useful [29]. The derivative of Jacobi
elliptic functions are given in terms of expressions some-
what similar to those for trigonometric functions

isn(zlm) = cn(zlm) X dn(z|m),

dz (A1)

dizcn(dm) = —sn(zlm) X dn(zlm), (A2

didn(zlm) = —m X sn(z|lm) X cn(z|m). (A3)
Z
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They also satisfy quadratic relations, such as

(sn(zlm))? + (cn(z]lm))? = 1; m(sn(zlm))? + (dn(zlm))? = 1. (A4)

When m is a real number in the range —o0 < m < 1, the function sn(z|m) oscillates between the values —1 to +1, similar
to the trigonometric function sin(z), vanishing at z — 0, and reaching a maximum at the quarter period z = K(m), where
K (m) is the elliptic integral as a function of m. From the quadratic relations above, it is deduced that the behavior of cn(z|m) is
that it oscillates similar to a cosine cos(z), while dn(z|m) oscillates between the positive values +1 and (1 — m)'/2. When
m > 1 the behavior is still oscillatory but quite different than sin(z), cos(z), etc. However, it is possible to use identities to
rewrite the solution in terms of sn(z|m’), cn(z|m’), dn(z|m') where m’ = 1 — mis again in the range —oo < m’ < 1. We have
used such identities so that all the m values that appear in our solutions below are in the range —o0 << m << 1. Then the reader
can get a feeling of the behavior of the solutions by the analogy to trigonometric sin(z), cos(z), etc.

We begin with the K = 0 cases; there are five different regions for the remaining parameters as listed in Eqs. (A5)—(A9).

\ ! / T+38 |1
\ ! E + p\1/4 sn(T— 5)
! V.V :( ) ¢ 27, = (—16b(E + p,)
\\ \\ E, i 5// ¢ —4p dn(TT*f | %) ¢ ( ( pr))
\‘\ F-s ,I 711
/, o (£>1/4 sn(TS 2)’ T, — (16E¢) ", (A5)
4c dn(F %)

b<0, ¢>0, E4=E >0

E + 1/4 S"(MH) 1
b :( pr) Ty '2 T¢, :—2(16b(E+ p,))71/4

b 1+ cn(%ﬂ%)’
E\I/4 sn(F1h)
— (£ 27 = (16¢E)" V4, A6
s (4c) dn(Z 1)) o = (16eB) o
7+ |1
E + P )1/4 S”l( Ty |§) 1 —
- r , T, =—=(16b(E + p,))~1/*
0= (e e plET )
14 sn(Z|1
s = (E) / # T, = (“16cE)" 14, (A7)
—c/ 1+ cen(ZlY) 2

Ey E+pais sn(721Y) 1
B _ o =("5") e 2, = (6b(E + p)
S i) ey TRty
/ s A
/ V. ENI/A ]
/ 3 = (—) — T, = (16¢cE)~\/* A8
'II / Va‘ﬁ \\\ s c Cn(%l%), s ( c ) ’ ( )
b>0, ¢ <0, E, =E,
E, >0, E, <0
P A CN —(E+p)\/4 1 -
7 \ 6= (557) Gy Tem C1oMET RN
/I \\‘ T¢ 2
/ Es O E\l/4 1
Ve Vs 5= (—) ———, T, = (16¢E)"/4 (A9)
! v ¢ Cn(f‘li)

Note that as the parameters b, c, E, (E + p,) change signs the corresponding solutions and physical behaviors change
qualitatively. Nevertheless, the mathematical expressions in Eqs. (A5)—(A9) are related to each other by the following rules
for analytic continuation, where x is real:
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+l77/4

1 I1 B I1 - erin/4 |1 4 |1 lat Egs. (A6) to (AS5), b flips sign
\/_ ( \/_ X E) = sn(x E) cn (Tx E) = n(x E), relates

Egs. (A7) to (A6), cflips sign,

(A10)

1+ cen(:1d) Egs.(A9)to (A7), E flips sign
cn(xe*”T/“I ) i relates gs(A9) o (A7) P 1g. ) (A11)
2 S”(7§|z) Egs.(A9)to (A8), (E + p)flips sign.

So, it is possible to write a single formula to cover all the solutions (such as the formulas in Eq. (A9), modified with
appropriate absolute signs)

1/4{cn[(—16b(E + p )VA(r + 5)%]}_1, s(r) = |§ | 1/4{cn|:(16cE)'/47'|%]}_1, (A12)

and then analytically continue the argument of the Jacobi elliptic functions to obtain the other expressions. In this form all
signs of the parameters b, ¢, E, (E + p,) are permitted, thus capturing the physical behavior of all corresponding regions of
parameter space with a single expression (when K = 0). Under these flips of signs the functions ¢, s remain real even

though the argument of the function is complex. This unified version is convenient to feed it to a computer to obtain plots of
the solutions.

E+p,

()= | =

There is a similar analytic continuation for the cases with nonzero curvature given below, but the formulas for analytic
continuation are considerably more involved, so we will not bother to discuss them.

Next we have the K > 0 cases, with eleven combinations which are listed in Egs. (A13)—(A23).

i s my =%(1 - KT3) =3
\ i I,/S/ ! & 1—-K°T5, sn(72lmy) ¢ ( ) =3 )
\ ! T A SBIT dnCiim,) —1/4
\“\ ":/ Eg- BITy - dn(F2lm,) Ty :711?(1 —%(E-Fp,))
% 7/ E— (A13)
\ / my =10 - KT?) =1
§ = [T sn(lm,) 14
— [ ; , _
b<0, ¢>0, E,=E, >0 8T dnteglon,) Ts=ﬁ(l +%)
v — 2 _
Vs e my=KT} —1=1
\ / - )
‘\\ r ,II (’b ZbTr[7 n( Ty m¢)’ T, = \/i 1+41 - 16b(E+p,) —-1/2
w ¢ N\ N K?
<L \ (Al4)

m; =3(1 = KT3) =3
\ 5= 1— K2T4 .)}’l(T Im /4
8cT?  dn(Elm,)’ 1 (1 + 16Ec> /

b>0, ¢>0, E,=E, >0

K? K
E, <—, 0)] < ]—
¢ " 16b |40 \/419
my=1(1-KT%) <0
: ) _ [kEa ¢ =1l @)
\\\ n ’II ¢ - 4bT§s cn(G2 ’ -
\ ¢ J
D, EX

/ \ 7+(:|m¢) T, _71_< lﬁb(E+ )) 174

N
/ \"b _ '1 K272 sn(Elmy) my, = %(] — KTSZ) <1
5= 8cT? T ZTm)

i T, = (K2 + 16¢E)~ /4

(A15)

b>0,  ¢>0, E,=E, >0

K? K
E, <—, 0 >1/_
¢~ 16b 40l 4b
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Finally, for K < 0 there are nine combinations which are listed in Eqs. (A24)—(A32).
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