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Penrose conjectured a connection between entropy and Weyl curvature of the Universe. This is

plausible, as the almost homogeneous and isotropic Universe at the onset of structure formation has

negligible Weyl curvature, which then grows (relative to the Ricci curvature) due to the formation of large-

scale structure, and thus reminds us of the second law of thermodynamics. We study two scalar measures

to quantify the deviations from a homogeneous and isotropic space-time: the relative information entropy

and a Weyl tensor invariant, and show their relation to the averaging problem. We calculate these two

quantities up to second order in standard cosmological perturbation theory and find that they are correlated

and can be linked via the kinematical backreaction of a spatially averaged universe model.
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I. INTRODUCTION

The starting point of cosmology is commonly based
on the simple Friedmann-Lemaı̂tre-Robertson-Walker
(FLRW) model, which describes a homogeneous and
isotropic space-time, as a mathematical realization of
the strong cosmological principle. However, due to gravi-
tational instability, our Universe obviously deviates from
this simple model locally, and hosts various large-scale
structures, e.g., the anisotropies in the cosmic microwave
background. Spatial homogeneity and isotropy may be
valid only on scales larger than hundreds of Mpc, and the
effects due to inhomogeneities within these scales are in
the focus of many investigations. While the conventional
approach assumes that the FLRW model also provides a
valid description on average of the inhomogeneous
Universe, in general we expect structure formation to
affect the average evolution: the FLRW model is in gen-
eral not only locally, but also globally gravitationally
unstable [1]. As a first step, we shall here confront

average properties of inhomogeneous models with a per-
turbative modeling of inhomogeneities using standard
perturbation theory.
Penrose conjectured that some scalar invariant of the

Weyl curvature tensor is a monotonically growing function
of time and could be identified with the gravitational
entropy of the Universe [2,3]. This conjecture, also known
as the ‘‘Weyl curvature hypothesis,’’ to our knowledge was
neither formulated in a rigorous way, nor has the precise
notion of ‘‘entropy’’ been specified. However, it is very
plausible that some entropy measure exists, as a FLRW
space-time has vanishingWeyl curvature and nonvanishing
Ricci curvature, whereas black hole solutions of space-
time have nonzero Weyl and (for the simplest models)
zero Ricci curvatures. As it is assumed that the Universe
evolves from an almost homogeneous and isotropic space-
time towards an ensemble of randomly distributed black
holes in the far future, the Weyl curvature seems to grow
relative to the Ricci curvature of the Universe. A mono-
tonically increasing function reminds us of the second
law of thermodynamics, so Penrose wondered whether
the Weyl tensor somehow describes or is related to some
notion of ‘‘gravitational entropy’’ of the Universe. An
attempt to define the gravitational entropy has been made
for a linearly perturbed FLRW solution, taking tensor
perturbations as purely gravitational ones [4].
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We propose in this paper to identify the notion of
‘‘entropy’’ with an information theoretical measure. On a
finite patch of the Universe such a measure can be defined,
once one has specified an averaging procedure. In the con-
text of cosmology, such an averaging procedure was pro-
posed by one of the present authors [5,6], and it has been
applied to the Kullback-Leibler information entropy by
some of the present authors in Ref. [7]. Here we combine
those findings with cosmological perturbation theory,
motivated by the Weyl curvature hypothesis.

In Sec. II, we first introduce two scalar measures to
quantify inhomogeneities in the Universe: the relative
information entropy and a Weyl tensor invariant, and
next show that they both can be related to the averaging
problem in a perturbed universe model in Sec. III. In
Sec. IV, we calculate these two quantities by means of
cosmological perturbation theory up to second order and
prove that they can be correlated via the kinematical back-
reaction of a spatially averaged universe model in Sec. V.
We conclude in Sec. VI.

II. MEASURES OF INHOMOGENEITY IN THE
PERTURBED UNIVERSE

Since our Universe is regionally inhomogeneous and
anisotropic, the value of a physical observable Oðt;xÞ at
a specific time and place is of little significance to us, and
only its average hOðt;xÞiD over a domainD is meaningful
and practical in cosmology. The importance of the averag-
ing problem in the perturbed Universe lies in the fact that
many cosmological observables are averaged quantities.
The most obvious example is the Hubble constant H0. We
pick N galaxies in a local volume V and measure their
luminosity distances di and recession velocities vi, and
H0 ¼ 1

N

PN
i¼1

vi

di
. Therefore, in the limit of a big sample,

it naturally turns into a volume average H0 ¼ 1
V

R
v
d d

3x.

(We should state that cosmological information is gener-
ally encoded on the past light cone, so the averaging
problem should be done over a light-cone volume [8,9].
However, for objects with redshifts� 1, spatial averaging
on a hypersurface of constant time is already a good
approximation because the Hubble rate does not change
significantly on the temporal scale involved.)

There are many ways to quantify the deviation of Oðt;xÞ
from hOðt;xÞiD. For instance, the variance varðOÞ :¼
hð�OÞ2iD ¼ hðO� hOiDÞ2iD ¼ hO2iD � hOi2D is a good

choice. In this section, wewill present two different methods
to describe this deviation: one is the Kullback-Leibler rela-
tive entropy in information theory, and the other is the Weyl
tensor in differential geometry. They both can characterize
the degree of inhomogeneity of the perturbed Universe.

A. Kullback-Leibler relative information entropy

The relative information entropy was introduced by
Kullback and Leibler [10] first in information theory as

Sfp k qg :¼ X
i

pi ln
pi

qi
;

where fpig and fqig denote the actual and presumed proba-
bility distributions, respectively. It is easy to see that this
entropy vanishes if the two distributions agree, and will be
positive definite if the actual distribution departs from the
presumed one. Therefore, the relative information entropy
may quantify the divergence from the actual distribution to
the theoretical one, which is usually used in an idealized
model such as an assumed background.
This idea was generalized to the study of the evolution of

an inhomogeneous Universe by Hosoya, Buchert, and
Morita. In Ref. [7], a straightforward and reasonable
extension of the Kullback-Leibler relative information en-
tropy from a discrete system to a continuum in cosmology
was derived from the basic principle of noncommutativity
of the two operations ‘‘spatial averaging’’ and ‘‘temporal
evolution’’:

SDf� k h�iDg
VD

:¼
�
� ln

�

h�iD
�
D
; with

h�i�D � h _�iD ¼ �
_SD

VD
: (1)

Here, SD=VD is the relative information entropy density in
a domain D with the volume VD, and � and h�iD are the
actual and averaged energy densities in the Universe, as
the analogues of fpig and fqig. (For a general discussion of
the Kullback-Leibler relative information entropy and its
applications in different models in cosmology, we refer to
Refs. [11,12].)

B. Weyl tensor

The Weyl tensor is a measure of the curvature of a
pseudo-Riemannian manifold. In four-dimensional space-
time, it is defined as

C���� :¼ R���� þ 1

2
ðg��R�� þ g��R�� � g��R��

� g��R��Þ þ 1

6
ðg��g�� � g��g��ÞR; (2)

where R���� and R�� are the coefficient functions of the

Riemann and Ricci tensors, and R�� :¼ R�
���. Our sign

convention is based on the metric signature ð�;þ;þ;þÞ.
The Weyl tensor has the same symmetries as the Riemann
tensor: C���� ¼ �C���� ¼ �C����, C���� ¼ C����,

and C���� þ C���� þ C���� ¼ 0. But the Weyl tensor is

traceless, i.e., the contraction on any pair of indices yields
zero, e.g., C�

��� ¼ 0. So the contraction of the Weyl

tensor C����C
���� is the principal scalar invariant we

can construct. (Strictly speaking, there is another principal
scalar invariant ?C����C

����, with ?C���� being the left

dual of the Weyl tensor, but in this paper we restrict our
exploration to C����C

���� for simplicity.)
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The Weyl tensor possesses an important property: if the
Weyl tensor vanishes, the metric of space-time is locally
conformally flat. This means that we may transform the
metric tensor to a constant tensor in a local coordinate
system by a conformal transformation. Two metric tensors
are said to be conformally equivalent if ~g��ð~xÞ ¼
�2ðxÞg��ðxÞ. In this circumstance, they have the same

Weyl tensor, and their null geodesics coincide. (For an
introduction to conformal transformation and conformal
equivalence, see Ref. [13].)

We assume that at early times when the Universe is still
almost homogeneous and perturbations have not grown
significantly, the metric of space-time can be approxi-
mately represented by the zero-curvature FLRW one,
ds2 ¼ �dt2 þ a2ðtÞ�ijdx

idxj. By a conformal transforma-

tion, dt ¼ aðtÞd�, we obtain ds2 ¼ a2ð�Þð�d�2 þ
�ijdx

idxjÞ. Therefore, the metric is conformally equivalent

to a flat Minkowski one, and its Weyl tensor vanishes
automatically. Whereas, in the late Universe, space-time
becomes highly inhomogeneous, and its metric departs
from the FLRW one and is thus not conformally flat any-
more. Hence, the Weyl tensor appears in the perturbed
Universe.

Penrose conjectured an analogue [2,3] of the emergence
of the Weyl tensor to the entropy increasing in thermody-
namics of black holes. For a black hole with mass
M, the Schwarzschild metric is ds2¼�ð1�2GM

r Þdt2þ
ð1�2GM

r Þ�1dr2þr2d�2, and C����C
����¼48ðGMÞ2=r6.

Meanwhile, the entropy S of the Schwarzschild black hole

is S ¼ kB
4GℏA ¼ kB

4Gℏ � 4�ð2GMÞ2, with A ¼ 4�ð2GMÞ2
being its area. We observe clearly that C����C

���� is

proportional to S, so there may be some latent relation
of the Weyl tensor to the entropy of black holes and gravi-
tational fields.

In cosmology, during the process of structure formation,
the cosmic structures decouple from the global expansion of
the Universe little by little and become gravitationally bound
systems. Generally speaking, these systems will eventually
end their evolution as black holes. Consequently, black holes
and their correspondingWeyl tensors will together arise here
and there in the Universe, and the average of C����C

����

can thus be considered as another measure of structure for-
mation, or another kind of entropy in some sense. But we
should point out that Penrose’s conjecture is not a well
formulatedmathematical statement, and the aimof this paper
is to explore its relation to the relative information entropy
and other relevant physical quantities.

In this section, we have discussed two different methods
to measure the degree of inhomogeneity of the Universe
from the unperturbed background: one is the relative en-
tropy in information theory, and the other is the Weyl
tensor in differential geometry. They root from different
branches of science and are seemingly uncorrelated at
first look. However, besides these apparent distinctions,
they have essential points in common. First, they are

both related to the entropy increasing in the evolution of
the Universe; second, and more importantly, they are both
related on the level of spatially averaged quantities in
the inhomogeneous Universe, as we shall demonstrate.
Therefore, in the next sections, we shall explain the aver-
aging problem in the perturbed Universe, calculate SD and
hC����C

����iD in cosmological perturbation theory, and

finally show their relation in Sec. V.

III. AVERAGING PROBLEM AND
COSMOLOGICAL PERTURBATION THEORY

In this section, we first recall the averaging procedure in
an inhomogeneous Universe together with the effective
Friedmann equations for an irrotational dust universe
model. The matter model ‘‘irrotational dust’’ is assumed
throughout the paper and implied when we talk about
‘‘cosmic continuum.’’ Next, we turn to cosmological per-
turbation theory and provide all the necessary mathemati-
cal preparations for Secs. IV and V, the main part of this
paper.

A. Averaging problem in cosmology

The essence of the averaging problem in cosmology
lies in the noncommutation of spatial averaging and tem-
poral evolution. As a consequence, inhomogeneities and
anisotropies influence the evolution of the background
(averaged) universe model. Let us start from a compact
domainD with metric perturbations at initial time ti. If we
first smooth out the fluctuations of the metric at ti, what
remains is merely a simple FLRW model. Afterwards, the
evolution of this averaged model to time t is nothing but a
pure expansion. In contrast, if we exchange the order of
these two operations: first follow the evolution of the
perturbed space-time from ti to t, and then take the average
of physical observables in the resulting domain at t, we
clearly arrive at a different result. This mechanism is
usually named as cosmological backreaction [14,15].
(See Ref. [16] for a comprehensive review of the back-
reaction formalism, and Ref. [17] for a recent overview.)
To understand the averaging problem mathematically,

we start from the kinematics of the perturbed Universe.
The covariant derivative of the four-velocity of the cosmic
continuum can be decomposed as u�;� ¼ 1

3h���þ 	�� þ
!��, where h�� is the projection operator, 	�

� :¼
h�
h

�
�½12 ðu
;� þ u�

;
Þ � 1
3h



�u

�
;�� is the shear tensor,

	2 :¼ 1
2	

�
�	

�
� is the shear scalar, and � :¼ u�;� is the

expansion scalar. In the following, the vorticity tensor !��

has to vanish by construction in a flow-orthogonal foliation
of space-time; we assume that this is a good approximation
on large scales, since vorticity decays in perturbation the-
ory due to the expansion of the Universe. Moreover, we
neglect radiation at the late times, and use the dust ap-
proximation. Last, in the following, we perform the con-
crete calculation for the simplest Einstein-de Sitter dust
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model in which the cosmological constant is supposed to
vanish. (It is reasonable because the Einstein-de Sitter
model with small perturbations is believed to be an ex-
cellent approximation in most of the matter-dominated
epoch, during which our calculation applies. A general-
ization with the cosmological constant is straightforward,
but that will not change our following statements in a
qualitative way.)

Below, we follow the averaging formalism proposed in
Refs. [5,6]. The metric of the perturbed Universe can be
written in the synchronous gauge as ds2 ¼ �dt2 þ
gijðt;xÞdxidxj, and the spatial Riemannian volume average

of an observable Oðt;xÞ in a comoving domain D at time
t is defined as

hOiD :¼ 1

VDðtÞ
Z
D
Oðt;xÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
detgij

q
d3x;

with VDðtÞ :¼ R
D

ffiffiffiffiffiffiffiffiffiffiffiffi
detgij

p
d3x being the Riemannian

volume of D. An effective volume scale factor,

aDðtÞ=aDðt0Þ :¼ ðVDðtÞ=VDðt0ÞÞ1=3, can thus be intro-
duced. For later evaluation within perturbation theory, we
define the Euclidian average hOi :¼ R

Oðt;xÞd3x=R d3x,

i.e., the integral without
ffiffiffiffiffiffiffiffiffiffiffiffi
detgij

p
on the background

cosmology.
By averaging the energy constraint and the

Raychaudhuri equation, we arrive at the effective
Friedmann equations for the irrotational dust universe
model (the Buchert equations) [5,6],

�
_aD
aD

�
2 þ kD

a2D
¼ 8�G

3
h�iD �QD þWD

6
;

€aD
aD

¼ � 4�G

3
h�iD þQD

3
;

h�i�D þ 3
_aD
aD

h�iD ¼ 0:

In these equations, we observe that besides the ordinary
entries in the Friedmann equations for the FLRW model,
there appear two additional terms: the deviation of the
averaged spatial curvature from a constant-curvature
model, WD :¼ hRiD � 6kD=a2D, and the kinematical

backreaction QD,

QD :¼ 2

3
ðh�2iD � h�i2DÞ � 2h	2iD: (3)

These two terms are not independent and can be linked via

an integrability condition ða6DQD
_Þ þ a4Dða2DWD

_Þ ¼ 0.

In the following, we shall be using a background model
with kD ¼ 0 so that the variable WD is equal to hRiD.

B. Cosmological perturbation theory

For the perturbative calculations of the relative informa-
tion entropy and the Weyl tensor invariant in Sec. IV, we
briefly list the basics of cosmological perturbation theory.

Here we concentrate on the scalar modes at the first order
for a flat irrotational dust model.
In the comoving synchronous gauge, the perturbed

metric of space-time reads

ds2 ¼ �dt2 þ a2ðtÞ½ð1� 2�Þ�ij þDij��dxidxj: (4)

Here the scale factor aðtÞ ¼ ðt=t0Þ2=3 (aðt0Þ :¼ 1) is
slightly different from the effective scale factor aDðtÞ,
and their relation was provided in Ref. [18]. �ðt;xÞ
and �ðt;xÞ are the scalar metric perturbations,
Dij :¼ @i@j � 1

3�ij�, and � is the three-dimensional

Laplace operator. Substituting this perturbed metric into
the Einstein equations, we obtain the solutions for� and �
(only the growing modes are taken into account) [18,19],

�ðt;xÞ ¼ 1

2
�’ðxÞt4=30 t2=3 þ 5

3
’ðxÞ;

�ðt;xÞ ¼ �3’ðxÞt4=30 t2=3;
(5)

where ’ðxÞ is the time-independent peculiar-gravitational

potential defined from the Poisson equation, �’ðxÞ :¼
4�Ga2ðtÞ�ð1Þðt;xÞ. Similarly, we may directly find the

energy density of the background universe model �ð0ÞðtÞ
and the perturbation �ð1Þðt;xÞ over it,

�ð0ÞðtÞ¼ 1

6�Gt2
; �ð1Þðt;xÞ¼ 1

4�G

�
t0
t

�
4=3

�’ðxÞ: (6)

We should emphasize that in the following sections we
shall perform all the perturbative calculations up to second
order. However, here we only mention the first order re-
sults, but this is already enough, as we shall see immedi-
ately that both the relative information entropy and
contraction of the Weyl tensor are second order quantities
and do not involve zeroth order quantities, and can thus be
constructed by using only the first order perturbations. All
this will be carefully explained in Secs. IVA and IVB[20].
The above discussion completes all the mathematical

preparations for the forthcoming perturbative calculations.

IV. PERTURBATIVE CALCULATIONS
OF THE RELATIVE INFORMATION ENTROPY

AND THE WEYL TENSOR INVARIANT

We now move on to the detailed perturbative calcula-
tions of the behavior of the relative information entropy
SD and the spatial average of the contraction of the Weyl
tensor hC����C

����iD in the evolution of the perturbed

Universe.

A. Perturbative calculation of the relative
information entropy

At the onset of structure formation, when energy density
perturbations are small, we expand � to second order, and
the relative information entropy density is
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SD

VD
¼
�
� ln

�

h�iD
�
D

¼
�
ð�ð0Þþ�ð1Þ þ�ð2ÞÞln

�
�ð0Þþ�ð1Þþ�ð2Þ

�ð0Þþh�ð1ÞiDþh�ð2ÞiD
��

D

¼1

2

hð�ð1ÞÞ2i�h�ð1Þi2
�ð0Þ þhigher order terms: (7)

We see from Eq. (7) that although the second order per-

turbation �ð2Þ enters the expression of SD=VD, it does not
explicitly enter into the final result at second order. This is
understandable, as the leading term of the entropy density
is the variance of the energy density, which is already a
second order term. Moreover, at second order, we are
entitled to use the Euclidian average h� � �i to approximate
h� � �iD since their differences are terms of even higher
order [20].

Substituting the solution of �ð1Þ from Eq. (6) into Eq. (7),
we obtain

SD

VD
¼ 3

16�G

t8=30

t2=3
½hð�’Þ2i � h�’i2�

¼ 3

16�G

t8=30

t2=3
varð�’Þ / 1

t2=3
: (8)

We find clearly from Eq. (8) that SD is positive, which is
consistent with its definition. Since VD / a3D / a3 / t2,

we observe from Eq. (8) that

S D / V2=3
D / a2D / a2 / t4=3: (9)

Equation (9) shows that SD increases in the evolution of
the perturbed Universe, and thus it indeed is a measure that
characterizes the degree of structure formation, as we

expect. Furthermore, the results for _SD=VD and €SD=VD
can directly be obtained,

_SD

VD
¼ 4

3t

SD

VD
¼ 1

4�G

t8=30

t5=3
varð�’Þ; (10)

€SD

VD
¼ 4

9t2
SD

VD
¼ 1

12�G

t8=30

t8=3
varð�’Þ: (11)

We find that both of them are positive, meaning that SD not
only increases monotonically, but in an accelerated
manner.

The general result for the evolution of the relative
information entropy has a profound relation to the non-
commutation of spatial averaging and temporal evolution
in the averaging problem. It was proved in Ref. [7] that

_SD

VD
¼ h _�iD � h�i�D
¼ h�iDh�iD � h��iD
¼ �h����iD: (12)

Therefore, in the process of structure formation, whether
for an overdense or underdense region, we have both
(1) Overdense region: �� > 0 and �� < 0,

�h����iD > 0, so _SD > 0.
(2) Underdense region: �� < 0 and �� > 0,

�h����iD > 0, so _SD > 0.

Thus, generally speaking, SD increases monotonically,
and this is in agreement with our linear perturbative results.
Last, we can prove that the time convexity of relative

information entropy
€SD
VD

is

€SD

VD
¼ 4�Gvarð�Þ þ 1

3
h�ð��Þ2iD þ 2h�	2iD

þ h�iDQD � 2

3

_SD

VD
h�iD:

Unfortunately, it is a highly nontrivial task to figure out the
sign of this exact result. But we see from Eq. (11) that in a

perturbative approach, up to second order, €SD=VD is still
positive.
At this level of calculation, we can safely assume that

the relative information entropy increases monotonically
during the evolution of the Universe, and it thus serves as a
measure of structure formation.

B. Perturbative calculation of theWeyl tensor invariant

Starting from the perturbed metric in Eq. (4),

ds2 ¼ �dt2 þ a2ðtÞ½ð1� 2�Þ�ij þDij��dxidxj;
the calculation for the contraction of the Weyl tensor
C����C

���� is straightforward, although a little bit tedi-

ous. Here we show some intermediate steps before giving
the final result. Due to the symmetry of the Weyl tensor,
112 of its 256 components vanish automatically, and all
the remaining ones are the derivatives of a function C, a
combination of the metric perturbations � and �,

C :¼ �þ 1

6
��� 1

2
ða _a _�þa2 €�Þ:

For example, some typical components are

C0101 ¼ 1

2
D11C; C0102 ¼ 1

2
D12C;

C1212 ¼ a2

2
ðD11 þD22ÞC; C1213 ¼ a2

2
D23C:

Therefore, direct calculation shows

C����C
����¼ 1

a4
f2½D11CD22CþD22CD33CþD33CD11C�

þ3½ðD11CÞ2þðD22CÞ2þðD33CÞ2�
þ4½ðD12CÞ2þðD23CÞ2þðD31CÞ2�g:
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In a dust universe model, from the solutions in Eq. (5),
we have C ¼ 2’, so

C����C
���� ¼ 8

�
t0
t

�
8=3

�
@ið@j’@j@i’Þ

� @ið@i’�’Þ þ 2

3
ð�’Þ2

�
;

and

hC����C
����iD ¼ 8

�
t0
t

�
8=3

�
h@ið@j’@j@i’Þi

� h@ið@i’�’Þi þ 2

3
hð�’Þ2i

�
: (13)

Equation (13) implies similarly to SD=VD that
hC����C

����iD is also a second order quantity. Since all

the components of C���� are zero at the FLRW back-

ground, i.e., there are no product terms of second order
perturbations with (here vanishing) zeroth order terms,
we only need the linear perturbation theory to calculate
hC����C

����iD up to second order.

Equations (8), (10), (11), and (13), display all the per-
turbative results for the relative information entropy and
the Weyl tensor invariant. However, their relation seems
still unclear, but we shall prove immediately that they
actually can be related via the kinematical backreaction
term QD.

V. RELATION OF THE KINEMATICAL
BACKREACTION

In this section, we shall finally show the relation of the
relative information entropy and the Weyl tensor invariant
with the kinematical backreaction term QD,

QD :¼ 2

3
ðh�2iD � h�i2DÞ � 2h	2iD:

QD consists of two parts: the variance of the expansion
scalar � and the variance of the shear scalar 	 (where the
average of 	 itself could be added to the backreaction term
and accordingly added to the kinematical part of the equa-
tions, which then would feature Bianchi-type kinematics).
Since both of them are second order terms, we can again
calculate them with only the first order perturbed metric
in Eq. (4). Detailed perturbative calculations can be found
in Refs. [18,19], and here we only list the necessary results,

� ¼ 3
_a

a
� 3 _�; 	i

j ¼ �ij �
1

3
��i

j ¼
1

2
Di

j _�;

	2 ¼ 1

2
	i

j	
j
i ¼

1

8
Di

j _�D
j
i _�

¼ t8=30

2t2=3

�
@i@j’@

j@i’� 1

3
ð�’Þ2

�
:

(These results may be understood along the following
lines: the Weyl curvature can be irreducibly split into the

electric part E�� and the magnetic part H��. If only linear

scalar perturbations are treated, the magnetic part vanishes,
so the Weyl curvature squared C����C

���� should be

proportional to the electric part squared E��E
��. Also in

the linear approximation, the shear tensor is proportional to
the electric part, and consequently C����C

���� is propor-

tional to the shear squared 	2. This fact is easily seen by
comparing C����C

���� in Eq. (13) and 	2 above.)

Therefore, up to second order, we have

QD ¼ t8=30

t2=3

�
h@ið@i’�’Þi � h@ið@j’@j@i’Þi � 2

3
h�’i2

�
:

(14)

We also remark that due to the vanishing of the magnetic
part, and due to the fact that in this perturbative approach
the perturbations are propagating on the background, this
result is formally equivalent to the corresponding
Newtonian result [21].
Taking Eq. (14), we eventually find that the difference

between the relative information entropy SD=VD in
Eq. (8) and the contraction of the Weyl tensor hC����

C����iD in Eq. (13) is nothing but the kinematical back-
reaction term QD. These three quantities are correlated in
the following relation (up to second order):

SD

VD
¼ 9

32�G

�
t2

8
hC����C

����iD þQD

�
: (15)

We may get further insight from the result in Eq. (15),
especially for the limit in which the volume of the averag-
ing domain VD goes to zero. From Eqs. (13) and (14), we
observe that hC����C

����iD andQD are almost the same,

except for the difference, hð�’Þ2i � h�’i2, i.e., the vari-

ance of the energy density perturbation �ð1Þ [see Eq. (6)].
So in the limit VD ! 0, the averaging effects from inho-
mogeneities turn out to be negligible, and we should
recover in a nice way the pointwise defined parameters
for the unperturbed Universe. Therefore, hð�’Þ2i and
h�’i2 cancel each other, and the relative information
entropy SD thus reduces to zero, as it should be for the
coincidence of the actual distribution with the assumed
one. The above argument provides a self-consistency
check of the averaging framework [22].
The content of our relation, Eq. (15), may also be

restated by using the relative entropy production density
_SD=VD of Eq. (10),

_SD

VD
¼ 3

8�G

�
t

8
hC����C

����iD þQD

t

�
; (16)

or by using €SD=VD of Eq. (11),

€SD

VD
¼ 1

8�G

�
1

8
hC����C

����iD þQD

t2

�
: (17)

We should point out that the sign of QD is not explicit
in perturbation theories, and is even more difficult to
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determine in exact solutions. At last we should state that
even though the results in Eqs. (15)–(17) are obtained from
the perturbative calculations in the synchronous gauge,
they are gauge invariant because all the three quantities
SD=VD, hC����C

����iD, and QD are second order

ones and vanish at both the zeroth (background) and first
orders [23].

VI. CONCLUSIONS

The study of inhomogeneous models in relativistic cos-
mology and the relevant averaging problems have attracted
more and more attention in recent years [16,24–29], among
which one of the central issues is to seek a simple and
reasonable measure of the inhomogeneous distribution of
the cosmic continuum. In this paper, we first discuss two
such measures as an assessment of the degree of structure
formation in the perturbed Universe: the relative informa-
tion entropy SD and the contraction of the Weyl tensor
hC����C

����iD; we calculate these two seemingly uncor-

related quantities in the standard perturbative approach up
to second order. We find that both of them are related to the
general averaging problem in the inhomogeneous Universe
and show their relation via the kinematical backreaction
term QD.

Equations (15)–(17) are the main results of our paper.
From these relations, we prove that SD=VD is proportional
to hC����C

����iD, iff QD is negligible, i.e., iff the aver-

aged Universe is described by an idealized FLRW cosmol-
ogy. However, since kinematical backreaction measures

the deviation from a FLRW cosmology, an improved back-
ground including backreaction could eventually result in a
direct proportionality if perturbations on the general aver-
age are considered, rather than on a FLRW background.
The answer to this question is beyond the scope of this
paper, but the formalism to address this more general issue
has been outlined in a recent work [30].
Regarding the Weyl curvature hypothesis, we can state

that it is not the Weyl curvature alone that is monotonically
growing, but a specific combination with the kinematical
backreaction, a result that has been proved here to second
order in perturbation theory. In other words, the informa-
tion entropy SD consists of the gravitational entropy
hC����C

����iD proposed by Penrose, and the kinematical

backreaction QD, which contributes to the observed cos-
mic acceleration. It will be interesting to find out if this
could be extended to the fully nonlinear theory.
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