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We use nonlinear gauge-invariant perturbation theory to study the interaction of an inflation produced

seed magnetic field with density and gravitational wave perturbations in an almost Friedmann-Lemaı̂tre-

Robertson-Walker spacetime with zero spatial curvature. We compare the effects of this coupling under

the assumptions of poor conductivity, perfect conductivity and the case where the electric field is sourced

via the coupling of velocity perturbations to the seed field in the ideal magnetohydrodynamic regime, thus

generalizing, improving on and correcting previous results. We solve our equations for long wavelength

limits and numerically integrate the resulting equations to generate power spectra for the electromagnetic

field variables, showing where the modes cross the horizon. We find that the interaction can seed electric

fields with nonzero curl and that the curl of the electric field dominates the power spectrum on small

scales, in agreement with previous arguments.
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I. INTRODUCTION

Large scale magnetic fields of varying amplitudes are
present in entire galaxy clusters, individual galaxies and
high redshift condensations. Such fields are observed on
characteristic scales of �1 Mpc and are of micro-Gauss
strength, 10�7–10�5 G [1,2]. Despite their ubiquity, their
origin is still a mystery. There are literally tens of candidate
mechanisms proposed to explain the origin and evolution
of such fields, spanning different theories of physics [3].
It is now widely believed that the structure of magnetic
fields in spiral galaxies is consistent with the dynamo
amplification mechanism. The dynamo mechanism can
produce amplification factors of up to �108 but requires
a seed field in order to operate and thus cannot explain the
origin of magnetic fields. Additionally, adiabatic contrac-
tion of magnetic flux lines during structure formation can
enhance galactic fields by a factor of �103.

Among the physical mechanisms proposed to explain
the origin of the seed field is one due to Harrison [4]. This
mechanism rests on the fact that nonzero vorticity in the
prerecombination photon-baryon plasma can generate
weak magnetic fields of about �10�25 G. However, vor-
ticity is not a generated mode at first order in perturbation
theory and has to be put in as an initial condition. Second
order treatments of the prerecombination plasma in terms
of a kinetic theory description has also been used to gen-
erate the required seed fields [5–10]. The key idea is a
preferential Thompson scattering of photons off free elec-
trons, over the scattering off protons [the scattering off
protons is suppressed by a factor ðme=mpÞ2] which induces

differences in the proton and electron velocity fields.
Electric fields are then induced to countercharge separation
between the electrons and protons. The generated electric
fields will then feed in the magnetic induction equation to
generate magnetic fields at second order in perturbation
theory. The photon anisotropic stress also couples to the
electron velocities and contributes to the magnetic field
sources. In addition, other arguments relying on electro-
weak phase transitions [11,12], topological defects [13],
velocity perturbations [14] etc. have been proposed as
candidate mechanisms. The generated fields, however,
are usually too weak to leave any detectable imprint on
the cosmic microwave background (CMB) [5]. This is not
surprising given the form of the fluid quantities of a mag-
netic field. In particular, the energy density �B ¼ B2=2,
the isotropic pressure pB ¼ B2=6 and the anisotropic pres-
sure�ab ¼ BhaBbi of a field generated at second order will
manifest at fourth order in perturbation theory, which is not
relevant for CMB anisotropies.
In addition to meeting the right strengths, the generated

fields must be of the right scale to match those observed
today. One of the problems of primordial generation mecha-
nisms ingeneral is that although somemay reach the required
strengths, they are causal in nature. This means that their
coherence scales cannot exceed the Hubble scale during the
time of magnetic field generation. By comparison, the galac-
tic scale today is well outside the Hubble scale at such early
epochs. Moreover, the small scale fields, i.e., those that are
already subhorizon before matter-radiation equality, cannot
reach the recombination epoch due to microphysical mecha-
nisms such as magnetic and photon diffusion processes [3].
Inflation and other pre-big bang models capable of

causally producing superhorizon perturbations are often
invoked to circumvent this scale problem. However,
the residual magnetic fields surviving the exponential

*astrobish@gmail.com
†peter.dunsby@uct.ac.za
‡bob.osano@uct.ac.za

PHYSICAL REVIEW D 86, 083533 (2012)

1550-7998=2012=86(8)=083533(13) 083533-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.86.083533


expansion accompanying many inflationary models are
thought to be too weak to be of cosmological relevance
[15]. New physics often has to be introduced such as exotic
couplings of the electromagnetic field to other fields such
as the dilaton field to avoid the accompanying exponential
dilution of the magnetic fields [19]. The primordial fields
are also constrained by the fact that the anisotropic stress of
the produced magnetic fields contains a spin-2 component
and will result in an overproduction of gravitational waves
at horizon crossing which is inconsistent with standard big
bang nucleosynthesis constraints [20,21].

Apart from studying the generation of magnetic fields,
one can also study interactions of a preexisting magnetic
field with gravitational degrees of freedom. This is often
studied in the context of amplification of the seed magnetic
field or gravitational wave detection. Much progress has
been made in this area [22–25]. Most of these studies
however have been restricted to focusing on the interaction
of magnetic fields with tensor perturbations; In this
work we revisit and extend the work presented in
Refs. [22,24,26], to include scalar perturbations in the
matter fluctuations.

When using perturbation theory about a Friedmann-
Lemaı̂tre-Robertson-Walker (FLRW) background to study
the interaction, one is immediately faced with the problem
of how to embed the seed magnetic field into the back-
ground. The isotropy of the FLRW spacetime does not
readily allow for any direction preference that may be
introduced by a vector field. There are several ways to
handle this and we mention briefly just three of them.
One can treat the seed magnetic field as a zeroth order
quantity, subject to the assumption that the energy density
of the field be small compared to the energy density of
matter B2 � � and that the anisotropic stress is negligible
�ab ¼ BhaBbi � 0. With these approximations, the energy

density of the magnetic field cannot alter the gravitational
dynamics of the background spacetime; this approach is
often referred to as the weak-field approximation. Another
approach is to treat the seed field as a statistically homo-
geneous and isotropic random field with hBi ¼ 0 but
hB2i � 0 and so, the seed field does not introduce any
directional dependence in the background spacetime.
One can then easily employ statistical methods to quantify
the field’s behavior. Another possibility is to leave the
background spacetime untouched but treat the seed field
as a first order perturbation, using a two parameter
approximation scheme to characterize the perturbations
in the electromagnetic and gravitational field; this is the
approach we adopt in this work.

One can go a long way in comparing the different
perturbation schemes. For example, in the weak-field
approximation, the induced magnetic field will be at first
order, a well understood regime in perturbation theory.
While in the two parameter case, the induced field will
be at second order [27], a regime that is not so well

developed. Nevertheless, for the purposes of our work,
the two approaches are mathematically equivalent. The
apparent differences between them is as a result of
relabeling of spacetimes, i.e., first order in the weak-field
approximation corresponds to second order in the two
parameter case. Indeed, Maxwell’s equations and thus the
Einstein-Maxwell system takes the same mathematical
form in both of these approaches. They both use the
machinery of relativistic perturbation theory and are thus
prone to gauge issues, see Refs. [28,29] for example.
The present article is structured as follows: we present

details of our perturbative framework in Sec. III. After a
presentation of the interaction equations in Sec. VI, we
present the derivation of the equations describing the
induction of electromagnetic (EM) fields in Secs. VII A
and VII Bfor a general current and a note on how to
evaluate the induced electrical current in Sec. VII C. We
present the power spectra of the induced magnetic field
variable in Sec. X and finally a summary in XI. We employ
the 1þ 3 covariant approach to perturbation theory [30]
and follow [31] by adopting the more geometrically moti-
vated metric signature (�þþþ) and we use geometrized
units 8�G ¼ c ¼ 1, where G is the gravitational constant
and c is the speed of light in vacuum.

II. PRELIMINARIES

A. 1þ 3 spacetime splitting

One of the nice aspects of the 1þ 3 covariant approach
to general relativity is that the underlying dynamical equa-
tions have a stronger appeal from a physical point of view,
as compared to the quasilinear, second-order partial differ-
ential equation form, which the Einstein field equations
take in the metric based approach.
The approach is based on a 1þ 3 decomposition of

geometric quantities with respect to a fundamental four
velocity ua:

ua ¼ dxa

d�
; uau

a ¼ �1; (1)

where xa are general coordinates and � measures the
proper time along the world line. The key equations
governing the full structure of the spacetime are derived
from the Ricci and the once and twice contracted Bianchi
identities applied to the 4-velocity vector [30]. This split-
ting uniquely defines two projection tensors,

Ua
b ¼ �uaub ) Ua

cU
c
b ¼ Ua

b; U
a
a ¼ 1; Uabu

b ¼ ua;

(2)

hab ¼ gab þ uaub ) hach
c
b ¼ hab; h

a
a ¼ 3; habu

b ¼ 0;

(3)

which project along and orthogonal to the 4-velocity
ua. We define two projected covariant derivatives, the
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convective time derivative along ua and the spatially
projected covariant derivative,

_Qa���b
c���d�uereQ

a���b
c���d and

DeQ
a���b

c���d�hap ���hbqhrc ���hsdhferfQ
p���q

r���s; (4)

respectively. The basic equations are then characterized by
the irreducible parts of the first covariant derivative of ua,

raub ¼ �uaAb þ Daub

¼ �uaAb þ 1

3
�hab þ �ab þ!ab; (5)

where Ab ¼ uaraub is the relativistic acceleration
vector representing the effect of inertial forces on the fluid;
Dau

a ¼ � is the rate of volume expansion; �ab ¼ Dhaubi
is the symmetric trace-free rate of shear tensor, describing
the rate of distortion of the fluid flow; !ab ¼ D½aub� is the
antisymmetric vorticity tensor, describing the rigid rotation
of the fluid relative to a nonrotating frame.

B. FLRW background

We choose as our background the FLRW models, which
are spatially homogeneous and isotropic. Thus, relative to
the congruence ua, the kinematical variables have to be
locally isotropic, which implies the vanishing of the
4-acceleration _ua ¼ 0, the rate of shear �ab ¼ 0 and the
vorticity vector !a ¼ 0. Spatial homogeneity implies that
the spatial gradients of the energy density �, pressure p,
and the expansion � vanish, i.e., Da�¼Dap¼Da�¼0.
Moreover, the FLRW spacetime is characterized by a
perfect fluid matter tensor, i.e., � ¼ qa ¼ 0. These restric-
tions imply that the spacetime is conformally flat, i.e., the
electric and magnetic parts of the Weyl tensor vanish,
Eab ¼ Hab ¼ 0. This leads to the key background equa-
tions, the energy conservation equation

_� ¼ �ð1þ wÞ��; (6)

the Raychaudhuri equation

_� ¼ � 1

3
�2 � 1

2
�ð1þ 3wÞ þ�; (7)

where w ¼ p=� and the Friedmann equation

�þ� ¼ 1

3
�2 þ 3K

a2
: (8)

III. PERTURBATIVE FRAMEWORK

As already mentioned, a FLRW spacetime cannot
readily host magnetic fields, as their anisotropic stresses
�ab ¼ ~Bha ~Bbi � 0 will break the isotropy. We thus treat

the background magnetic field ~Ba as a first order perturba-
tion to the isotropic spacetime. This lends the energy
density, the isotropic and anisotropic pressure of the field
to second order in perturbation theory.

We then proceed by adopting a two parameter perturba-
tive framework [32–35]. Fundamentally, this consists of
separately parametrizing the gravitational and Maxwell
field perturbations in two expansion parameters �g and

� ~B, representing the amplitudes of the gravitational
and electromagnetic field perturbations, respectively
[22,26,33]. Using this parametrization, any quantity Q...

...

in the physical spacetime can be expanded in the form

Q...
... ¼ �0g�

0
~B
Q ...ð0;0Þ

... þ �1g�
0
~B
Q ...ð1;0Þ

... þ �0g�
1
~B
Q ...ð0;1Þ

...

þ �1g�
1
~B
Q ...ð1;1Þ

... þOð�2g; �2~BÞ; (9)

where the first term on the right represents the background
term; the first and second terms represent the first order
gravitational and electromagnetic perturbations, respec-
tively; the fourth term represents the nonlinear coupling
we are looking to investigate; the higher order terms rep-
resent self-coupling terms of order �mg and �n~B,m, n � 2. In

general, terms describing the coupling will be of the form
�mg �

n
~B
, where, in this work, we restrict the perturbative

order to Oð�1g�1BÞ and therefore neglect terms of order

Oð�2g�1BÞ, Oð�1g�2BÞ and higher, resulting from the self-

coupling of the fields; this includes gravitational couplings
with the magnetic anisotropy �ab ¼ � ~Bha ~Bbi, leading to

Oð�1g�2BÞ terms. We will generally refer to quantities of

order Oð�1g�1BÞ simply as nonlinear and reserve the desig-

nation second order for terms that are of order �2g and �2~B.

As in Refs. [22,26,33], one can visualize this framework
as a hierarchy of spacetimes to label the different pertur-
bative orders.
We make the common assumption in the literature that

the perturbed spacetimes have the same manifold as the
background spacetime; i.e., we consider the perturbations
as fields propagating on the background spacetime [35,36].
In this treatment, therefore, we restrict the possibility that
the perturbations may alter the differential structure of
the background manifold and so we neglect issues of
backreaction.
We are also interested in studying this coupling in a

gauge-invariant manner. The gauge problem in relativistic
perturbation theory has been dealt with in the literature, see
for example Refs. [35,37–40]. The Stewart and Walker
lemma [40] serves as a basis for the generalization of gauge
invariance to arbitrary order [35,39]. It follows that a quan-

tityQ is gauge invariant at orderOð�mg �n~BÞ if and only ifQð0Þ

and its perturbations of order lower thanOð�mg �n~BÞ are either
vanishing, or a constant scalar or a combination of
Kronecker deltas with constant coefficients [32,35].
Since the interaction terms are of orderOð�1g�1BÞwe have

that the induced magnetic field Ba will be of the same
order; we also assume that the electric field Ea will be of
the same order as the induced magnetic field. Clearly Ba

does not satisfy the criteria for gauge invariance atOð�1g�1~BÞ
since it is neither vanishing nor a constant scalar at
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Oð�0g�1~BÞ. To this end, we make use of the same auxiliary

variable �a ¼ _~Ba þ 2
3�

~Ba identified in Refs. [22,26,33].

We do not however integrate �a to recover the gauge-
dependent magnetic field, but treat it as the fundamental
variable whose deviation from zero quantifies deviation
from the adiabatic decay of the magnetic field.

IV. THE EINSTEIN-MAXWELL SYSTEM

The Einstein-Maxwell equations (A10) contain terms
that couple the electromagnetic fields to the gravitational
fields. These can be written at Oð�1g�1~BÞ by discarding

higher order terms. This results in the two propagation
equations,

_B hai þ 2

3
�Ba ¼ �ab

~Bb � curlEa; (10)

_E hai þ 2

3
�Ea ¼ curlBa þ �abcAb ~Bc � J a; (11)

subject to the constraints, DaE
a ¼ 0 ¼ DaB

a. Following
Ref. [41] we make the following comments: (i) The mag-
netic field ~Ba appearing in Eqs. (13) and (14) multiplied by
the gravitational variables should not be the same as the Ba

appearing alone. The variable Ba is a mixture of linear
and nonlinear quantities (the seed magnetic field and the
induced field) while the terms involving ~Ba are a product of
first order quantities. One has to keep this in mind when
integrating the equations. (ii) The system is not gauge
invariant as already mentioned in Sec. III. This can be
attributed to the mixture of linear and nonlinear terms
in the system. In the covariant approach to perturbation
theory, the solution of perturbed differential operators is
never sought, one can get around this by making sure that
the differential operators involved operate on quantities of
the corresponding perturbative order.

In an attempt to cast it in a consistent and gauge invari-
ant manner, we introduce the following nonlinear varia-
bles: the fundamental variable �a measuring deviation
from adiabatic decay, Ia describing the interaction with
shear distortions and �a describing interaction with density
perturbations. These are defined as

�a ¼ _Bhai þ 2

3
�Ba;

Ia ¼ �ab
~Bb and �a ¼ �abcAb ~Bc;

(12)

and results in the following system:

�a ¼ Ia � Ea; (13)

_E hai þ 2

3
�Ea ¼ Ba þ �a � J a; (14)

where we have written curl Ea ¼ Ea and curl Ba ¼ Ba for
brevity.

V. THE LINEAR EQUATIONS

A. The linear magnetic field: Oð� ~BÞ
We treat the seed magnetic field as a first order pertur-

bation to the spacetime. The seed field may have its origins
in inflation or other mechanisms based on string cosmol-
ogy, in which electromagnetic vacuum fluctuations are
amplified due to a dynamical dilaton or an inflaton field
[19]. We assume that at order Oð�0g�1~BÞ the electric fields

are small compared to the magnetic fields, i.e., E2 � B2.
Thus, in the absence of diffusive losses or amplification,
the induction equation (13) takes the frozen-in form,

_~B hai þ 2

3
�~Ba ¼ 0; (15)

regardless of the equation of state or plasma properties of
the cosmic fluid. It follows then that the magnetic field
decays adiabatically as ~Ba / a�2, where a is the cosmo-
logical scale factor. This adiabatic decay arises from the
expansion of the Universe which conformally dilutes the
field lines due to flux conservation. The frozen-in condition
(15) does not discriminate between homogeneous
(Da

~Bb ¼ 0) and inhomogeneous (Da
~Bb � 0) magnetic

fields. For an inhomogeneous field the spatial gradients
of the seed magnetic fieldDb

~Ba are of the same order as ~Ba

and evolve as DbBa / a�3.

B. Gravitational perturbations: Oð�gÞ
The Weyl tensor Cabcd represents the free gravitational

field, enabling gravitational action at a distance. In analogy
with splitting the Maxwell field tensor Fab into a magnetic
and an electric field, Cabcd can be split covariantly into a
magnetic part Hab ¼ 1

2 �adeC
de

bcu
c and an electric part

Eab ¼ Cabcdu
cud. The electric part of the Weyl tensor

describes tidal effects, akin to the tidal tensor associated
with the Newtonian potential, while the magnetic part
describes the propagation of gravitational radiation. The
Weyl tensor vanishes in the conformally flat FLRW space-
time and so Eab and Hab are covariant first order gauge
invariant quantities in the Weyl curvature. We also define
the first order gauge invariant variables Xa ¼ aDa� and
Z ¼ aDa� to characterize density perturbations. Now, the
system governing gravitational perturbations is given by
the following propagation equations [42]:

_� habi þ 2

3
��ab ¼ DhaAbi � Eab; (16)

_H habi þ�Hab ¼ �curlEab; (17)

_E habi þ�Eab ¼ curlHab � 1

2
�ð1þ wÞ�ab; (18)

_X hai ��wXa ¼ �ð1þ wÞZa; (19)
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_Zhaiþ2

3
�Za¼�1

2
�Xa� w

3ð1þwÞ
�
�1

3
�2þ�þ�

�
Xa

� w

1þw
D2Xa: (20)

In addition to the propagation equations above, the
following constraints have to be satisfied:

aDc�bc ¼ 2

3
Zb;

aDcEbc ¼ 1

3
�Xb and Hab ¼ curl�ab;

(21)

where we have set the vorticity to zero (!a ¼ 0); see also
Ref. [41]. Note that at first order in gravitational perturba-
tions, the only source of vector modes is the vorticity !a;
since, we neglect the effects of vorticity, !a ¼ 0, all the
vector modes vanish. The shear tensor �ab can then be
irreducibly split into scalar and tensor contributions as [43]

�ab ¼�S
abþ�T

ab; where curl�S
ab ¼ 0; and Da�T

ab ¼ 0:

(22)

The pure tensor modes can be used to characterize gravi-
tational waves [44]. The scalar part of the shear couples to
density perturbations and is related to the clumping of
matter via the constraints (21).

By differentiating (16) and using (18) and one of the
constraints (21) to substitute for Eab andHab, one arrives at
a forced wave equation for the shear,

€�habi�D2�abþ5

3
� _�habi þ

�
1

9
�2þ1

6
��3

2
pþ5

3
�

�
�ab

¼� w

a2ð1þwÞ
�
_Xabþ1

3
�Xab

�
; (23)

where Xab ¼ �ð1þ wÞa2DhaAbi=w ¼ aDhaXbi. We

need an evolution equation for Xab in order to close
Eq. (23). One can start from (19) and (20) to write a
wave equation for Xa then taking the comoving spatial
gradient of the resulting wave equation will yield the
following:

€Xab�wD2Xab�
�
w�2

3

�
� _Xab

þ1

2
�ð3wþ1Þðw�1ÞXab�2w�Xab¼0: (24)

In including scalar perturbations, we have explicitly
coupled the shear tensor to density perturbations. This
shows that density gradients source distortions in the
Weyl curvature and vice versa. Hence, knowing the shear
allows one to compute density gradients and knowing
density gradients one can compute the scalar part of the
shear [45].

VI. THE INTERACTION: Oð�g� ~BÞ
The Maxwell fields couple to Weyl curvature through

the shear term and density perturbations through the
acceleration terms and the nonlinear identity (28). In the
case of pure tensor modes in the shear tensor, the inter-
action variable Ia ¼ �T

ab
~Bb was shown to satisfy a closed

wave equation, for both a homogeneous [22] and an
inhomogeneous [26] seed field ~Ba. Here, we include
contributions from scalar perturbations in the shear, which
give rise to source terms due to coupling with density
perturbations. In this case Ia satisfies a forced wave
equation,

€Ihai�D2Iaþ3� _Ihaiþ
�
13

9
�2�1

6
��5

2
�wþ7

3
�

�
Ia¼CIa;

(25)

where the forcing term CIa is given by

C I
a ¼ � w

a2ð1þ wÞ ð
_Shai þ�SaÞ: (26)

To close the above system, we give the companion wave
equation for Sa ¼ a ~BbDhaXbi as

€Sa � wD2Sa þ ð2� wÞ� _Sa þ
�
2

3
ð1� wÞð�þ�2Þ

þ 1

6
�ð1þ 3wÞð3w� 5Þ

�
Sa ¼ 0: (27)

We note, for later convenience (Sec. VII A) that the forcing
term CIa ¼ 0 in a matter dominated universe (w ¼ 0); i.e.,
Ia decouples from Sa when w ¼ 0.

VII. INDUCTION OF EM FIELDS

We introduce nonlinear gravitationally induced effective

current terms CEa , CEa and C�a which are made up of the
coupling between density and gravitational wave perturba-
tions; these will act as driving forces of the induced
Maxwell fields.

A. The electric field

We show how the coupling of gravitational perturbations
with the seed magnetic field can induce electric fields. Here
we give wave equations for the induced electric field Ea

and its rotation Ea. In deriving the wave equation for Ea,
we differentiate (14) and equate the result to the nonlinear
identity,

_ðcurlBaÞ¼ curl�a��curlBaþHab
~Bb

þ 1

3að1þwÞ�abc
~Bbð�wXc�2 _XcÞ; (28)

obtained from the commutation relations (the Appendix)
and we have used Eq. (19) to rewrite the acceleration
terms. The resulting wave equation is found to be
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€Ehai�D2Eaþ5

3
� _Eaþ

�
2

9
�2þ1

3
�ð1�3wÞþ4

3
�

�
Ea¼CEa ;

(29)

where CEa is a gravitationally induced source term given by

CEa¼curlIaþHab
~Bbþ 1

að1þwÞ�abc

	
��

w�2

3

�
ð ~BbXcÞ�þ�

�
w�4

9

�
~BbXc

�
��J a� _J a;

(30)

and J a is the 3-current. The terms involving �abc in CEa
vanish when the magnetic field ~Ba is parallel to the frac-
tional density gradient Xa. Taking the curl of (29) results
in the equation governing the rotation of Ea,

€Ea�D2Eaþ7

3
� _Eaþ

�
7

9
�2þ1

6
�ð1�9wÞþ5

3
�

�
Ea¼CEa;

(31)

where the source term CEa ¼ curl CEa is given by

CEa¼�ðcurlJ aÞ��4

3
�curlJ aþ2DbD½aIb�

þ�acd ~BbD
cHdbþ 2

a2ð1þwÞ
��

w�2

3

�
ða ~B½aDbXb�Þ�

þ�

�
w�4

9

�
a ~B½aDbXb�

�
: (32)

B. The magnetic field

As already mentioned, the induced magnetic field will
be characterized via the variable �a ¼ _Ba þ 2

3�Ba. On

using (13), (25), and (31), one can write a second-order
equation governing the evolution of the fundamental vari-
able�a. This can bewritten in either of two forms: in terms
of Ia or Ea, corresponding to using (13) as a constraint to
either of (31) or (25), respectively. Recall that both Ia and
Ea satisfy wave equations of the form L½Ia� ¼ CIa and
L½Ea� ¼ CEa, where the Cias are source terms.

Using covariant harmonics [45], one can already notice
from (25) and (31) that the eigenfunctions used to harmoni-
cally decompose Ia and Ea are not the same for a general
perturbation [46]. Consider the induction equation (13),
and write it as �a ¼ P

kðP aIðkÞ �QaEðkÞÞ, where P a and

Qa are distinct eigenfunctions of the Laplace-Beltrami
operator, i.e., P a � Qa. For the separation of variables
technique to work for �a, one must eliminate either
Ia ¼ P aIðkÞ, along with its source terms CIa or Ea ¼
QaEðkÞ along with its source terms CEa. In this way, �a

can then be expanded in terms of one set of complete
eigenfunctions. This presents a problem: since both Ia
and Ea are coupled to source terms CIa and CEa respectively
at second order, both CIa and CEa will still couple to the �a

equation at this order, thereby introducing the differing set

of eigenfunctions P a and Qa. A similar problem arose in
Ref. [47], due to the inclusion of a vorticity term.
It is possible to do away with CIa in Eq. (25) by requiring

that w ¼ 0 and this alleviates the problem [48]. We shall
then henceforth restrict to the pressureless dust (w ¼ 0)
case and write the �a wave equation in terms of Ea:

€� hai�D2�aþ3� _�haiþ
�
13

9
�2�1

6
�þ7

3
�

�
�a¼C�a ;

(33)

where

C�a ¼�2

3
� _Eaþ

�
�2

3
�2þ1

3
��2

3
�

�
EaþðcurlJ aÞ�

þ4

3
�curlJ a�2DbD½aIb���acd ~BbD

cHdb

� 2

a2

�
�2

3
ða ~B½aDbXb�Þ��4

9
�ða ~B½aDbXb�Þ

�
: (34)

Note that while we keep Sa ¼ a ~BbDhaXbi distinct from
a ~B½aDbXb� in real space, their evolution equations can be

made equivalent in harmonic space by a suitable choice of
eigenfunctions [49]. We shall thus write Sð‘Þ in place of
~BðnÞXðkÞ to avoid introducing another letter to denote the

latter. This should not lead to any ambiguities.

C. The electric current

1. Limiting cases: Poor and perfect conductivity

To close the above system, one needs to take care of the
current term J a appearing in (30), (32), and (34). This
term depends on the electrical properties of the medium. It
is given in terms of the electric field Ea via Ohm’s law,

J a ¼ &Ea; (35)

where & is the electrical conductivity of the medium. In this
section, we consider only the limiting cases of very high
(& ! 1) and very poor conductivity (& ! 0). Under the
assumption of poor conductivity, the currents vanish
J a ¼ 0, despite the presence of a nonzero electric field.
In this case, one solves Eqs. (29), (31), and (33), with the
current terms set to zero. At the opposite end, the case of
perfect conductivity, the electric fields vanish and the
currents keep the magnetic field frozen in with the fluid.
In this case, the current term satisfies

ðcurlJ aÞ�þ4

3
�curlJ a

¼2DbD½aIb� þ�acd ~BbD
cHdb

þ 2

a2

�
�2

3
ða ~B½aDbXb�Þ��4

9
�ða ~B½aDbXb�Þ

�
; (36)

and (29) and (31) are no longer relevant. One can verify
that using this relation reduces Eq. (33) to �a ¼ Ia, as can
be confirmed also from the induction equation (13).
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One can also invoke the magnetohydrodynamic (MHD)
approximation, which is valid for cold plasmas (pressure-
less dust can be well approximated by a cold plasma
treatment) [50]. Cold plasmas have components with non-
relativistic velocities and are thus mathematically easier
to deal with [26,51,52]. We consider a two component
electron-ion plasma and assume that the motion properties
of the plasma on macroscopic scales are captured by the
center of mass 3-velocity va of the system; i.e., the differ-
ence in mean velocities of the individual species is small
compared with the fluid velocity. We also assume charge
neutrality of the cosmic plasma; i.e., the number densities
of the electrons and ions ne and ni are roughly equal,
ne � ni; this guarantees the vanishing of the total charge
�c ¼ �eðne � niÞ � 0 and the background 3-current
J a � 0. In this case, the generalized Ohm’s law is
given by

J hai ¼ &ðEa þ �abcv
b ~BcÞ; va ¼ �ev

a
e þ�iv

a
i

�e þ�i

;

(37)

where the subscripts e and i denote quantities for electrons
and ions, respectively. The center of mass 3-velocity va of
the electron-ion plasma can be shown to satisfy the line-
arized Euler equation,

_v hai þ 1

3
�va ¼ 0: (38)

In the ideal-MHD environment, the conductivity of the
medium is very high (& ! 1), then Ea þ �abcv

b ~Bc ! 0 in
order to keep the current J a finite. This readily gives the
electric field Ea and its rotation Ea as Ea ¼ ��abcv

b ~Bc

and Ea ¼ 2 ~B½aDbvb�. Using (15) and (38), one can show

that

_E hai þ�Ea ¼ 0; and _Ea þ 4

3
�Ea ¼ 0: (39)

With these, the 3-current J a satisfies

ðcurlJ aÞ� þ 4

3
� curlJ a

¼ 2DbD½aIb� þ �acd ~BbD
cHdb

þ 2

a2

�
� 2

3
ða ~B½aDbXb�Þ� � 4

9
�ða ~B½aDbXb�Þ

�

þ D2Ea �
�
� 1

9
�2 þ 5

6
�þ 1

3
�

�
Ea: (40)

Substituting (40) into (33) results in

€�hai � D2�a þ 3� _�hai þ
�
13

9
�2 � 1

6
�þ 7

3
�

�
�a

¼ D2Ea þ
�
1

3
�2 � 1

2
���

�
Ea: (41)

The application of the ideal MHD approximation in
cosmology has often been criticized as being of a practical

appeal rather than of a physical one [53]. Ideally, the curl of
Ea should be the outcome of a rigorous treatment of the
physics of the particle interactions in terms of a kinetic
theory description, see for example Refs. [9,10].

2. Intermediate case: finite conductivity

The case of poor conductivity may not be very relevant
in the post-recombination epoch as the universe then ac-
quires very high conductivity. The perfect conductivity
case, while relevant, may be thought of as an idealized
notion. We thus turn to the finite conductivity case. The
conductivity of the post decoupling era can be modeled by

& ¼ n2ee
2

men	�T

� 1011 s�1; (42)

where ne is the density of free electrons, e is the electric
charge of an electron, me is the mass of an electron, n	 is

the density of photons and �T is the collision cross section.
For a perfect fluid, the ratio n	=ne is constant; see Ref. [54]

for example.
Assuming that Ohm’s law holds [Eq. (35), we may write

the current terms in (34) as

ðcurlJ aÞ� þ 4

3
� curlJ a ¼ & _Ea þ 4

3
�&Ea; (43)

where we have assumed that spatial gradients of the
conductivity may be neglected (Da& � 0) and that the
conductivity is constant in time ( _& � 0). Substituting (43)
in the wave equation (33) for �a results in

€� hai�D2�aþ3� _�haiþ
�
13

9
�2�1

6
�þ7

3
�

�
�a¼C�a ;

(44)

where the source term C�a is now given by

C�a ¼
�
&

�
�2

3

�
� _Eaþ

��
2
&

�
�1

�
2

3
�2þ1

3
��2

3
�

�
Ea

�2DbD½aIb� ��acd ~BbD
cHdb

� 2

a2

�
�2

3
ða ~B½aDbXb�Þ��4

9
�ða ~B½aDbXb�Þ

�
: (45)

Note that the electric currents J a, electric fields Ea and the
conductivity & are all simultaneously finite. The simplifi-
cations that arise due to the characterization of the limiting
cases (J a ¼ 0 for poor conducting mediums and Ea ¼ 0
for perfect conducting mediums) are no longer applicable
in the case of finite conductivity. One then needs a proper
model for the electric currents to ensure that the initial
conditions for J a and Ea are not chosen independently.
There are several ways in which one can model electric
currents, all resulting in terms of perturbative order �2g; see

Ref. [8] for example. While these terms can be seamlessly
accommodated in our framework, they have the undesir-
able effect of seeding magnetic fields. This will lead us
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away from the isolated effects of the amplification of
an already existing field. Inclusion of such terms will
therefore lead us to overestimate the effect of the amplifi-
cation. With this in mind, we restrict to the limiting
cases of VII C 1.

VIII. THE INDUCED FIELDS

We now treat separately the induction of electro-
magnetic fields due to interaction with scalar and tensor
perturbations. To this end, we expand the perturbation
variables in terms of a helicity basis (the Appendix). In
addition, we use a unified time variable whose defining
equation is _� ¼ 3

2Hi instead of proper time, to rewrite the

relevant equations [55]. We have to substitute for�,� and
a, appearing in the perturbed equations, from the zeroth
order equations. We restrict our treatment to zero cosmo-
logical constant� ¼ 0 and flat spatial sectionsK ¼ 0. The
Friedmann equation then reduces to � ¼ �2=3, where �
is given by � ¼ 3Hi=�; the scale factor a evolves

as a ¼ ai�
2=3.

A. EM induction due to scalar perturbations

In this case, the coupling of a seed field with gravita-
tional perturbations is described by the variables Ia and Sa;
these variables become sources of electromagnetic fields.

(i) Interaction terms.—Equations (25) and (27) for the
interaction variables Ia and Sa, respectively become

9

4
I00ð‘Þ þ

27

2�
I0ð‘Þ þ

25

2�2
Ið‘Þ ¼ 0; (46a)

9

4
S00ð‘Þ þ

9

�
S0ð‘Þ þ

7

2�2
Sð‘Þ ¼ 0: (46b)

Note that since w ¼ 0, the entire system has
decoupled from a ~BbDhaXbi, however we still need

an equation for Sð‘Þ because of the coupling with

a ~B½aDbXb� in Eqs. (32) and (34). These interaction

variables have the general solutions,

Ið‘Þð�Þ ¼ C1�
�10=3 þ C2�

�5=3 and

Sð‘Þ ¼ 1

5
C3�

�7=3 þ 1

5
C4�

�2=3;
(47)

where the Ci’s are integration constants.
(ii) EM fields.—Equation (29) for the electric field Ea

becomes

9

4
E00
ð‘Þ þ

15

2�
E0
ð‘Þ þ

��
‘

aiHi

�
2
��4=3 þ 3

�2

�
Eð‘Þ

¼ 
 ðkþ nÞ
3aiH

2
i

Ið‘Þ��2=3 � 1

Hi

S0ð‘Þ �
4

3Hi�
Sð‘Þ:

(48)

It is much easier to solve for �ð‘Þ from the induction

equation

�ð‘Þ ¼ Ið‘Þ � ‘

ai�
2=3

Eð‘Þ (49)

once Ið‘Þ and Eð‘Þ are known, rather than from the

wave equation (33).

B. EM induction due to tensor perturbations

In this case, the transverse and trace-free parts of the
shear tensor �ab characterize gravitational waves. The
interaction with a seed field is then purely described by
the variable Ia without any contribution from either density
or velocity perturbations. The generalized Ohm’s law (37)
in the MHD approximation also reduces to (35). We thus
only need the equations for �a, Ia and Ea.
(i) Interaction variable.—Equation (25) for the inter-

action variable Ia becomes

9

4
I00ð‘Þ þ

27

2�
I0ð‘Þ þ

��
‘

aiHi

�
2
��4=3 þ 25

2�2

�
Ið‘Þ ¼ 0;

(50)

with the general solution,

Ið‘Þð�Þ ¼ ��5=2

�
C1J1

�
5

2
;

‘

aiHi

2

�1=3

�

þ C2J2

�
5

2
;

‘

aiHi

2

�1=3

��
; (51)

where C1 and C2 are integration constants, J1 and J2
are Bessel functions of the second kind.

(ii) EM fields.—Equation (29) for the electric field vari-
able Ea becomes

9

4
E00
ð‘Þ þ

15

2�
E0
ð‘Þ þ

��
‘

aiHi

�
2
��4=3 þ 3

�2

�
Eð‘Þ

¼ 
 ð2kþ nÞ
H2

i ai
Ið‘Þ��2=3; (52)

and we once again determine �ð‘Þ from

�ð‘Þ ¼ Ið‘Þ � ‘

ai�
2=3

Eð‘Þ; (53)

instead of using the wave equation (33).

IX. INITIAL CONDITIONS

We need initial conditions in order to solve the equations
in the previous section. The conditions are adapted as
follows: for �a we invoke Maxwell’s equation (13)

�a ¼ Ia � Ea; _�a ¼ _Ia � _Ea: (54)

For the interaction variable Ia, we use the definition (12)
and Eq. (15)

Ia¼�ab
~Bb _Ia¼ _�ab

~Bbþ�ab
_~B
b _~Ba¼�2

3
�~Ba: (55)
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For the rotation of the electric field Ea [56], we use
Maxwell’s equation (14) and the commutation relation
(A13) to get

_E a ¼ ��Ea þRab
~Bb � D2Ba; (56)

where in this case Ba (without the tilde) is the induced
magnetic field, and we have written the first order per-
turbed 3-Ricci tensor Rab as [30]

R ab ¼ � _�habi ���ab: (57)

We require that the gravitationally induced field variables
Ea (and hence Ea) and Ba be zero initially. This leads to the
following initial conditions for the perturbation variables:

Iið‘Þ ¼�i
ðkÞ ~B

i
ðnÞ I0ið‘Þ ¼�0

ið‘Þ ~B
i
ðnÞ�

4

3
�i

ðkÞ ~B
i
ðnÞ

Ei
ð‘Þ ¼0 E0

ið‘Þ ¼�2Ei
ð‘Þ �ð�0

ið‘Þþ2�i
ðkÞÞ ~Bi

ðnÞ

�i
ð‘Þ ¼�i

ðkÞ ~B
i
ðnÞ �0

ið‘Þ ¼2�0
iðkÞ ~B

i
ðnÞþ

2

3
�i

ðkÞ ~B
i
ðnÞþ2Ei

ð‘Þ:

(58)

Following [25,51,57], we adopt the initial condition for the
shear from ð�=HÞi � 10�6. We choose the seed field to be
~Bi ¼ 10�20 G, as typical of those produced around the
recombination era [10].

X. RESULTS

Given the system of initial conditions (58), one can
notice that the interaction variable Ia plays the fundamental
role in the interaction process. If we set Ia ¼ 0 initially,
then no amplification takes place. We show the time evo-
lution Iað�Þ in Fig. 1 on a log-log scale. A noteworthy
feature is the rapid decay of Ia for both scalars and tensors.
Although the interaction with scalar perturbations decays
slightly slower, it essentially follows the same trend as the

interaction with gravitational waves. We are thus led to
conclude that even including scalar perturbations in the
interaction, we reach the same conclusion as [23,51] that
there is no significant amplification of electromagnetic
fields coming from the interaction.
The effect of the gravitational perturbations on the

interaction is thought to be largest at the point where
the modes enter the horizon. This is clearly evident in
Figs. 2(a) and 2(b). A couple of features are worth noting
from Fig. 2(a). One is that the spectrum for the interaction
variable mimics that of gravitational waves. It is also
consistent with the fact that gravitational waves start
oscillating at horizon crossing. This is to be expected since
although for a spatially inhomogeneous magnetic field ~Ba,
the product Ið‘Þ ¼ ~BðnÞ�ðkÞ becomes a convolution in

Fourier space, IðkÞ ¼ P
nBðnÞ�ðk� nÞ, we have only con-

sidered the mode-mode coupling case, IðkÞ ¼ BðkÞ�ðkÞ.
The power spectra for the case of interaction with scalars

are not as interesting. There is no scale dependence on
the interaction variable Ia, cf. Eq. (46a). This is because the
Laplacian term for scalar perturbations comes from
the acceleration vector which is identically zero in the
dust case A ¼ 0.
It would be interesting to generalize our treatment to

include the case of nonzero pressure. This will lend us to
the radiation dominated era where one can incorporate
photons in the plasma and can consider collisional effects
as was done in Refs. [9,10] for example. One could
treat the interesting case of simultaneous generation and
amplification of magnetic fields by coalescing these
phenomenon.

XI. CONCLUSIONS

We have carried out an analysis of the coupling between
gravitational perturbations with electromagnetic fields as a
possible means for magnetic field amplification. This car-
ries to completion the work began in Refs. [22,26]. In
agreement with the work of Refs. [23,51] we argue that
there is no significant amplification resulting from the
interaction of magnetic field with gravitational waves.
Even with the inclusion of density perturbations, the
induced fields may still be orders of magnitude smaller.
This justifies the perturbative treatment and our neglect of
backreaction.
The induction of electromagnetic fields due to the inter-

action of a test magnetic field with gravitational waves was
studied in Ref. [24] using the weak-field approximation.
We included this study here treating the background
magnetic field as a first order perturbation and recovered
similar results. This shows that there is no fundamental
difference between the two approaches, apart from a label-
ing of spacetimes, which should not affect physical results.
We also extended this study by using a proper nonlinear
perturbative framework. This framework was applied in
Ref. [22], but an erroneous argument there led to the

FIG. 1 (color online). Time evolution of the interaction vari-
able in log-log axes. Note that for the interaction with scalars, the
decay is slightly slower than for tensors.
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neglect of the rotation of the electric field, thus restricting
the study to perfectly conducting environments. This was
refuted in Ref. [58]. In fact, upon inspection of (58) one can
conclude that even if one initially sets the rotation of the
electric field to zero, Ei ¼ 0 there are nonzero terms on the

right-hand side of the initial conditions for _E that will seed
a nonzero E. We also carry to completion the work in
Ref. [26] by doing a proper extraction of the scalar and
tensor modes and numerical integrations. In terms of the
conductivity of the cosmic medium, [24] restricted their
study to poor conducting mediums, [22] to perfectly con-
ducting mediums and [26] treated the MHD approxima-
tion. We carried our analysis for all three cases. We find
that for tensor perturbations, the ideal MHD approximation
is just the same as the perfect conductivity assumption of
the fluid treatment. For scalar perturbations, we find an
additional source term in the induced field (compared with
perfectly conducting environments) due to the coupling of
the seed field with scalar velocity perturbations. The cur-
rent term J a was neglected at all orders in Ref. [22], in an
attempt presumably to uphold the background magnetic
field’s homogeneity condition Da

~Bb ¼ 0. However, this is
not necessary since introducing the current term at the
nonlinear order does not break the condition Da

~Bb ¼ 0.
Also, one cannot consistently invoke Ohm’s law for poor
and perfect conducting environments without a current
term. In Ref. [26], an inhomogeneous seed field was
assumed thereby requiring a first order current J a ¼
�ev

a
e þ �iv

a
i ¼ �eðneva

e � niv
a
i Þ to uphold the condition

Da
~Bb � 0. However, after decoupling (which is the era

considered there), Thompson scattering is no longer effi-
cient. Thus electrons and ions are tightly coupled by
Coulomb scattering at first order. Their velocity fields are
therefore equal as they form a perfectly coupled baryon
fluid [59,60]. There can be therefore no currents generated

at this order and the condition curl ~Ba ¼ J a will render the
seed field homogeneous.
Both Refs. [22,26] integrate �a to recover the amplified

magnetic field, after specifying a frame ua. While this
takes into account the frame dependence of the magnetic
field Ba, it invalidates gauge invariance as the recovered Ba

remains gauge dependent and takes the same value and
form as it would have without the introduction of �a. This
is already pointed out in Ref. [58], See also Refs. [61,62].
We do not integrate �a but simply note that one can assign
a physical meaning to the magnetic field variable �a by
noting that �a ¼ 0 describes the background adiabatic
decay of the fields. Any deviation from �a ¼ 0 would
then imply amplification of the background field.
Moreover, �a is a linear combination of terms that source
magnetic fields through the induction equation (13). Thus
we can estimate the relative importance of each source
term through �a without having to integrate it to recover
the gauge-dependent Ba. For example, we see from
Fig. 2(a) that the rotation of the electric field dominates
at small scales compared to the interaction term.
Observations of cosmological magnetic fields are difficult
enough as it is, a new cosmological observable would lead
to better understanding of studies in magnetic fields. While
�a may not be that quantity, it does arise naturally from
Maxwell’s equations.
Also, one can readily write our key equations in terms of

metric variables by adoption of a suitable tetrad as was
done in Ref. [5].
Mechanisms that seek to generate magnetic fields, rely-

ing on nonlinear perturbation theory, are attractive for
several reasons [63]. Among these is that they can easily
blend in with known physics as they become relevant
around the recombination era. This makes it possible to
quantitatively evaluate the generated fields using CMB

FIG. 2 (color online). Plots of power vs scale (‘); we define the power as Px ¼ jxð‘Þ2j. (a) Power spectra of the magnetic field
variable �ð‘Þ (green, solid), and the interaction variable Ið‘Þ (blue, dashed) at redshift z ¼ 0 for the tensor case. (b) Power spectra of the

magnetic field variable �ð‘Þ (green, solid), and the interaction variable Ið‘Þ (blue, dashed) at redshift z ¼ 0 for the scalar case.
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constraints. Progress in nonlinear perturbation theory will
allow us to investigate these nonlinear effects in a manner
that is free of spurious gauge modes [41,64].
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APPENDIX

1. Harmonic splitting

It is standard to decompose the perturbed variables
harmonically in Fourier space, separating out the time
and space variations [45,65,66]. The idea is to expand the
quantities in terms of eigenfunctions of the Laplace-
Beltrami operator. To this end, we introduce the helicity

basis vectors eð�Þ, eð0Þ and eðþÞ defined by

eð
Þ
a ¼ � iffiffiffi

2
p ðe1a 
 ie2aÞ; (A1)

where ðe1; e2; k̂Þ form a right-handed orthonormal system

with e2 ¼ k̂	 e1 and we align e0 with k̂.
Using this basis, the scalar harmonic functions are

given by

Qð0Þ ¼ eikjx
j
: (A2)

Scalar-type components of vectors and tensors are
expanded in terms of harmonic functions defined from

Qð0Þ as follows:

Qð0Þ
a ¼ �a

k
DaQ

ð0Þ ¼ aik̂ae
ikjx

j
; (A3)

Qð0Þ
ab ¼ a2

k2
DhaDbiQð0Þ ¼ �a2

�
k̂ak̂b � 1

3

ab

�
eikjx

j
: (A4)

Vector harmonics are given by

Qð
Þ
a ¼ eð
Þ

a Qð0Þ; (A5)

Qð
Þ
ab ¼ �a

k
Dðae

ð
Þ
bÞ Q

ð0Þ ¼ aik̂ðae
ð
Þ
bÞ e

ikjx
j
: (A6)

While tensor harmonics are defined as

Q
2
ab ¼

ffiffiffi
3

2

s
eð
Þ
a eð
Þ

b Qð0Þ: (A7)

2. Maxwell’s equations

The Maxwell field tensor Fab decomposes relative to the
fundamental observer as

Fab ¼ 2u½aEb� þ �abcB
c; (A8)

where Ea ¼ Fabu
b andBa ¼ 1

2 �abcF
bc are respectively the

electric and magnetic field as measured by the fundamental
observer moving with 4-velocity ua. These are 3-vectors
on the spacelike hypersurface, Eau

a ¼ 0 ¼ Bau
a. The

Maxwell’s equations are given by

r½aFbc� ¼ 0 and rbFab ¼ Ja; (A9)

where J is the 4-current. These equations can be decom-
posed covariantly into the following [30,67,68]:

_Ehai�curlBa¼�2

3
�Eaþ�abE

bþ�abcðAbBcþ!bEcÞ��0J hai; (A10a)

_BhaiþcurlEa¼�2

3
�Baþ�abB

bþ�abcðAbEcþ!bBcÞ; (A10b)

0¼DaE
a�2!aB

a��c

�0
; (A10c)

0¼DaB
aþ2!aE

a: (A10d)

The EM fields are solenoidal in the absence of gravitational vector perturbations.

3. Commutation relations

ðDafÞ�? ¼ Da
_f� 1

3
�Dafþ _fAa; (A11)

ðDaVbÞ�? ¼ Da
_Vb � 1

3
�DaVb � �c

aDcVb þ �bcdH
c
aV

d þAa
_Vb; (A12)

ðcurlVaÞ�? ¼ curl _Va � 1

3
� curlVa � �abc�

bdDdV
c þHabV

b � 1

3
��abcV

bAc; (A13)

curl curl Sab ¼ �D2Sab þ
�
�þ�� 1

3
�2

�
Sab þ 3

2
DhaDcSbic: (A14)
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