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We consider a generalization of the Randall-Sundrum single brane-world scenario (RS2).More precisely,

the generalization is described through curvature corrections, corresponding to a Gauss-Bonnet term in the

bulk and a Hilbert-Einstein term, as well as the strength of the induced gravity term, on the brane. We are

mainly interested in analyzing the early inflationary era of the brane, which we model within the extreme

slow-roll limit, i.e., under a de Sitter-like brane inflation, where the inflaton field is confined on the brane.

We compute the scalar perturbations in this model and compare our results with those previously obtained

for the RS2 scenario with and without an induced gravity term on the brane or a Gauss-Bonnet term in the

bulk. The amplitude of the scalar perturbations is decreased as compared with a pure RS2 model. In

addition, the effect from the Gauss-Bonnet correction in an induced gravity brane-world model is to

decrease the amplitude of the scalar perturbations, and a similar result is obtained for the induced gravity

effect in a Gauss-Bonnet braneworld. In general, in the high energy limit the amplitude is highly suppressed

by the Gauss-Bonnet effect. Finally, we constrain the model using the latest WMAP7 data.
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I. INTRODUCTION

Several approaches in particle physics and cosmology
imply the possibility that our observable Universe is a
hypersurface embedded in a higher-dimensional space-
time, which is motivated by superstring/M theory. In this
scenario, several brane-world models have been proposed
(cf. for example Ref. [1]). One of the most popular and
interesting brane-world scenarios is provided by the
Randall-Sundrum single brane model (RS2) [2], where
our universe corresponds to a four-dimensional (4D) single
brane embedded in a five-dimensional (5D) anti-de Sitter
bulk. In this brane-world model, matter fields are localized
on the brane, and only the gravitons can propagate into
the bulk. Although the extra dimension is infinite in RS2
model, the zero mode of the 5D graviton is localized on the
brane at the low energy limit due to thewarped geometry of
the bulk metric, which corresponds to the 4D gravitational
waves, and therefore this property allows the RS2 brane
world to recover standard general relativity (GR) at the
low energy limit. By contrast, at the high energy limit the
RS2 model gives an unconventional modification to stan-
dard GR.

The 5D bulk action in the RS2 model is given by a
Hilbert-Einstein action, which can be generalized by

adding some correction terms. With regard to the 4D cos-
mology, there are two important modifications to the RS2
model; the first one is the Gauss-Bonnet (GB) correction
term included in the bulk action, which leads to the most
general second-order field equation in a 5D bulk [3].
Moreover, this unique combination of the GB term in the
bulk action also corresponds to the leading corrections in
string theory, and it is a ghost-free combination [4,5].
Besides, it also plays an important role in Chern-Simons
gravity [6–8], which is a gauge theory of gravity.
Furthermore, the zero mode of the 5D gravitons in the
GB brane world is also localized on the brane at low energy
as in the RS2 model [9]. The second modification is the
induced-gravity (IG) correction added in the brane action.
This effect is generated due to the quantum loops of
matter fields on the brane that couple to the bulk gravitons
[10–15].
Here we investigate the RS2-type model modified by

both the GB and IG effects [16,17]. In addition, we are
mainly interested in the early inflationary era of the brane,
where the spatial curvature and the dark radiation term are
rapidly diluted. Furthermore, in order to compare with the
power spectrum of the scalar perturbations in the RS2
model, we consider the normal branch of the model which
recovers the standard GR at the low energy limit without an
effective cosmological constant on the brane. In addition,
this branch reduces to the RS2 model in the absence of GB
and IG corrections to the bulk and brane gravitational
action. (Please see the first reference in [17].)
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When applying the RS2 brane world to the early uni-
verse cosmology, if we consider single-field inflation
localized on the brane in the extreme slow-roll limit, there
is no scalar zero-mode contribution from the bulk; more-
over, the massive Kaluza-Klein scalar mode projected from
the bulk metric can be neglected since they are too heavy to
be excited during inflation [18,19]. Therefore, the formula
for the power spectrum of the scalar perturbations in
this approximation is the same as that based on GR [see
Eqs. (4.4) and (4.5)]. We assume that this remains valid on
our case.

The scalar perturbations on brane-world inflation in the
extreme slow-roll limit have been investigated in Ref. [19]
(RS2 model), Refs. [20,21] (RS2 model with IG effect) and
Ref. [22] (pure GB brane world). When the GB and IG
corrections are both included, we show that the effect from
the GB correction in an IG brane-world model is to de-
crease the amplitude of the scalar perturbations, and a
similar result is obtained for the IG effect in a GB brane
world. The same effects have been obtained for the pure
RS2 model with either a GB bulk term or an IG brane term
[20,22]. Before concluding, we would like to point out that
the scalar perturbations for a GB brane-world model with a
Dvali-Gabadadze-Porrati action on the brane, i.e., a par-
ticular case of induced gravity and which has been pro-
posed to describe the late-time evolution of the Universe,
has been previously analyzed in Ref. [23]. Here we handle
the most general case by including all kind of curvature
corrections on the brane and in the bulk. In addition, our
generalization is fully in agreement with RS2 model, i.e.,
the brane-world model we consider contained the RS2 kind
of fine-tuning; that is, the brane is flat in the absence of
matter due to a balance between the brane tension, the bulk
cosmological constant and the curvature effects. The later
mentioned model is suitable to describe the early time
evolution of the Universe unlike the first mentioned model.

The outline of the paper is as follows. In Sec. II, we
consider the RS2 kind of action modified by a GB correc-
tion in the 5D bulk action as well as an IG correction on the
brane action, and we review how to obtain the modified
Friedmann equation on the brane. In Sec. III, we solve the
modified Friedmann equation analytically and pick up the
normal branch of the general solutions, i.e., the branch that
reduces to the RS2 model when GB and IG corrections
vanish. In Sec. IV, we calculate the amplitude of the scalar
perturbations of this kind of brane inflation in the extreme
slow-roll limit and then we constrain the model using
WMAP7 data [24]. Finally, in Sec. V we present our
conclusions and discussions.

II. THE MODEL

We consider a 5D brane-world model where the brane
split the bulk into two symmetric pieces. The bulk action
contains a GB term in addition to the usual Hilbert-Einstein
term, while the brane action is described by an IG term, a

brane tension and a Lagrangian for matter. Then the action
of the system is given by [25]

S ¼ 1
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where g�� and h�� are the bulk metric and the brane

metric, respectively, �2
5 is the bulk gravitational constant,

�5ð� 0Þ is the bulk cosmological constant, �ð� 0Þ is the
GB parameter which has the dimension of length square, �
is a dimensionless parameter indicating the strength of the
IG term, and � is the brane tension.
On the one hand, the GB term in Eq. (2.1) is a ghost-free

combination of higher-order curvature tensors, which also
corresponds to the leading quantum corrections in string
theory; moreover, it plays an important role in Chern-
Simons gravity [6–8]. On the other hand, the IG correction
is generated due to the quantum loops of matter fields on
the brane which couple to the bulk gravitons [10–13].
The effective Einstein equation on the brane can be

deduced by two means: (i) solving the bulk and junction
conditions simultaneously, either by using some specific
coordinates [16,28,29] or through a covariant approach
[30–32]; and (ii) choosing an appropriate bulk solution
and imposing the junction condition at the brane. For
clarity and simplicity, we will briefly review in the next
paragraphs the second approach [33].
We consider the static uncharged black hole solution in

5D GB gravity [34–37]:

ds2 ¼ �fðrÞdT2 þ f�1ðrÞdr2 þ r2�ijdx
idxj; (2.2)

where

f ¼ kþ r2
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1þ 4

3
��5 þ 8�
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r4
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A: (2.3)

The parameter ~� is related to the black hole mass. There
are two branches for the black hole solutions. However, we
disregard theþ branch as it is unstable. The reason behind
this instability is that the graviton degree of freedom is a
ghost. In addition, the mass of the black hole is negative in
this branch [34,35].
A few words in relation to the junction conditions on this

kind of model are worthy: the junction conditions are
essentially the same as in GB brane-world gravity without
IG [32,33,38,39]. The presence of an IG term results in a
shift of the total energy momentum tensor of the brane,
which appears in the junction condition. For the bulk black
hole solution (2.3), we impose the junction condition at the
brane and we obtain the effective 4D Friedmann equation
[16,40]:
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where

�þ 2��2 ¼ �5

6
þ C

a4
; (2.5)

and k ¼ 0,�1. The constant C is related to the mass of the
bulk black hole, and it measures the strength of the dark
radiation on the brane that is inversely proportional to a4.
The condition (2.5) results in two possible values for �

�� ¼ 1
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From now on, we will restrict our analysis to the solution
with�þ, because it corresponds to the stable bulk solution
with � sign in Eq. (2.3); moreover, we recover a Hilbert-
Einstein action in the bulk if � ! 0 and therefore the
model we are considering reduces to the RS2 scenario in
the absence of any curvature corrections of the GB and IG
kind. This is very important because one of our main aims
in this paper is to see how the amplitude of the scalar
perturbations on a RS2 model are modified by including
GB and IG terms. For simplicity, from now on we will drop
the subscript þ on �þ.

We are mainly interested in the early inflationary era of
the brane, where the spatial curvature and the dark radia-
tion are quickly washed out. Therefore, from now on
we will consider a spatially flat brane (k ¼ 0) within a
5D anti-de Sitter bulk (C ¼ 0).

By imposing the RS2 kind of fine-tuning, i.e., the effec-
tive cosmological constant on the brane vanishes; in other
words in the absence of matter on the brane the Hubble rate
vanishes, we obtain

�4
5

36
�2 ¼ ��

�
1þ 3

4
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�
2
; (2.7)

which implies that� is negative. For later convenience, we

introduce a new positive variable� ¼ ffiffiffiffiffiffiffiffij�jp
; then Eq. (2.7)

can be rewritten as

�2
5� ¼ 2�ð3� 4��2Þ: (2.8)

Therefore, the parameter�2 is bounded as 0 � �2 < 1=4�
(see also Ref. [41]), as can be then easily deduced by using
Eq. (2.6) (for k ¼ 0 and C ¼ 0) and assuming the natural
requirement of a positive brane tension.

III. THE BRANCHES OF THE
FRIEDMANN EQUATION

In order to proceed further, we need first to solve
the cubic Friedmann equation (2.4). This equation was

previously analyzed in Refs. [16,42]. We will solve this
equation analytically, extending the methodology used in
Ref. [17]. It is important to solve this equation analytically
because it will allow us to pick up the right branch, i.e., the
branch that reduce to a RS2 model in the absence of
curvature corrections of the sort IG and GB, for analyzing
the scalar perturbations on the brane in the extreme slow-
roll limit.
This analysis can be simplified by taking the square root

of both sides of the generalized Friedmann equation:

�
1þ 8

3
�

�
H2 ��2

2

�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ�2

q

¼ �rc

�
�2
4

3
ð�þ �Þ � �H2

�
; (3.1)

where rc � �2
5=2�

2
4. Now we choose theþ sign because it

contains the RS2 solution for � ! 0 and � ! 0, as we will
show later (see also Ref. [43]). In addition, to solve
Eq. (3.1) analytically, it is more convenient to introduce
the dimensionless parameters [17]:

�X ¼ 8
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Then the Friedmann equation (3.1) can be rewritten in a
simpler form:

�X3 þ �X2 þ b �X � �� ¼ 0: (3.5)

Notice that �X is positive and therefore only positive solu-
tions of Eq. (3.5) are physically meaningful.
The number of the real solutions of the cubic equation

(3.5) depend on the sign of the discriminant N [44]:

N ¼ Q3 þ R2; (3.6)
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It is more convenient to factorize the discriminant N as

N ¼ Q3 þ R2 ¼ 1

4
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��1 ¼ � 1

3

�
b� 2

9

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 3bÞ3

q ��
; (3.9)

��2 ¼ � 1

3

�
b� 2

9

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 3bÞ3

q ��
: (3.10)
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If N is positive, there is only one real solution. If N is
negative, all solutions are real, and if N vanishes, all
solutions are real and at least two of them are equal.

The functions ��1 and ��2 are defined in terms of the
parameter b [see Eqs. (3.9) and (3.10) and Fig. 1]. The
signs and values acquired by ��1 and ��2 are very important
as for a given dimensionless parameter �� and for a given
value of b; the sign of the discriminant is fully determined
by these two functions [cf. Eq. (3.8)]. We can then split our
analysis into four cases depending on the sign of N and the
value of b:

(i) If 0 � b < 1=4, ��1 is positive, while ��2 is negative
and vanishes when b ¼ 0. Therefore we have (i)N is
positive when ��1 < ��, where there is a unique real
solution of Eq. (3.5). (ii) N is negative when ��2 <
�� < ��1, allowing for three real solutions of Eq. (3.5).
(iii) N vanishes if �� ¼ ��1 or �� ¼ ��2 ¼ 0. In this
special case, there are three real solutions and at least
two of them are equal.

(ii) If 1=4 � b < 1=3, ��1 and ��2 are negative ( ��1 van-
ishes when b ¼ 1=4). Here (i) N is strictly positive
as long as 0< ��, consequently allowing for a
unique real solution of Eq. (3.5). (ii) N can vanish
iff b ¼ 1=4 and �� ¼ 0. For this fine tuned case,
there are three real solutions where at least two
are equals.

(iii) If b ¼ 1=3, ��1 and ��2 are equal and negative. Then
N is positive and again there is a unique real
solution of Eq. (3.5).

(iv) If 1=3< b, ��1 and ��2 are complex conjugate and
therefore N is positive for any energy density and
there is a unique real solution of the modified
Friedmann equation (3.5).

Note that we are solving the modified Friedmann
equation (3.5) without imposing the generalized fine-
tuning condition à la Randall-Sundrum as imposed by
Eq. (2.8). The constraint (2.8) will be imposed when
calculating the spectrum of the scalar perturbations on
the next section.

We next solve the modified Friedmann equation for the
different cases stated above bearing in mind that �X must be
positive [cf. Eq. (3.2)].

A. Case 1: 0� b < 1
4

In this region ��1 is positive and ��2 is negative ( ��2 can
vanish when b ¼ 0). Furthermore, we can divide the set of
solutions into three different cases depending on the sign of
the discriminant N. After doing a careful analysis of the
cubic Friedmann equation (3.5), the only positive root of
that equation when 0 � b < 1=4 reads (see Fig. 2)
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where the parameters 	 and 
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cosh	 ¼ Rffiffiffiffiffiffiffiffiffiffiffi�Q3
p ; sinh	 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Q3 þ R2
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s
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which gives the constraint 0<	. The dimensionless
parameter �� is always positive [see Eq. (3.4)], and there-
fore there is an upper bound for the angle 
:


max ¼ arccos

� �2þ 9b

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� 3bÞ3p

�
: (3.16)

In fact, in general we have a constraint on the angle for
these set of solutions: 0< 
 � 
max. If the dimensionless
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2

FIG. 1 (color online). This plot shows the behavior of
the dimensionless functions ��1 and ��2 versus b [see
Eqs (3.9) and (3.10)].
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FIG. 2 (color online). This figure shows the positive solution
of the modified Friedmann equation (3.5) for 0 � b < 1=4. More
precisely, we plot �X, essentially the Hubble rate [see Eq. (3.2)],
versus the dimensionless energy density ��. For this plot, we set
b ¼ 1=8 as an example. Notice that the solutions (3.11) and
(3.12) are continuous at �� ¼ ��1 through the solution (3.13).
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energy density �� ¼ ��2 ¼ 0 which is the case iff b ¼ 0, we
obtain the boundary values for �X:

�X ¼ 1

3
½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 3b
p � 1�

��������b¼0
¼ 0: (3.17)

In the very early universe, i.e., at high energy, the
parameter 	 goes to infinity when the energy density gets
very large. On this regime, the Friedmann equation can be
approximated by

H � 1

2

�
�2
5

2�

�1
3
�

1
3: (3.18)

It is worthy to stress that this modified Friedmann equation
is different from the one obtained in (i) standard general
relativity (H � ffiffiffiffi

�
p

), (ii) a RS2 model (H � �) and

(iii) induced gravity (H � ffiffiffiffi
�

p
) [31,45] (on the last two

cases we are referring to the high energy regime). But it
coincides with that of a pure GB brane-world model (see
for example Refs. [22,46]).

We highlight that in general there are three possible
branches for �X, but two of them are negative, and thus
we do not include them in Fig. 2. Before concluding this
subsection we would like to point out that the solutions
(3.11) and (3.12) are continuous at �� ¼ ��1 through the
solution (3.13).

B. Case 2: 1
4 � b < 1

3

In this branch, the function ��1 and ��2 are negative and
��1 vanishes when b ¼ 1=4. Moreover, we can split this
branch into two different cases depending on the sign of the
discriminant N. If the dimensionless energy density 0< ��,
the only positive solution of Eq. (3.5) is

�X ¼ 1

3

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3b

p
cosh

�
	

3

�
� 1

�
; (3.19)

where 	 is defined in Eq. (3.14); consequently, we set
	> 0. The high energy limit of the solution (3.19) also
has the approximate form given in Eq. (3.18).

In addition, for the limiting case of �� ¼ ��1 ¼ 0 where
the parameter b ¼ 1=4, we obtain the boundary solution:

�X ¼ 1

3
½2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 3b
p � 1�

��������b¼1
4

¼ 0: (3.20)

C. Case 3: b¼ 1
3

For this special choice of the parameter b ¼ 1=3, ��1 and
��2 acquire the same negative value. The discriminant is
strictly positive for any given dimensionless energy density
��, and thus there is a unique real solution which reads

�X ¼ 1

3
½ð1þ 27 ��Þ13 � 1�: (3.21)

The high energy approximation in the early universe is the
same shown on the previous cases [see Eq. (3.18)].

D. Case 4: 1
3 < b

When the parameter b is larger than 1=3, the functions
��1 and ��2 become a pair of complex conjugates, and
therefore the discriminant N is strictly positive for any
dimensionless parameter ��; then there is a unique real
solution in this branch which can be written as

�X ¼ 1
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3b� 1
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Q3 þ R2

Q3

s
; (3.23)

with the constraint � > 0. The same high energy ap-
proximation applies to this case in the early universe [see
Eq. (3.18)].

E. Recovering the RS2 solution

We now show that the solution (3.12) has a well-defined
limit when � ! 0, which reduces to the normal branch in
the RS2 model with an IG correction. Furthermore, this
approximation reduces to the RS2 model when we take as
well the limit � ! 0.
The parameters �X, b and �� depend on the GB parameter

� with different power. Therefore, it is convenient to
introduce the following definition when doing the expan-
sion around � ¼ 0 [17]:

�X ¼ f1�; f1 ¼ 8
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H2 þ�2

q
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�� ¼ f4�
2; f4 ¼ 64

9
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�2r2c
þ 32

27

�2
5

�3r3c
ð�þ �Þ; (3.26)

where f1, f2, f3, and f4 do not depend on the value of
the GB parameter �. We notice that if the GB effect
approaches to zero (when � ! 0), the parameter b ! 0
and the dimensionless energy density �� ! 0. Therefore,
here we only analyze the solution (3.12) under this
approximation.
The angle 
 in the solution (3.12) is defined in Eq. (3.15)

and it goes to � when � goes to zero. Then we can do the
following expansion:

sinð�� 
Þ ¼
0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27

4
f22 þ 27f4

s 1
A�þOð�2Þ: (3.27)

Thus, we obtain the relation

SCALAR PERTURBATIONS FROM BRANE-WORLD . . . PHYSICAL REVIEW D 86, 083531 (2012)

083531-5




 � ��
0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27

4
f22 þ 27f4

s 1
A�þOð�2Þ; (3.28)

therefore, we get the expansion

cos

�



3

�
� 1

2
þ 1

2

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

4
f22 þ 9f4

s 1
A�þOð�2Þ: (3.29)

We then substitute the above result into Eq. (3.12) with the
definitions of f1, f2, and f4, and we obtain the expansion
equation

f1� ¼ 1

2

�
�f2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f22 þ 4f4

q �
�þOð�2Þ: (3.30)

We then consider the lowest order expansion of the GB
parameter � in Eq. (3.30), and notice that the parameter
�2 ’ ��5=6 when � ! 0. Finally, we get a well-defined
result in this approximation:

H2 ¼ 1

6

�2
5

�rc
ð�þ �Þ þ 1

2�2r2c

� 1

2�2r2c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

3
�rc½�2

5ð�þ �Þ � �rc�5�
s

; (3.31)

which is the normal branch of the RS2 model with the IG
correction term. Furthermore, if we take the limit � ! 0
(which is the limit when the effect from the IG correction
vanishes) in Eq. (3.31), we obtain

H2 ¼ �4
5�

18
�

�
1þ �

2�

�
þ�5

6
þ �4

5�
2

36
; (3.32)

which is the RS2 model without the GB and IG corrections.
In summary, the solution (3.12) has a well-defined
approximation given by Eq. (3.31) when � ! 0, which
corresponds to the normal branch in the RS2 model with
an IG correction. Besides, it recovers the RS2 model
Eq. (3.32) when we take the limit � ! 0 and � ! 0.

IV. SCALAR PERTURBATIONS ON THE BRANE

In this section we consider single field inflation on the
brane and study the lowest order of the scalar perturbations
in the extreme slow-roll limit. Within this approximation,
we assume there is no additional scalar zero-mode contri-
bution from the bulk while the massive scalar modes from
the bulk are too heavy to be excited during the inflationary
era which is true in RS2 brane-world models [18].
Therefore, the massive Kaluza-Klein scalar mode can be
neglected in the extreme slow-roll inflation. With these
assumptions one can follow the standard procedure to
calculate the power spectrum for the scalar perturbations
[47], and we will follow the procedures for brane inflation
used in Refs. [19,20,22].

Before calculating the power spectrum of the scalar
perturbations, we need first to find out the 4D effective

gravitational constant on the brane, which is an essential
ingredient when calculating the scalar perturbations.
Therefore, we focus on the generalized RS2 solutions
modified by GB and IG effects and impose the generalized
fine-tuning condition given in Eq. (2.8).
We note that the solutions of the generalized Friedmann

equation we discussed in the previous section [see
Eqs. (3.11), (3.12), (3.19), (3.21), and (3.22)] are the real
solution (A1) of the general cubic equation given in
Appendix A. It is more convenient to analyze the solution
(A1) in the low energy limit (when � ! 0) to find the 4D
effective gravitational constant.
In the low energy region when � ! 0, we first impose

the RS2 kind of fine-tuning condition expressed by
Eq. (2.8) on the dimensionless energy density (3.4), and
then do the series expansion of the solution Eq. (A1)
around � ¼ 0; then we obtain

8

3

�

�rc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ�2

q
� 8

3

��

�rc
þ 8��2

5

9ð1þ 2�rc�þ 4��2Þ�

þOð�2Þ: (4.1)

By squaring both sides of the above expression, we
obtain

H2 � ��2
5

3ð1þ 2�rc�þ 4��2Þ�þOð�2Þ: (4.2)

We notice that this approximation recovers standard GR
without an ‘‘extra’’ cosmological constant on the brane as
should be for RS2 inspired models. The coefficient in front
of the energy density defines the 4D gravitational constant
where we remind that the crossover scale, rc, is defined as
rc � �2

5=2�
2
4. Therefore, we find the relation between the

effective gravitational constant on the brane �2
4 and the

bulk gravitational constant �2
5:

�2
4 ¼

�
1� �

1þ 4��2

�
��2

5: (4.3)

The relation between �2
4 and �

2
5 implies (i) � is bounded;

0 � � < 1, (ii) � must be strictly positive, i.e., �> 0. We
can take the limit � ! 0 and � ! 0 on Eq. (4.3), and we
find that the approximated result is consistent with
Ref. [20] (� ! 0, pure IG case), Ref. [22] (� ! 0 pure
GB case) and Ref. [2] (� ! 0, � ! 0, i.e., RS2 case).
On the other hand, this result is different from the one in
Refs. [16,48]. That is because the authors in Refs. [16,48]
considered a specific GB brane-world model (� ¼ 1) with-
out imposing the RS2 kind of fine-tuning condition given
by Eq. (2.8).
Now, we proceed to calculate the power spectrum of

the scalar perturbations. The normalized amplitude of the
scalar perturbations for a given mode that reenter the
horizon after inflation is given by [47]
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A2
S ¼ 4

25
h
2i ¼ H4

25�2 _�2
: (4.4)

In addition, in the extreme slow-roll inflation,
_� ’ �V0ð�Þ=3H; we can therefore substitute this approxi-
mation into the amplitude of the scalar perturbations
Eq. (4.4), resulting in

A2
S ¼

9

25�2

H6

V02 ; (4.5)

which is independent of the gravitational field equation [49].
In order to compare conveniently with the standard 4D
general relativity results, we rewrite Eq. (4.5) as

A2
S ¼ �6

4

75�2

�
V3

V02

�
G2

�;� ¼ ½A2
S�4DG2

�;�; (4.6)

where ½A2
S�4D is the standard 4D result and the correction

term G2
�;� is defined as

G2
�;� ¼ 27H6

V3�6
4

: (4.7)

In the extreme slow-roll limit, the energy density of the
inflaton � � V. We then calculate the potential V in this
approximation using Eq. (3.1) (with þ sign) as well as the
RS2 kind of fine-tuning condition Eq. (2.8) and the 4D
effective gravitational constant defined in Eq. (4.3).
Consequently, we obtain [50]

V ¼ 1

�2
5

��
6þ 16�

�
H2 ��2

2

�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ�2

q

þ 3�H2 1þ 4��2

�ð1� �Þ � 2�ð3� 4��2Þ
�
: (4.8)

Then we substitute it into the expression (4.7) and we use
as well Eq. (4.3). Finally, we obtain the correction term to
the standard 4D result (see also Fig. 3):

G2
�;�ðxÞ ¼

2
4 3ð1þ �Þx2
2ð1� �Þð3� �þ 2�x2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
þ 3�x2ð1þ �Þ þ 2ð1� �Þð�� 3Þ

3
53

; (4.9)

where x ¼ H=� and � ¼ 4��2. This result is consistent
with Ref. [20] when � ! 0 and consistent with Ref. [22]
when � ! 0.

In Figs. 3(a) and 3(b) the dashed-grey lines correspond
to the amplitude of the RS2 model without GB and IG
corrections, which is monotonically increasing with re-
spect to the dimensionless energy scale H=�. If the GB
and IG corrections are both included, we see that the effect
from the GB correction in an IG brane-world model is to
decrease the amplitude of the scalar perturbations, and a
similar result is obtained for the IG effect in a GB brane
world (cf. Fig. 3). The same effects have been obtained for
the RS2 model with either GB [22] or IG [20] effect.

In the very low energy limit, i.e., the Hubble parameter
H 	 � or x ! 0, the correction to the standard 4D result
corresponds to G2

�;� � 1. Therefore, the amplitude of the

scalar perturbations recovers the 4D standard result.
During the intermediate energy scale, the amplitude of
the scalar perturbations is enhanced with respect to the
energy scale; while in the very high energy regime, i.e., the
Hubble parameter � 	 H or x ! 1, we obtain the fol-
lowing approximation:

G2
�;� � 27

64

�
1þ �

�ð1� �Þ
�
3 1

x3
; (4.10)
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FIG. 3 (color online). The amplitude of the scalar perturbations normalized to the standard 4D results in the extreme slow-roll
limit [see Eqs. (4.6) and (4.9)] against the scale of inflation on the brane normalized to the square root of the absolute value of the
effective cosmological constant in the bulk. In figure (a), as an example, we have fixed the IG parameter, more precisely, � ¼ 0:1, and
changed the GB parameter � as shown on the plot. In figure (b), as an example we have fixed the GB parameter, more precisely,
� ¼ 4��2 ¼ 10�3, and changed the IG parameter � as shown on the plot. We can see that the effect of a GB term in the bulk action of
an IG brane-world model is to decrease the amplitude of the scalar perturbations. Similarly, we can see that the effect of IG on a GB
brane-world model is to decrease the amplitude of the scalar perturbations. The same effect applies for the RS2 model under the
presence of a GB bulk term and/or an IG brane term [20,22].
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which means that in the high energy limit the perturbation
will be highly suppressed by the GB effect.

Finally, we impose observational constraints by using
the latest WMAP7 data [24], for the power spectrum of the
scalar perturbations: Ps (normalized amplitude of the sca-
lar perturbation A2

s � 4=25Ps). More precisely, we impose
Ps ¼ 2:45
 10�9 at the pivot scale k0 ¼ 0:002 Mpc�1

(Fig. 4 shows a constraint of the potential). Notice that at
this large scale we expect the extreme slow-roll approxi-
mation to be valid. Indeed, these are the modes that exit
the horizon at the very early time, deep enough in the
inflationary era.

Our constraints can be extended by considering the
measure of the spectral index ns at the same pivot scale:

ns � 1 � d lnA2
s

d lnk
; (4.11)

which can be calculated using the first two slow-roll
parameters in the slow-roll approximation:

ns � 1� 6�b þ 2	b; (4.12)

where the slow-roll parameters �b and 	b are defined by

�b � � _H

H2
¼ 1

2�2
4

�
V 0

V

�
2
C1
�;�ðxÞ; (4.13)

	b � V00

3H2
¼ 1

�2
4

�
V 00

V

�
C2
�;�ðxÞ; (4.14)

where C1
�;�ðxÞ and C2

�;�ðxÞ are the corrections to the stan-

dard 4D results given in Appendix B (see also Fig. 5).
The corrections to the slow-roll parameters are given in
Eqs. (B1) and (B2). Those corrections depend on the GB
and IG effects through the dimensionless parameters � and
�. In addition, as can be seen from Eqs. (B1) and (B2), the
corrections C1

�;� and C
2
�;� depend also on the ratio between

the potential and the brane tension V=�, on the one hand,
and on the dimensionless rescaled and shifted Hubble
parameter �X of the normal branch, on the other hand.
Nevertheless, V=� and �X can be written as shown in
Eq. (B7) and (B8). Therefore, in summery the corrections
to the slow-roll parameters depend exclusively on �, �,
and x. Notice that all the equations given in Appendix B
already include the RS2 kind of fine-tuning condition (2.8)
and the relation in Eq. (4.3).
We see that, from Fig. 5, the slow-roll parameters are

strongly enhanced in the very high energy limit relative to
the standard 4D results. Therefore, the slow-roll conditions
�b 	 1, 	b 	 1 cease to be valid at the very high energy
limit for a given potential due to the GB effect. Since
WMAP7 data suggest a nearly scale-invariant power spec-
trum at the pivot scale [24] and we expect the extreme
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FIG. 4 (color online). We constrain the inflaton potential by means of the amplitude of the scalar perturbations as measured by
WMAP7, i.e., Ps ¼ 2:45
 10�9 at the pivot scale k0 ¼ 0:002 Mpc�1. More precisely, in plot (a) we show log10ð�6

4V
3=V 02Þ versus the

scale of inflation, x ¼ H=�, and the dimensionless GB parameter, �, for a fixed value of the dimensionless IG parameter, �, such that
� ¼ 0:1; in plot (b) we show log10ð�6

4V
3=V02Þ versus the scale of inflation, x ¼ H=�, and the dimensionless IG parameter, �, for a

fixed value of the dimensionless GB parameter, �, such that � ¼ 10�3.
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FIG. 5 (color online). The corrections to the standard 4D slow-roll parameters �4D and 	4D [see Eqs. (4.13) and (4.14)] versus the
dimensionless energy scale x ¼ H=�. In figures (a) and (b), we have fixed the IG parameter, � ¼ 0:1, and changed the GB parameter
� as shown on the plots; in figures (c) and (d), we have fixed the GB parameter, � ¼ 10�3, and changed the IG parameter � as shown
on the plots.
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slow-roll approximation to be fulfilled at this large scale,
the slow-roll conditions should be satisfied as well.

Furthermore, we can deduce the energy scale where
inflation take place, i.e., we can obtain the range of the
Hubble parameter and the inflaton potential. To do this we
use the equation (B8) and for simplicity we fix the value of
� as shown in Figs. 6–8. Following this procedure we can
as well check the validity of the slow-roll conditions,

which is indeed the case as shown on the right hand side
plots of Figs. 7 and 8.
For the slow-roll parameter �b on these plots, since the

power spectrum of the scalar perturbation (4.6) is con-
strained by the WMAP7 data, i.e., Ps ¼ 2:45
 10�9 at
the pivot scale k0 ¼ 0:002 Mpc�1, we can rewrite the
standard 4D slow-roll parameter �4D � 1=2�2

4 � ðV 0=VÞ2
as follows combining the amplitude of the scalar perturba-
tion Eq. (4.6) with the conditions Eqs. (2.8) and (4.3):

�4D ¼ ð�4�Þ2
12�2Ps

ð1� �Þ
�
3� �

1þ �

��
V

�

�
G2

�;�ðxÞ; (4.15)

where the ratio V=� can also be expressed as a function of
the dimensionless energy scale x through Eq. (B8). Thus
from Eqs. (4.13) and (4.15), we can rewrite the slow-roll
parameter �b in terms of the dimensionless energy scale x
with three unknown parameters �, �, and �, i.e., �b ¼
�4D � C1

�;�ðxÞ.
From Figs. 7 and 8 we see that the slow-roll parameter

�b is very tiny for different values of �, �, and x as shown
on these plots, which are consistent with the extreme slow-
roll approximation, even though the energy scale of the

potential V1=4 can range widely for several energy scales.

b
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FIG. 8 (color online). (a) The energy scale of the potential V during extreme slow-roll inflation versus the dimensionless energy scale
x � H=� and (b) the corresponding slow-roll parameter �b. Here we have fixed the parameter �4� ¼ 10�10 as an example and the GB
parameter, � ¼ 10�3, and changed the IG parameter � as shown on the plots. The brane tension can then be easily fixed through
Eqs. (2.8) and (4.3).
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FIG. 6 (color online). The Hubble parameter versus the
dimensionless energy scale x � H=�. Here we have fixed the
parameter �4� ¼ 10�10 as an example.
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FIG. 7 (color online). (a) The energy scale of the potential V during extreme slow-roll inflation versus the dimensionless energy scale
x � H=� and (b) the corresponding slow-roll parameter �b. Here we have fixed the parameter �4� ¼ 10�10 as an example and the IG
parameter, � ¼ 0:1, and changed the GB parameter � as shown on the plots. The brane tension can then be easily fixed through
Eqs. (2.8) and (4.3).
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In addition, both the potential of the inflaton V and the
slow-roll parameter �b are more sensitive to the GB effect
� than the IG strength �.

V. SUMMARY

Brane inflation provides an interesting scenario for the
early universe allowing us to explore the cosmological
properties of higher-dimensional models. At such high
energy scales, the non-conventional brane-world effects
become dominant. Therefore, by investigating the scalar
perturbations during inflation, we can see the modification
from the brane effects relative to the standard general
relativistic result. Here, we focus on the RS2-type brane
world modified by a GB correction term in the bulk as well
as the strength of the IG effect on the brane. In order to
compare with the RS2model, we choose the normal branch
for the cosmic evolution to compute the amplitude of the
scalar perturbations, which reduces to the RS2 model in the
absence of GB and IG corrections, in the slow-roll limit.

In such a brane-world inflationary model and in the
extreme slow-roll limit, we assume that there is no scalar
zero-mode contribution from the bulk, and moreover the
massive scalar modes are too heavy to be excited during
inflation [18,20,22]. We can therefore safely disregard any
extra scalar degree of freedom from the bulk and we can
simply take into account the standard GR result for the
amplitude of single field scalar perturbations. Along this
line of thought, in this paper we have calculated the cor-
rections to the standard GR results for the scalar perturba-
tions in a brane-world model with the curvature effects
mentioned earlier. The amplitude of the scalar perturba-
tions in the RS2 model is monotonically increasing with
respect to the energy scale. However, unlike the RS2 case
the effect from the GB correction in an IG brane-world
model is to decrease the amplitude of the scalar perturba-
tions, and a similar result is obtained for the IG effect in a
GB brane world. Furthermore, in the high energy limit the
perturbation will be highly suppressed by the GB effect.

Finally, we constrain the model using WMAP7 data.
More precisely, we use the value of the power spectrum
of the scalar perturbations Ps ¼ 2:45
 10�9 at a given
pivot scale k0 ¼ 0:002 Mpc�1. Our results correspond to
(i) a constraint of the potential as shown in Fig. 4,
(ii) deduction of the scale of inflation in terms of the
dimensionless energy scale as shown in Figs. 7 and 8,
and (iii) we check that our results are in full agreement
with the extreme slow-roll approximation we used (see
Figs. 7 and 8).
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APPENDIX A: SOLUTIONS OF THE
FRIEDMANN EQUATION

The general solutions of the cubic equation X3 þ
a2X

2 þ a1X þ a0 ¼ 0 are [44]

X1 ¼ S1 þ S2 � a2
3
; (A1)

X2 ¼ � 1

2
ðS1 þ S2Þ � a2

3
þ i

ffiffiffi
3

p
2

ðS1 � S2Þ; (A2)

X3 ¼ � 1

2
ðS1 þ S2Þ � a2

3
� i

ffiffiffi
3

p
2

ðS1 � S2Þ; (A3)

where

S1 ¼ ½Rþ ðQ3 þ R2Þ12�13; (A4)

S2 ¼ ½R� ðQ3 þ R2Þ12�13; (A5)

with the definitions

R ¼ 1

6
ða1a2 � 3a0Þ � 1

27
a32; (A6)

and

Q ¼ 1

3
a1 � 1

9
a22: (A7)

And the discriminant N ¼ Q3 þ R2 determines the
number of the real solutions [44]:
(i) N > 0: one real root and a pair of complex

conjugate,
(ii) N ¼ 0: all roots real and at least two are equal,
(iii) N < 0: all roots real (irreducible case).

APPENDIX B: SLOW-ROLL PARAMETERS

The explicit form of the corrections C1
�;�ðxÞ and C2

�;�ðxÞ
to the standard 4D slow-roll parameters are shown below:
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�;�ðxÞ¼8
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(B1)

C2
�;�ðxÞ ¼ 2

3
ð1� �Þ

�
3� �

1þ �

��
V

�

���
3

4

�
�

1� �

�



�
1þ �

�

�
�X

�
2 � 1

��1
; (B2)

where the dimensionless parameter �X is related to the
Hubble parameter of the normal branch as discussed in
Sec. III, and the dimensionless parameter b and energy
density �� can be rewritten as

b ¼ 8

3

�
1� �

�

�
2 �ð1� �Þ
ð1þ �Þ2 ; (B3)

�� ¼ 16

9

�
1� �

�

�
2
�

�

1þ �

�
2 þ 32

27

�
1� �

�

�
3


 �2ð3� �Þ
ð1þ �Þ3

�
1þ V

�

�
: (B4)

Notice that we have substituted the RS2 kind of fine-
tuning condition Eq. (2.8) and the relation between �4

and �5 Eq. (4.3) in the above results Eqs. (B1)–(B4).
Moreover, the corrections to the standard 4D results
Eqs. (B1) and (B2) reduce to the RS2 model in the
absence of GB and IG effects [19], i.e., when � ! 0
and � ! 0:

C1
�;� ! C1

RS ¼ 4�ð�þ VÞ
ð2�þ VÞ2 ; (B5)

C2
�;� ! C2

RS ¼ 2�

2�þ V
: (B6)

In addition, the ratio V=� and the dimensionless
parameter �X can be further expressed in terms of the
dimensionless energy scale x:

�X ¼ 4

3

�
1� �

�

��
�

1þ �

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
; (B7)

V

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p �
1þ 2�

3� �
x2
�
þ 2

3
x2
�

�

1� �

��
1þ �

3� �

�
� 1:

(B8)

In the very low energy limit, i.e., H 	 � or x ! 0, the
corrections C1

�;�ðxÞ � 1 and C2
�;�ðxÞ � 1, and therefore the

slow-roll parameters �b and 	b recover the standard 4D
results at very low energy limit. By contrast, in the very
high energy regime, i.e.,� 	 H or x ! 1, the corrections
C1
�;�ðxÞ and C2

�;�ðxÞ have the following approximation:

C1
�;�ðxÞ � 8

9
ð1� �Þ

�
�

1þ �

�
x; (B9)

C2
�;�ðxÞ � 8

3
ð1� �Þ

�
�

1þ �

�
x: (B10)

From Eqs. (B9) and (B10) we see that the corrections are
monotonically enhanced at a very high energy limit due to
the GB effect even when the effect is tiny.
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