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In this work we propose an alternative scheme for an emergent universe scenario where the universe is

initially in a static state supported by a scalar field located in a false vacuum. The universe begins to evolve

when, by quantum tunneling, the scalar field decays into a state of true vacuum. The emergent universe

models are interesting since they provide specific examples of nonsingular inflationary universes.
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I. INTRODUCTION

Cosmological inflation has become an integral part of
the standard model of the universe. Apart from being
capable of removing the shortcomings of the standard
cosmology, it gives important clues for large scale structure
formation. The scheme of inflation [1–4] (see Ref. [5] for a
review) is based on the idea that there was an early phase in
which the universe evolved through accelerated expansion
in a short period of time at high energy scales. During this
phase, the universe was dominated by the potential Vð�Þ of
a scalar field �, which is called the inflaton.

Singularity theorems have been devised that apply in
the inflationary context, showing that the universe neces-
sarily had a beginning (according to classical and semi-
classical theory) [6–10]. In other words, according to these
theorems, the quantum gravity era cannot be avoided in the
past even if inflation takes place. However, recently, mod-
els that escape this conclusion have been studied in
Refs. [11–18]. These models do not satisfy the geometrical
assumptions of these theorems. Specifically, the theorems
assume that either (i) the universe has open space sections,
implying k ¼ 0 or�1, or (ii) the Hubble expansion rate H
is bounded away from zero in the past, H > 0.

In particular, Refs. [11–18] consider closed models in
which k ¼ þ1 and H can become zero, so that both
assumptions (i) and (ii) of the inflationary singularity
theorems are violated. In these models the universe is
initially in a past eternal classical Einstein static (ES) state
which eventually evolves into a subsequent inflationary
phase. Such models, called emergent universe (EU), are
appealing since they provide specific examples of non-
singular (geodesically complete) inflationary universes.

Normally in the emergent universe scenario, the uni-
verse is positively curved and initially it is in a past eternal
classical Einstein static state which eventually evolves into
a subsequent inflationary phase, see Refs. [11–18].

For example, in the original scheme [11,12], it is as-
sumed that the universe is dominated by a scalar field
(inflaton) � with a scalar potential Vð�Þ that approach a

constant V0 as � ! �1 and monotonically rise once the
scalar field exceeds a certain value �0, see Fig. 1.
During the past-eternal static regime it is assumed that

the scalar field is rolling on the asymptotically flat part of
the scalar potential with a constant velocity, providing the
conditions for a static universe. But once the scalar field
exceeds some value, the scalar potential slowly droops
from its original value. The overall effect of this is to
distort the equilibrium behavior breaking the static solu-
tion. If the potential has a suitable form in this region,
slow-roll inflation will occur, thereby providing a graceful
entrance to early universe inflation.
This scheme for an emergent universe has been used not

only on models based on general relativity [11,12], but also
on models where nonperturbative quantum corrections of
the Einstein field equations are considered [13,17,18], in
the context of a scalar tensor theory of gravity [19,20] and
recently in the framework of the so-called two measures
field theories [21–24].
Another possibility for the emergent universe scenario is

to consider models in which the scale factor asymptotically
tends to a constant in the past [14,15,25–30].
We can note that both schemes for an emergent universe

are not truly static during the static regime. For instance, in
the first scheme during the static regime the scalar field is
rolling on the flat part of its potential. On the other hand,
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FIG. 1 (color online). Schematic representation of a potential
for a standard emergent universe scenario.*plabrana@ubiobio.cl

PHYSICAL REVIEW D 86, 083524 (2012)

1550-7998=2012=86(8)=083524(9) 083524-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.86.083524


for the second scheme the scale factor is only asymptoti-
cally static.

In this paper we propose an alternative scheme for an
emergent universe scenario, where the universe is initially
in a truly static state. This state is supported by a scalar
field which is located in a false vacuum (� ¼ �F), see
Fig. 2. The universe begins to evolve when, by quantum
tunneling, the scalar field decays into a state of true vac-
uum. Then, a small bubble of a new phase of field value
�W can form, and expand as it converts volume from high
to low vacuum energy and feeds the liberated energy into
the kinetic energy of the bubble wall. This process was first
studied by Coleman and De Luccia in Refs. [31,32].

Inside the bubble, spacelike surfaces of constant � are
homogeneous surfaces of constant negative curvature. One
way of describing this situation is to say that the interior of
the bubble always contains an open Friedmann-Robertson-
Walker universe [32]. If the potential has a suitable form,
inflation and reheating may occur in the interior of the
bubble as the field rolls from �W to the true minimum at
�T , in a similar way to what happens in models of open
inflationary universes, see for example Refs. [33–37].

The advantage of this scheme (and of the emergent
universe in general), over the eternal inflation scheme is
that it corresponds to a realization of a singularity-free
inflationary universe. In fact, eternal inflation is usually
future eternal but it is not past eternal, because in general
space-time that allows for inflation to be future eternal,
cannot be past null complete [6–10]. On the other hand,
emergent universes are geodesically complete.

Notice that in our scheme for an emergent universe, the
metastable state which supports the initial static universe
could exist only a finite amount of time. In our scheme of
emergent universe, the principal point is not that the uni-
verse could have existed an infinite period of time, but that

in our model the universe is nonsingular because the
background where the bubble materializes is geodesically
complete. This implies that we have to consider the prob-
lem of the initial conditions for a static universe. With
respect to this point, there are very interesting possibilities
discussed for example in the early works on EU, see
Ref. [12].
One of these options is to explore the possibility of an

emergent universe scenario within a string cosmology
context, where it has been shown that the Einstein static
universe is one of only two asymptotic solutions of the
Ramond-Ramond sector of superstring cosmology [38].
Another possibility is that the initial Einstein static

universe is created from nothing [39,40]. With respect to
this, recently the possibility of a static universe created
from nothing has been discussed by Mithani and Vilenkin
in Ref. [41], where it is shown an explicit example.
The study of the Einstein static (ES) solution as a

preferred initial state for our universe have been considered
in the past, where it has been proposed that entropy con-
siderations favor the ES state as the initial state for our
universe, see Refs. [42,43].
In this paper we consider a simplified version of the

emergent universe by tunneling, where the focus is on
studying the process of creation and evolution of a bubble
of true vacuum in the background of an ES universe.
This is motivated because we are mainly interested in the

study of new ways of leaving the static period and begin-
ning the inflationary regime in the context of emergent
universe models.
In particular, in this paper we consider an inflaton po-

tential similar to Fig. 3 and study the process of tunneling
of the scalar field from the false vacuum �F to the true
vacuum �T and the consequent creation and evolution of a
bubble of true vacuum in the background of an ES
universe.
The simplified model studied here contains the essential

elements of the scheme we want to present (EU by tunnel-
ing), so we postpone the detailed study of the inflationary
period, which occurs after the tunneling, for future work.
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FIG. 2 (color online). A double-well inflationary potential
Vð�Þ. In the graph, some relevant values are indicated. They
are the false vacuum VF ¼ Vð�FÞ from which the tunneling
begins, VW ¼ Vð�WÞ where the tunneling stops and where the
inflationary era begins, while VT ¼ Vð�TÞ denote the true vac-
uum energy.
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FIG. 3 (color online). Potential with a false and true vacuum.
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Nevertheless, given the similarities, we expect that the
behavior inside the bubble of the nonsimplified version
of the EU by tunneling will be similar to the models of
single-field open inflation. Then, if inflation inside the
bubble is long, the universe will be almost exactly flat, see
Refs. [33–37,44–53]. The density perturbations arise in
these scheme in the usual way by the quantum fluctuation
of the scalar field (inflaton) as the field slow-rolls to the true
minimum. With respect to this, the general formula for the
power spectrum for the single-field open inflationwas given
in Refs. [54,55]. Recently, in the context of the string land-
scape, the contribution to the cosmic microwave back-
ground radiation anisotropies of the perturbation in the
open inflation scenario was studied in Ref. [56]. The de-
tailed study of these topics is beyond the scope of this work,
but we expect to return to these points in the near future.

The paper is organized as follows. In Sec. II we study an
Einstein static universe supported by a scalar field located
in a false vacuum. In Sec. III we study the tunneling
process of the scalar field from the false vacuum to the
true vacuum and the consequent creation of a bubble of
true vacuum in the background of Einstein static universe.
In Sec. IV we study the evolution of the bubble after its
materialization. In Sec. V we summarize our results.

II. STATIC UNIVERSE BACKGROUND

Based on the standard emergent universe scenario, we
consider that the universe is positively curved and it is
initially in a past eternal classical Einstein static state. The
matter of the universe is modeled by a standard perfect
fluid P ¼ ð�� 1Þ� and a scalar field (inflaton) with
energy density �� ¼ 1

2 ð@t�Þ2 þ Vð�Þ and pressure P� ¼
1
2 ð@t�Þ2 � Vð�Þ. The scalar field potential Vð�Þ is de-

picted in Fig. 3. The global minimum of Vð�Þ is tiny and
positive, at a field value �T , but there is also a local false
minimum at � ¼ �F.

We have considered that the early universe is dominated
by two fluids because in our scheme of the EU scenario,
during the static regime the inflaton remains static at the
false vacuum, in contrast to standard EU models where the
scalar field rolls on the asymptotically flat part of the scalar
potential. Then, in order to obtain a static universe we
need to have another type of matter besides the scalar field.
For this reason we have included a standard perfect fluid.
For simplicity we are going to consider that there are no
interactions between the standard perfect fluid and the
scalar field.

The metric for the static state is given by the closed
Friedmann-Robertson-Walker metric:

ds2 ¼ dt2 � aðtÞ2
�

dr2

1� r2

R2

þ r2ðd�2 þ sin2�d�2Þ
�
; (1)

where aðtÞ is the scale factor, t represents the cosmic time,
and the constant R> 0. We have explicitly written R in the

metric in order to make more clear the effects of the
curvature on the bubble process (probability of creation
and propagation of the bubble).
Given that there are no interactions between the standard

fluid and the scalar field, they separately obey energy
conservation and Klein Gordon equations,

@t�þ 3�H� ¼ 0; (2)

@2t �þ 3H@t� ¼ �@Vð�Þ
@�

; (3)

where H ¼ @ta=a.
The Friedmann and the Raychaudhuri field equations

become

H2 ¼ 8�G

3

�
�þ 1

2
ð@t�Þ2 þ Vð�Þ

�
� 1

R2a2
; (4)

@2t a ¼ � 8�G

3
a

��
3

2
�� 1

�
�þ _�2 � Vð�Þ

�
: (5)

The static universe is characterized by the conditions
a ¼ a0 ¼ Cte, @ta0 ¼ @2t a0 ¼ 0, and � ¼ �F ¼ Cte,
Vð�FÞ ¼ VF corresponding to the false vacuum.
From Eqs. (2) to (5), the static solution for a universe

dominated by a scalar field placed in a false vacuum and a
standard perfect fluid are obtained if the following con-
ditions are met

�0 ¼ 1

4�G

1

�R2a20
; (6)

VF ¼
�
3

2
�� 1

�
�0; (7)

where �0 is energy density of the perfect fluid present in
the static universe. Note that � > 2=3 in order to have a
positive scalar potential.
By integrating Eq. (2) we obtain

� ¼ A

a3�
; (8)

where A is an integration constant. By using this result, we
can rewrite the conditions for a static universe as follows

A ¼ 1

4�G

a3��2
0

�R2
; (9)

VF ¼
�
3

2
�� 1

�
1

4�G

1

�R2a20
: (10)

In a purely classical field theory if the universe is static
and supported by the scalar field located at the false
vacuum VF, then the universe remains static forever.
Quantum mechanics makes things more interesting be-
cause the field can tunnel through the barrier and by this
process create a small bubble where the field value is �T .
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Depending on the background where the bubble material-
izes, the bubble could expanded or collapsed [57,58].

III. BUBBLE NUCLEATION

In this section we study the tunneling process of the
scalar field from the false vacuum to the true vacuum and
the consequent creation of a bubble of true vacuum in the
background of Einstein static universe.

Given that in our case the geometry of the background
corresponds to an Einstein static universe and not a de
Sitter space, we proceed following the scheme devel-
oped in Refs. [57,59], instead of the usual semiclassical
calculation of the nucleation rate based on instanton
methods [32].

In particular, we will consider the nucleation of a spheri-
cal bubble of true vacuum VT within the false vacuum VF.
We will assume that the layer which separates the two
phases (the wall) is of negligible thickness compared to
the size of the bubble (the usual thin-wall approximation).
The energy budget of the bubble consists of latent heat (the
difference between the energy densities of the two phases)
and surface tension.

In order to eliminate the problem of predicting the
reaction of the geometry to an essentially acausal quantum
jump, we neglect during this computation the gravitational
backreaction of the bubble onto the space-time geometry.

The gravitational backreaction of the bubble will be
considered in the next chapter when we study the evolution
of the bubble after its materialization.

In our case the shell trajectory follows from the action
(see Refs. [59,60])

S ¼
Z

dyf2�� �a40½�� cosð�Þ sinð�Þ�

� 4�� �a30sin
2ð�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �02

q
g; (11)

where we have denoted the coordinate radius of the shell as
�, and we have written the static (a ¼ a0 ¼ Cte) version
of the metric Eq. (1) as

ds2 ¼ �a20ðdy2 � d�2 � sin2ð�Þd�2Þ; (12)

with r
R ¼ sinð�Þ, �a0 ¼ Ra0, dt ¼ �a0dy and prime means

derivatives respect to y.
In the action (11), � and � denote, respectively, the

latent heat and the surface energy density (surface tension)
of the shell.

The action (11) describes the classical trajectory of the
shell after the tunneling. This trajectory emanates from a
classical turning point, where the canonical momentum

P ¼ @S

@�0 ¼ 4�� �a30�
0 sin2ð�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �02p ; (13)

vanishes [59]. In order to consider tunneling, we evolve
this solution back to the turning point, and then try to

shrink the bubble to zero size along a complex y contour,
see Refs. [57,59]. For each solution, the semiclassical
tunneling rate is determined by the imaginary part of its
action, see Ref. [59]:

� � e�2Im½S�: (14)

From the action (11) we found the equation of motion

sin2ð�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �02p ¼ � �a0

2�
½�� cosð�Þ sinð�Þ�: (15)

The action (11) can be put in a useful form by using
Eq. (15), and changing variables to �:

S ¼
Z

d�
4�

3
�a40sin

2ð�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
3½�� cosð�Þ sinð�Þ�

2sin2ð�Þ
�
2 � �r20

s
;

(16)

where �r0 ¼ r0
R and r0 ¼ 3�

�a0
is the radio of nucleation of the

bubble when the space is flat (R ! 1Þ and static (i.e., when
the space is Minkowsky).
The nucleation radius �� (i.e., the coordinate radius of the

bubble at the classical turning point), is a solution to the
condition P ¼ 0. Then from Eq. (13) we obtain

��� cosð ��Þ sinð ��Þ
sin2ð ��Þ ¼ 2�

� �a0
: (17)

The action (11) has an imaginary part coming from
the part of the trajectory 0<�< ��, when the bubble is
tunneling:

Im ½S� ¼ 4�

3
�a40

Z ��

0
d�sin2ð�Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�r20 �

�
3½�� cosð�Þ sinð�Þ�

2sin2ð�Þ
�
2

s
: (18)

Expanding (18) at first nonzero contribution in
	 ¼ ðr0=RÞ2 we find

Im ½S� ¼ 27�4�

4�3

�
1� 1

2
	2

�
: (19)

This result is in agreement with the expansion obtained
in Ref. [61]. Then, the nucleation rate is

� � e�2ImS � exp

�
� 27�4�

2�3

�
1� 9�2

2�3a20R
2

��
: (20)

We can note that the probability of the bubble nucleation
is enhanced by the effect of the curvature of the closed
static universe background.

IV. EVOLUTION OF THE BUBBLE

In this section we study the evolution of the bubble after
the process of tunneling. During this study we are going to
consider the gravitational backreaction of the bubble. We
follow the approach used in Ref. [58] where it is assumed
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that the bubble wall separates space-time into two parts,
described by different metrics and containing different
kinds of matter. The bubble wall is a timelike, spherically
symmetric hypersurface �, the interior of the bubble is
described by a de Sitter space-time and the exterior by the
static universe discussed in Sec. II. The Israel junction
conditions [62] are implemented in order to join these
two manifolds along their common boundary �. The evo-
lution of the bubble wall is determined by implementing
these conditions.

We will follow the scheme and notation of Fischler et al.
[58]. Then, Latin and Greek indices denote 3-dimensional
objects defined on the shell and 4-dimensional quantities,
respectively. The projectors are e
a ¼ @x


@ya and the semi-

colon is shorthand for the covariant derivative. Unit as
such that 8�G ¼ 1.

In particular, the exterior of the bubble is described by
the metric Eq. (1) and the equations (2)–(5), previously
discussed in Sec. II. At the end, the static solution for these
equations will be assumed. The interior of the bubble will
be described by the metric of the de Sitter space-time in its
open foliation, see Ref. [32]

ds2 ¼ dT2 � b2ðTÞ
�

dz2

1þ z2
þ z2d�2

�
; (21)

where the scale factor satisfies�
db

dT

�
2 ¼

�
VT

3

�
b2ðTÞ þ 1: (22)

These two regions are separated by the bubble wall �,
which will be assumed to be a thin-shell and spherically
symmetric. Then, the intrinsic metric on the shell is [63]

ds2j� ¼ d�2 � B2ð�Þd�2; (23)

where � is the shell proper time.
Now we proceed to impose the Israel conditions in order

to joint the manifolds along their common boundary �.
The first of Israel’s conditions impose that the metric
induced on the shell from the bulk 4-metrics on either
side should match, and be equal to the 3-metric on the
shell. Then by looking from the outside to the bubble-shell
we can parametrize the coordinates r ¼ xð�Þ and t ¼ tð�Þ,
obtaining the following match conditions, see Ref. [58]

aðtÞx ¼ Bð�Þ;
�
dt

d�

�
2 ¼ 1þ aðtÞ2

1� ðxRÞ2
�
dx

d�

�
2
; (24)

where all the variables in these equations are thought as
functions of �. On the other hand, the angular coordinates
of metrics (1) and (23) can be just identified in virtue of the
spherical symmetry.

The second junction condition could be written as
follows

½Kab� � hab½K� ¼ Sab; (25)

where Kab is the extrinsic curvature of the surface �, and
square brackets stand for discontinuities across the shell.
Following [58], we assume that the surface energy-
momentum tensor Sab has a perfect fluid form given by
S�

� � � and S�
� ¼ S�

� � � �P, where �P ¼ ð ��� 1Þ�.
Also, because of the spherical symmetry and the form of
the metric Eq. (23), the extrinsic curvature Ka

b has only
independent components K�

� and K�
� ¼ K�

�. Then, from

the second junction condition we obtain the following
independent equations

� �

2
¼ ½K�

��; (26)

�P ¼ ½K�
�� þ ½K�

��; (27)

where � and �P are considered as purely functions of �.
Also, the junctions conditions imply a conservation law
[63], which in this case take the following form

d�

d�
þ 2

B

dB

d�
ð�þ PÞ þ ½Tn

� � ¼ 0; (28)

where

½Tn
� � ¼ ðe
� T	


n	Þout � ðe
� T	

n	Þin; (29)

and n
 is the outward normal vector to the surface �.
The evolution of the shell is completely determined by

Eq. (26) and (28). Following [58] we write these matching
conditions in terms of the outside coordinates.
The extrinsic curvature could be written as

Kab ¼ n
;	e


a e

	
b : (30)

The projectors of the static side are

u
 � e
� ¼
�
dt

d�
;
dx

d�
; 0; 0

�
; (31)

e
� ¼ ð0; 0; 1; 0Þ; e
� ¼ ð0; 0; 0; 1Þ: (32)

We can note that u
 is the 4-velocity of the bubble-shell.
Then we obtain

n
 ¼ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðxRÞ2

q ð� _x; _t; 0; 0Þ; (33)

where dots mean differentiation with respect to � and we
have used the following conditions u
n
 ¼ 0 and n
n
 ¼
�1, in order to determinate n
.
Then K�

� on the static side becomes

K�
�ðoutÞ ¼

0
@ax _xa;t þð1� x2=R2Þ _t

B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðxRÞ2

q
1
A: (34)

Repeating the above calculation for K�
� on the inside we

obtain
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K�
�ðinÞ ¼

�
zb db

dT _zþ ð1þ z2Þ _T
B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p �
: (35)

By using Eq. (34) and (35) we can obtain the explicit
form of the junction condition Eq. (26). Nevertheless, it is
most convenient to write this condition as follows, see
Refs. [58,63],ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_B2 � �out

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_B2 � �in

q
¼ ��B

2
: (36)

Where we have defined

�out ¼ �1þ
�

A

3a3�
þ VF

3

�
B2; (37)

�in ¼ �1þ VT

3
B2: (38)

Now we proceed to write the equations for the evolu-
tion of the bubble in outside coordinates. In order to do
that we rewrite Eq. (36), by using Eqs. (37) and (38),
obtaining

_B 2 ¼ B2C2 � 1; (39)

where

C2 ¼ VT

3
þ

�
�

4
þ 1

�

�
VF � VT

3
þ A

3a3�

��
2
: (40)

In the outside coordinates we parametrize xðtÞ as the
curve for the bubble evolution (the bubble radius in these
coordinates). Since x and t are dependent variables on the

shell, this is legitimate. We write B ¼ ax, then by using
_B ¼ a;tx _tþ a _x and

dt

d�
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a2

ð1�x2=R2Þ ðdxdtÞ2
q ; (41)

obtained from Eq. (24), we can express Eq. (39) as follows

dx

dt
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR2 � x2Þða20C2x2 � 1Þ
x2a20ða20C2R2 � 1Þ

s
: (42)

The evolution of � is determinate by Eq. (28) which
could be converted to outside coordinates by using Eq. (41)
obtaining

d�

dt
¼ �2

�
���

x

�
dx

dt
þ a0��0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ðdxdtÞ2a20 þ 1� x2

R2

q dx

dt
: (43)

The positive energy condition �> 0 together with
Eq. (36) impose the following restriction to �

0<� � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VF � VT

3
þ �0

3

s
: (44)

Also, from the definition of x and Eq. (42) we obtain the
following restriction for x

1

a0C
� x � R: (45)

We solved the Eqs. (42) and (43) numerically by con-
sidering different kinds and combinations of the matter
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FIG. 4 (color online). Time evolution of the bubble in the outside coordinates xðtÞ, and time evolution of the surface energy density
�ðtÞ. The left panel is for a static universe dominated by dust and the bubble wall containing dust. The right panel is the same situation
but with radiations instead of dust. In all these graphics we have considered dashed line for R ¼ 1000, dotted line for R ¼ 500, and
continuous line for R ¼ 100.
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content of the background and the bubble wall. From these
solutions we found that once the bubble has materialized in
the background of an ES universe, it grows, filling com-
pletely the background space.

In order to find the numerical solutions we chose the
following values for the free parameters of the model, in
units where 8�G ¼ 1:

a0 ¼ 1; (46)

VT ¼ 0:1VF; (47)

�init ¼ 10�6: (48)

The other parameters are fixed by the conditions dis-
cussed in Sec. II.

Some of the numerical solutions are shown in
Figs. 4 and 5) where the evolution of the bubble, as
seen by the outside observer, is illustrated. In these nu-
merical solutions we have considered three different cur-
vature radii (R ¼ 1000, R ¼ 500, R ¼ 100) and various
matter contents combinations for the background and the
bubble wall. From these examples we can note that the
bubble of the new face grows to fill the background space,
where the shell coordinate asymptotically tends to the
curvature radius R.

V. CONCLUSIONS

In this paper we explore an alternative scheme for an
emergent universe scenario, where the universe is initially
in a truly static state. This state is supported by a scalar
field which is located in a false vacuum. The universe
begins to evolve when, by quantum tunneling, the scalar
field decays into a state of true vacuum.

In particular, in this work we study the process of
tunneling of a scalar field from the false vacuum to the
true vacuum and the consequent creation and evolution of a
bubble of true vacuum in the background of Einstein static
universe. The motivation in doing this is because we are
interested in the study of new ways of leaving the static

period and beginning the inflationary regime in the context
of emergent universe models.
In the first part of the paper, we study an Einstein static

universe dominated by two fluids, one is a standard perfect
fluid and the other is a scalar field located in a false
vacuum. The requisites for obtaining a static universe
under these conditions are discussed. As was shown by
Eddington [64], this static solution is unstable to homoge-
neous perturbations, furthermore it is always neutrally
stable against small inhomogeneous vector and tensor
perturbations and neutrally stable against adiabatic scalar
density inhomogeneities with high enough sound speed
[42,43,65,66]. This situation has implications for the EU
scenario, see discussion bellow.
In the second part of the paper, we study the tunneling

process of the scalar field from the false vacuum to the true
vacuum and the consequent creation of a bubble of true
vacuum in the background of Einstein static universe.
Following the formalism presented in Ref. [59] we found
the semiclassical tunneling rate for the nucleation of the
bubble in this curved space. We conclude that the proba-
bility for the bubble nucleation is enhanced by the effect of
the curvature of the closed static universe background.
In the third part of the paper, we study the evolution of

the bubble after its materialization. By following the for-
malism developed by Israel [62] we found that once the
bubble has materialized in the background of an ES uni-
verse, it grows filling completely the background space. In
particular, we use the approach of Fischler et al. [58] to find
the equations which govern the evolution of the bubble in
the background of the ES universe. These equations are
solved numerically, some of these solutions, concerning
several types of matter combinations for the background
and the bubble wall, are shown in Figs. 4 and 5.
In summary we have found that this new mechanism for

an emergent universe is plausible and could be an interest-
ing alternative to the realization of the emergent universe
scenario.
We have postponed for future work the study of this

mechanism applied to emergent universe based on
alternative theories to general relativity (GR), like
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FIG. 5 (color online). Time evolution of the bubble in the outside coordinates xðtÞ, and time evolution of the surface energy density
�ðtÞ, for a background with R ¼ 500. Dashed line corresponds to a static universe dominated by dust and bubble wall containing
radiation. Continuous line corresponds to a static universe dominated by radiation and a bubble wall containing dust.
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Jordan-Brans-Dicke [67], which present stable past eternal
static regime [19,20]. It is interesting to explore this pos-
sibility because emergent universe models based on GR
suffer from instabilities, associated with the instability of
the Einstein static universe. This instability is possible to
cure by going away from GR, for example, by consider a
Jordan Brans Dicke theory at the classical level, where it
has been found that contrary to general relativity, a static
universe could be stable, see Refs. [19,20]. Another possi-
bility is considering nonperturbative quantum corrections
of the Einstein field equations, either coming from a semi-
classical state in the framework of loop quantum gravity
[13,17] or braneworld cosmology with a timelike extra
dimension [16,18]. In addition to this, consideration of
the Starobinsky model, exotic matter [14,15] or the so-
called two measures field theories [21–24] also can provide
a stable initial state for the emergent universe scenario.

On the other hand, in the context of GR, the instability of
the ES could be overcome by considering a static universe
filled with a noninteracting mixture of isotropic radiation

and a ghost scalar field [68] or by considering a negative
cosmological constant with a universe dominated by a
exotic fluid satisfies P ¼ ð�� 1Þ� with 0<�< 2=3,
see Ref. [69]. In this case it is important that the exotic
matter source should not be a perfect fluid. It could be,
for example, an assembly of randomly oriented domain
walls [70].
We are interested in applying the scheme of emergent

universe by tunneling developed here to models which
present stable past eternal static regimes in the near future.
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