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We present a detailed analysis (including redshift tomography) of the cosmic dipoles in the Keckþ VLT

quasar absorber and in the Union2 SnIa samples. We show that the fine structure constant cosmic dipole

obtained through the Keckþ VLT quasar absorber sample at 4:1� level is anomalously aligned with the

corresponding dark energy dipole obtained through the Union2 sample at 2� level. The angular

separation between the two dipole directions is 11:3� � 11:8�. We use Monte Carlo simulations to

find the probability of obtaining the observed dipole magnitudes with the observed alignment, in the

context of an isotropic cosmological model with no correlation between dark energy and fine structure

constant �. We find that this probability is less than one part in 106. We propose a simple physical model

(extended topological quintessence) which naturally predicts a spherical inhomogeneous distribution

for both dark energy density and fine structure constant values. The model is based on the existence of a

recently formed giant global monopole with Hubble scale core which also couples nonminimally to

electromagnetism. Aligned dipole anisotropies would naturally emerge for an off-center observer for

both the fine structure constant and for dark energy density. This model smoothly reduces to �CDM for

proper limits of its parameters. Two predictions of this model are (a) a correlation between the existence

of strong cosmic electromagnetic fields and the value of � and (b) the existence of a dark flow on

Hubble scales due to the repulsive gravity of the global defect core (‘‘Great Repulser’’) aligned with the

dark energy and � dipoles. The direction of the dark flow is predicted to be towards the spatial region of

lower accelerating expansion. Existing data about the dark flow are consistent with this prediction.
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I. INTRODUCTION

According to the cosmological principle, the Universe is
homogeneous and isotropic on scales larger than a few
hundred Mpc. The main source of evidence which supports
this assumption comes from the cosmic microwave back-
ground (CMB) which appears to be isotropic to a high
degree up to a dipole term which is assumed to be due to
our motion with respect to the CMB frame. However, there
has been some recent observational evidence which could
be interpreted as a hint for deviations from large scale
statistical isotropy. Such evidence includes alignment of
low multipoles in the CMB angular power spectrum [1],
large scale velocity flows [2,3], and large scale alignment
in the quasistellar object optical polarization data [4] (see
Ref. [5] for an interesting related theoretical model). These
effects appear to persist on scales of 1 Gpc or larger and
could constitute early hints for a deviation from the
Friedmann-Lemaitre-Robertson-Walker metric on large
cosmological scales and the existence of a cosmological
preferred axis. This possibility is further enhanced by the

fact that the anisotropy directions implied by these obser-
vations appear to be abnormally close to each other [6].
The above hints for cosmological anisotropy have mo-

tivated searches for deviations from the cosmological prin-
ciple by considering the angular distribution of luminosity
distances of Type Ia supernovae (SnIa) in the redshift range
z 2 ½0:015; 1:4� [6–14]. Even though all these studies are
consistent with isotropy, in many of them, a mild evidence
(1�–2�) of anisotropic expansion was found [6–8,12,14]
mainly coming from low redshift data, while in others
[9,11,13] no evidence of anisotropy was found. The inabil-
ity of the later studies to pick up any anisotropy is perhaps
due to the methods and data used which were not sensitive
enough to particular types of anisotropy.
Additional hints for such possible deviations from the

cosmological principle have recently been obtained by
the angular distribution of the fine structure constant � in
the redshift range z 2 ½0:2223; 4:1798� as measured by the
quasar absorption line spectra using the many multiplet
method [15]. If in the case of SnIa the dipole anisotropy
was mild (about 1–2�), in the case of the fine structure
constant the anisotropy has been found to be significant
(4:1�).
Some earlier studies had claimed possible variation

of the fine structure ‘‘constant’’ with time [16]. This
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possibility has led to extensive theoretical modelling in the
literature so far [17,18] with emphasis on the possible
connection of this variation with dark energy (quintes-
sence) [19]. However, there has been comparatively less
interest in the possibility of spatial variation of � (see
however Ref. [20,21] for recent studies) and its connection
with dark energy.

The anisotropy analysis of Ref. [6] for the SnIa sample
was based on the Union2 data set [22] which consists of 557
SnIa. A hemisphere comparison method was used to find
the hemisphere pair with maximal anisotropy with respect to
�CDM fits. The maximum anisotropy direction was found
to be towards ðl; bÞ ¼ ð309�; 18�Þ but the magnitude of this
dark energy anisotropy was found to be consistent with
statistical isotropy at the 2� level. Similar results were
obtained in Ref. [7] where a redshift tomography also
revealed that most of the contribution to the mild dark
energy dipole comes from the low redshift SnIa.

The anisotropy analysis of the fine structure constant �
[15] is based on a large sample of quasar absorption-line
spectra (295 spectra) obtained using the Ultraviolet and
Visual Echelle Spectrograph (UVES) on the Very Large
Telescope (VLT) in Chile and also previous observations at
the Keck Observatory in Hawaii. An apparent variation of
� across the sky was found. It was shown to be well fit by

an angular dipole model ð��� Þ ¼ A cos�þ B where � is

the angle with respect to a preferred axis and A, B are
the dipole magnitude and an isotropic monopole term. The
dipole axis was found to point in the direction ðl; bÞ ¼
ð331�;�14�Þ and the dipole amplitude A was found to be
A ¼ ð0:97� 0:21Þ � 10�5. The statistical significance
over an isotropic model was found to be at the 4:1� level.
The analysis of Ref. [15] has received criticism [23] based
mainly on the fact that its quasar sample combines two data
sets (Keck and VLT) with different systematic errors which
have a small overlapping subset and cover opposite hemi-
spheres on the sky. The axis connecting these two hemi-
spheres has similar direction with the direction of the
obtained dipole. The response of the authors of Ref. [15]
was based on the fact that in the equatorial region of the
dipole, where both the Keck and VLT samples contribute a
number of absorbers, there is no evidence for inconsistency
between Keck and VLT.

The controversy about the possible problems in the
analysis of Ref. [15] and the angular proximity between

the dark energy axis of Ref. [6] and the ð��� Þ axis of

Ref. [15] constitutes the motivation to analyze both the
SnIa and the quasar data sets in a similar and consistent
manner.Thus,we reanalyzedboth data sets andfit them to the
same dipoleþmonopole ansatz of the form A cos�þ B.
This type of anisotropy fit is different from the corresponding
SnIa fits of previous studies. Our goal is to address the
following questions:

(1) What are the best fit dipoles (magnitudes A and
directions in galactic coordinates) for the Union2

and Keckþ VLT samples? What is the angle
between the two dipole directions?

(2) How likely is it to obtain these dipole magnitudes in
the context of an isotropic underlying model? How
likely is it to obtain the observed angle between the
dipoles if the two underlying models were isotropic
and uncorrelated? We address these questions by
producing a large number of Monte Carlo isotropic
data sets simulating the Union2 and theKeckþ VLT
samples under the assumption of isotropic and un-
correlated underlying models. We then compare the
obtained probability distributions for the dipole mag-
nitudes and angles with the observed magnitudes and
angle.

(3) How do the answers to the above questions change if
we consider three different redshift slices (bins) for
each data set (low, medium, and high redshift) with
approximately equal number of data points in each
bin? Is there a particular redshift range where the
dark energy and the fine structure dipoles are more
prominent and how is this range related with the
quality of the data in each bin?

These questions are addressed in detail in the following
sections. In particular, the structure of this paper is the
following: in the next section we derive the magnitudes
and directions of the best fit dark energy and fine structure
dipoles for the full Union2 and Keckþ VLT data sets, thus
addressing the above question 1. We also perform 104

Monte Carlo simulations of the Union2 and Keckþ VLT
data sets based on an isotropic best fit�CDMmodel and on
an isotropic best fit monopole model respectively. We then
use these simulations to address the above question 2. In
Sec. III we perform a redshift tomography to address ques-
tion 3 and find the redshift range where the dipoles appear to
be more pronounced. In Sec. IVwe discuss a physical model
that could reproduce the observed dipole alignment. Finally,
in Sec. V we conclude, summarize our basic results and
discuss future prospects of the present work.

II. COSMIC DIPOLES: DATA ANALYSIS AND
MONTE CARLO SIMULATIONS

A. Fine structure constant dipole

The full Keckþ VLT sample consists of 295 quasar
absorption line spectra in a redshift range z 2
½0:2223; 4:1798�. It has been analyzed in detail in
Ref. [15] where the redshift of each absorber is presented

along with fine structure constant deviation ð��� Þ ¼ �z��0

�0

where �z is the value of � measured at redshift z using the
many multiplet method [16] and �0 is the value of �
measured in the laboratory. The positions of the quasars
in equatorial coordinates are also presented.
In order to fit the Keckþ VLT data set to a dipole

anisotropy we proceed as follows:
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(1) We convert the equatorial coordinates of each
quasar to galactic coordinates.

(2) We find the Cartesian coordinates of the unit vectors
n̂i corresponding to each quasar with galactic coor-
dinates ðl; bÞ. We thus have

n̂ i ¼ cosðbiÞ cosðliÞîþ cosðbiÞ sinðliÞĵþ sinðbiÞk̂:
(2.1)

(3) We use the dipoleþmonopole angular distribution
model �

��

�

�
¼ A cos�þ B; (2.2)

where cos� is the angle with the dipole axis defined
by the vector

~D � c1îþ c2ĵþ c3k̂; (2.3)

such that

n̂ i � ~D ¼ A cos�i: (2.4)

We fit the Keckþ VLT data set to a dipole anisot-
ropy model (2.2) using the maximum likelihood
method, i.e., minimizing

�2ð ~D; BÞ ¼ X295
i¼1

½ð��� Þi � A cos�i � B�2
�2

i þ �2
rand

; (2.5)

where ð��� Þi and�i are obtained from theKeckþVLT

data set [15] and �rand is an internal random error,
assumed to be the same for all data points and repre-
senting an estimate of the aggregation of all additional
random errors. We fix the value of �rand by requiring

that at the best fit �2ð ~D; BÞ per degree of freedom is
about unity. The required value of�rand is 1:0� 10�5

in agreement with the corresponding value used in
Ref. [15].

(4) The magnitude and direction of the best fit dipole in
galactic coordinates is obtained from the best fit ci

coordinates (e.g., A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 þ c22 þ c23

q
) and the cor-

responding 1� errors are obtained using the covari-
ance matrix approach.

Our result for the best fit dipole direction and magnitude
is consistent with the corresponding results of Ref. [15]
(see also Table I). We find Afs ¼ ð1:02� 0:25Þ � 10�5

with direction (b ¼ �11:7� � 7:5�, l ¼ 320:5� � 11:8�)
while for the best fit monopole term we have Bfs ¼
ð�2:2� 1:0Þ � 10�6. This result shows that the isotropic
model A ¼ 0 is more than 4� away from the best fit value
of the dipole magnitude. The Keckþ VLT data set along
with the best fit direction of the dipole in galactic coordi-

nates is shown in Fig. 1. By the definition of ð��� Þ and the

construction of the dipole model, the obtained dipole di-
rection shown in Fig. 1 is the direction towards larger
values of the fine structure constant �.
In an effort to better analyze the above results for the

best fit dipole and its errors, we have constructed a
Monte Carlo simulation obtained from the Keckþ VLT
data set under the assumption of an isotropic monopole
model. Such a simulation is aimed at providing the proba-
bility distribution of the dipole magnitude and direction
under the assumption of an isotropic monopole model and
through that, the probability of obtaining the actually
measured values in the context of an isotropic model. In
order to construct the Monte Carlo simulation we proceed
as follows:
(1) We define a Gaussian random selection function

gð�;�Þ which returns a random number from a
Gaussian probability distribution with mean � and
variance �2.

(2) We fit the Keckþ VLT data set to an isotropic
monopole model obtained from Eq. (2.2) by setting
A ¼ 0. We find for the best fit monopole term:
Bfs-m ¼ ð�0:19� 0:10Þ � 10�5.

TABLE I. Keckþ VLT data: Monopole, dipole magnitude, and direction and angular distance from the dark energy dipole in
several redshift ranges. The angular distance with respect to the Union2 dipole is referred to the full redshift case for the Union2 data
set. We don’t include the common range bin (0:2223< z � 1:4) since it differs from the fifth line in the table only by one data point
(with z ¼ 0:2223).

mK=Vð10�6Þ dK=Vð10�5Þ bdK=V ð�Þ ldK=V ð�Þ �K=V�U2ð�Þ Data points

0:2223 � z � 4:1798 �2:2� 1:0 1:02� 0:25 �11:7� 7:5 320:5� 11:8 11:3� 11:8 295

0:2223< z � 1:2 �3:4� 1:8 0:8� 0:5 �4:7� 16:8 320:9� 27:5 15:4� 25:2 94

1:2< z � 2 �2:7� 1:6 0:63� 0:41 �22:7� 20:1 332:2� 33:2 22:8� 28:5 103

2< z � 4:1798 �1:5� 2:1 1:9� 0:4 1:8� 8:7 315:5� 11:3 18:0� 9:5 98

0:2223 � z � 1:4 �3:0� 1:5 0:8� 0:4 �13:8� 14:8 317:3� 24:3 7:7� 23:7 125

0:2223 � z � 1:62 �4:3� 1:4 0:51� 0:35 �13:7� 20:7 334:1� 34:0 24:0� 33:4 152

0:2223 � z � 1:9 �3:9� 1:2 0:7� 0:3 �13:8� 14:3 332:3� 23:7 22:2� 23:3 184

0:2223 � z � 2:1 �2:7� 1:1 0:7� 0:3 �15:1� 11:7 323:9� 19:0 14:0� 18:5 208

0:2223 � z � 2:45 �2:3� 1:1 0:9� 0:3 �12:6� 9:3 322:8� 14:9 13:2� 14:9 242

0:2223 � z � 2:7 �2:4� 1:0 0:95� 0:27 �12:5� 8:2 319:4� 13:2 10:0� 13:1 269
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(3) We construct the isotropic Monte Carlo version of
the Keckþ VLT data set by keeping fixed the
direction of each quasar and assigning to each ab-
sorber an isotropic randomized fine structure con-
stant variation obtained as

�
��

�

�
MC

i
¼ gðBfs-m; �iÞ þ gð0; �randÞ: (2.6)

(4) We construct 104 such Monte Carlo data sets and
obtain the probability distribution of the dipole
magnitude as well as the corresponding dipole di-
rections. We thus find the number of isotropic data
sets that have a dipole magnitude larger than the
observed value of the dipole magnitude.

The obtained probability distribution of the dipole mag-
nitudes is shown in Fig. 2 along with the actually observed

value of A. None of the 104 isotropic Monte Carlo datasets
had a dipole magnitude as large as the one observed (or
larger). We thus conclude that the probability to obtain the
observed dipole magnitude of the Keckþ VLT data set in
the context of an isotropic model is less than 0.01% (3:9�)
in agreement with the covariance matrix error and with the
result of Ref. [15] where the value 4:1� was obtained.

B. Dark energy dipole

We perform a similar dipoleþmonopole fit using the

Union2 data. Instead of ð��� Þ, which corresponds to fine

structure constant deviations from its earth measured
value, we use the distance modulus deviation from its
best fit �CDM value

�
��ðzÞ
��ðzÞ

�
� ��ðzÞ ��ðzÞ

��ðzÞ ; (2.7)

where �� is the best fit distance modulus in the context of
�CDM. The 557 SnIa data points of the Union2 data set
are given in terms of the distance moduli

�obsðziÞ � mobsðziÞ �M; (2.8)

where mobs is the apparent magnitude of each SnIa and M
is the absolute magnitude assumed to be common for all
SnIa after proper calibration. Assuming a �CDM parame-
trization of the expansion rate

HðzÞ2 ¼ H2
0½�0mð1þ zÞ3 þ ð1��0mÞ�; (2.9)

the best fit distance modulus ��ðzÞ is determined by
minimizing

0.2 0.4 0.6 0.8 1.0
dK V 10 5
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FIG. 2 (color online). Distribution of �-dipole magnitudes
obtained from the Monte Carlo simulation. The arrow points
to the position of the observed best fit value for the �-dipole
magnitude.
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FIG. 1 (color online). Keckþ VLT data points and �-dipole direction. Data points in three different redshift bins are represented
with different shapes. For comparison the direction of the dark energy dipole obtained from the best fit of the Union2 data is shown
with a star. The light blue blob represents the 1� error on the �-dipole direction.
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�2ð�0m; �0Þ ¼
X557
i¼1

½�obsðziÞ ��thðziÞ�2
�2

�i

; (2.10)

where �2
�i are the distance modulus uncertainties which

include both the observational and the intrinsic random
magnitude scatter. The theoretical distance modulus is
defined as

�thðziÞ � mthðziÞ �M ¼ 5log10ðDLðzÞÞ þ�0; (2.11)

where �0 is a constant related to the Hubble parameter
H0 � 100h km=ðsec�MpcÞ [24] by

�0 ¼ 42:38� 5log10h (2.12)

and

DLðzÞ ¼ ð1þ zÞ
Z z

0
dz0

H0

Hðz0;�0mÞ (2.13)

is the Hubble free luminosity distance. A minimization
of �2ð�0m; �0Þ using the Union2 data set leads to the
best fit parameter values �0m ¼ 0:269� 0:020 and
�0 ¼ 43:16� 0:01 which completely specify ��ðziÞ, and
therefore �

��ðziÞ
��ðziÞ

�
obs

� ��ðziÞ ��ðziÞ
��ðziÞ (2.14)

for all Union2 data points.
We now perform the same analysis as for the Keckþ

VLT data, replacing the ð��� Þ data points by the ð��ðzÞ
��ðzÞ Þ data

points. In the SnIa we set �rand ¼ 0 since the random
intrinsic magnitude scatter has already been included in
the distance moduli errors �i. We find the direction of
the dark energy dipole to be (b ¼ �15:1� � 11:5�,

l ¼ 309:4� � 18:0�). The magnitudes of the dipole and
monopole terms are found to be

Ade ¼ ð1:3� 0:6Þ � 10�3; (2.15)

Bde ¼ ð2:0� 2:2Þ � 10�4: (2.16)

The statistical significance of the dark energy dipole is at
the 2� level (significantly smaller that the 4� of the fine
structure constant dipole) but its direction is only 11� away
from the corresponding direction of the fine structure
constant dipole. The direction of the dark energy dipole

along with the Union2 data ð��ðziÞ
��ðziÞ Þobs are shown in Fig. 3 in

galactic coordinates. The proximity of the two dipole
directions is also made apparent in the same plot as well
as by comparing with Fig. 1.
The direction of the dipole in Fig. 3 points towards

brighter SnIa compared to best fit isotropic �CDM. This
implies less accelerating expansion in that direction only if
H0 [which is related to �0 in Eq. (2.11)] is assumed to be
isotropic. This assumption was not made in Ref. [6] where
�0 was simultaneously fit along with �0m in each hemi-
sphere. However, in the discussion of Sec. IV we will
assume isotropic �0 and therefore lower acceleration in
the direction of brighter SnIa.
In an effort to determine the likelihood of the observed

dark energy dipole magnitude combined with its angular
proximity to the fine structure dipole we have performed a
Monte Carlo simulation consisting of 104 Union2 data sets
constructed under the assumption of isotropic �CDM.
Thus, the distance modulus of point i is given by

�MCðziÞ ¼ gð ��ðziÞ; �iÞ; (2.17)
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FIG. 3 (color online). Union2 data points and dark energy dipole direction. Data points in three different redshift bins are represented
with different shapes. For comparison the direction of the � dipole obtained from the best fit of the Keck-VLT data is shown with a star.
The light blue blob represents the 1� error on the dark energy dipole direction.
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where g is the Gaussian random selection function defined
in the previous subsection and ��ðziÞ is the best fit distance
modulus of the Union2 data in the context of �CDM at

redshift zi. It is thus straightforward to construct ð��ðziÞ
��ðziÞ ÞMC

for each Monte Carlo data set and obtain its best fit dipole
direction and magnitude. In Fig. 4 we show the probability
distribution of the dark energy dipole magnitude in the
context of isotropic�CDM along with the observed dipole
magnitude indicated by an arrow. As expected from
Eq. (2.15) only 4.75% of the simulated isotropic data sets
had a dark energy dipole magnitude larger than the ob-
served value. This is consistent with Eq. (2.15) which
indicates that the statistical significance of the existence
of a dark energy dipole is about 2�. In Fig. 5 we show the
probability distribution of the angular distance of the iso-
tropic simulated dipoles from the observed fine structure
constant dipole discussed in Sec. II A. Only 6.12% of the
Monte Carlo data sets had such an angular distance smaller
than the observed one. The probability for a Monte Carlo
isotropic Union2 data set to have both a dipole magnitude

larger than the observed one and an angular separation
from the fine structure dipole smaller than the observed
one is 0.98%. This is larger than the anticipated value of
0:0612� 0:0475 ¼ 0:29% due to the nonuniform distribu-
tion of the SnIa in the sky. The convergence of these
probabilities as we increase the number of Monte Carlo
simulated isotropic data sets is shown in Fig. 6. Clearly the
number of simulated data sets considered (104) is enough
to achieve the convergence of the required probabilities.
We estimate the combined probability that both dipoles
have magnitudes larger than the observed and angular
separation smaller than the observed in the context of
isotropic underlying models to be less than 0:01%�
0:98% ’ 0:0001% where the first factor comes from the
magnitude of the fine structure constant dipole estimated in
the previous subsection.

III. REDSHIFT TOMOGRAPHY

In the previous section we have shown that the dipole
anisotropy model provides a significantly better fit than the
isotropic model for both the fine structure constant and for
the dark energy spatial distributions. We also demonstrated
that the two dipole directions show a remarkable coinci-
dence. In this section we focus on identifying the redshift
ranges in which these effects are more prominent. We use
two approaches: a redshift bin approach and a variable
upper redshift cutoff approach. In the redshift bin ap-
proach, we divide each data set in three redshift bins of
approximately equal number of data points and perform an

4.75

0.5 1.0 1.5 2.0
dU2 10 3

200

400

600

800

1000

FIG. 4 (color online). Distribution of dark energy dipole mag-
nitudes obtained from the Monte Carlo simulation. The arrow
points to the position of the observed best fit value and the light
green area indicates fraction of the Monte Carlo data sets that
give a dipole magnitude bigger than the observed best fit one.

6.12

20 40 60 80
ΘU2 K V

100

200
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FIG. 5 (color online). Angular distances between the observed
�-dipole direction and the dipole direction obtained from the
Monte Carlo simulations on the Union2 data. The arrow points to
observed angular distance value and the light green area repre-
sents the Monte Carlo data sets that give an angular distance
smaller than the observed one.
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FIG. 6 (color online). Percentage of Union2 Monte Carlo data
set satisfying different constraints as a function of the number of
Monte Carlo data sets considered. The points labelled as
‘‘magnitude’’ represent the fraction of Monte Carlo data sets that
give a dipole magnitude larger than the observed one. Those
labelled as ‘‘ang. distance’’ represent the fraction of Union2
Monte Carlo data sets that have an angular distance from the
observed � dipole smaller than the observed angular distance. The
label ‘‘both’’ refers to the fraction of Monte Carlo data sets that
satisfy both the previous constraints. With ‘‘product’’ we label the
points that represent the product of the first two percentages.
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analysis similar to that of the previous section in each
bin. Thus, we compare the results of each bin with respect
to the quality of data (error bar sizes), the dipole magni-
tudes and the dipole directions. In the variable upper
redshift approach we start with truncated data sets with
an upper redshift cutoff consisting of about 1=2 of the data
points. Then we increase the upper redshift cutoff in five
steps so that in the final step the almost full data set is
obtained. We analyze each one of the six cumulative data
set parts with respect to their dipole magnitudes and their
directions.

In Table I we focus on the Keckþ VLT sample and
show the redshift ranges of each redshift bin and of each
one of the six cumulative redshift parts. For each redshift
range, we show the corresponding best fit monopole mag-
nitude, the dipole magnitude, the direction of the best fit
dipole in galactic coordinates, and its angular separation
from dark energy dipole (obtained from the full Union2

data set). A similar redshift tomography for the Union2
data set is presented in Table II in which we also consider a
redshift bin that is common to the two data sets (last line).
The directions of the best fit dipoles for each one of the
redshift ranges considered in Tables I and II is shown in
Fig. 7 (the cumulative redshift parts are separately con-
nected according to increasing redshift cutoff). The un-
certainties shown in Tables I and II are obtained using the
covariance matrix approach. We have checked that they are
in good agreement with the corresponding 1� errors ob-
tained from the Monte Carlo simulations.
The following comments can be made based on the

results shown in Tables I and II:
(1) The redshift bin with the smallest 1� errors (best

data quality) for the Union2 data is the low redshift
bin (z 2 ½0:015; 0:14�). The corresponding best data
quality redshift bin for the Keckþ VLT data set is
the high redshift bin (z 2 ½2; 4:1798�).

TABLE II. Union2 data: Monopole, dipole magnitude, and direction and angular distance from the � dipole in several redshift
ranges. The angular distance respect to the � dipole is referred to the full redshift case for the Keck-VLT data set.

mU2ð10�4Þ dU2ð10�3Þ bdU2
ð�Þ ldU2

ð�Þ �U2�K=Vð�Þ Data points

0:015 � z � 1:4 2:0� 2:2 1:3� 0:6 �15:1� 11:5 309:4� 18:0 11:3� 17:3 557

0:015< z � 0:14 2:6� 3:4 1:7� 0:8 �10:1� 15:1 308:8� 22:8 11:6� 22:1 184

0:14< z � 0:43 2:6� 5:6 1:2� 1:9 �10:7� 28:7 291:4� 37:2 28:6� 36:7 186

0:43< z � 1:4 0:7� 4:3 0:9� 0:8 �25:1� 30:6 34:3� 75:7 70:6� 68:7 187

0:015 � z � 0:23 3:3� 2:9 1:8� 0:7 �8:5� 12:4 302:2� 16:6 18:3� 16:0 239

0:015 � z � 0:31 3:8� 2:9 1:9� 0:7 �7:6� 11:6 307:0� 14:7 13:9� 13:8 292

0:015 � z � 0:41 3:0� 2:7 1:8� 0:7 �14:4� 10:3 303:6� 14:4 16:6� 14:1 352

0:015 � z � 0:51 2:2� 2:6 1:4� 0:7 �14:9� 12:7 301:3� 18:8 18:9� 18:2 406

0:015 � z � 0:64 2:1� 2:4 1:4� 0:6 �16:0� 11:0 305:3� 16:9 15:4� 16:2 464

0:015 � z � 0:89 2:2� 2:3 1:4� 0:6 �15:6� 10:4 309:8� 16:0 11:1� 15:3 519

0:2223< z � 1:4 1:2� 2:5 0:51� 0:48 �44:0� 62:5 59:3� 147:6 88:2� 110:6 319

(−30,290)
(−30,360) (−30,420)

(10,290)

1

5 full

1 5
full

Union2 bins
0.015 z 0.14
0.14 < z 0.43
0.43 < z 1.4
0.2223 < z 1.4

Keck+VLT bins
0.2223 z 1.2
1.2 < z 2
2 < z 4.1798
0.2223 < z 1.4

Union2 parts
Keck+VLT parts

FIG. 7 (color online). Fine structure � and dark energy dipole directions for the different redshift bins. The ‘‘stars’’ denote the bins
corresponding to the redshift range that is common to the Keckþ VLT and Union2 samples. For this range however, the dipole
uncertainty obtained from the Union2 data is very large (see last line of Table II).
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(2) These best quality redshift bins also have the best
dipole alignment and the most statistically signifi-
cant deviation of the best fit dipole magnitudes from
isotropy. It is therefore important to improve the
quality of data in the other redshift bins in order to
clarify whether the dipole trend is also strong in
these bins where the data quality is lower.

The above points are also demonstrated in Figs. 8–10. For
each one of the redshift bins considered, we show in Fig. 8
the fraction of isotropic Union2 data sets that exceed the
observed dipole dark energy magnitude and also have a
smaller angular distance from the Keckþ VLT dipole
than the actually observed angular distance. Clearly, this
fraction is significantly lower for the lowest redshift bin

which implies that the dipole behavior and alignment is
most significant for this redshift bin. In Fig. 9 we show the
angular separation of each Union2 redshift bin from the best
fit dipole direction of the full Keckþ VLT data set, as a
function of redshift range for each Union2 bin. Clearly, the
lowest redshift bin which also has the smallest angular
separation error is the one that has its dipole best aligned
with the Keckþ VLT dipole. Finally, in Fig. 10 we show
the angular separation of each Keckþ VLT redshift bin
from the best fit dipole direction of the full Union2 data
set, as a function of redshift range for each bin. Clearly, the
highest redshift bin has the lowest error and good alignment
with the Union2 dipole. In this case, however, the best fit
dipole direction appears to be more consistent among the
three redshift bins while the error bars for the dipole direc-
tion are significantly smaller than the Union2 case.
The above choice of redshift bin ranges has been made

by demanding approximately equal number of data points
in each one of the three redshift bin. In Ref. [15] two
redshift bins were considered: a high redshift bin with
z > 1:6 and a low redshift bin with z < 1:6. The motivation
for this redshift division comes from the fact that high
redshift absorber spectra are dominated by different ab-
sorption lines compared to low redshift absorption spectra.
Thus, a test for possible systematics could be to divide the
whole sample and compare the two resulting dipoles. If the
two dipoles are consistent with each other then this is an
indication that no systematic errors are hidden in the differ-
ent absorption lines. No systematic errors were found in
Ref. [15] using this approach.
In order to test the consistency of our results with

those of Ref. [15], we have used the same two bins and
constructed Table III which is to be compared with the
corresponding Table 3 of Ref. [15]. In an effort to repro-
duce the results of [15] we have used the same values of

0.2 0.4 0.6 0.8 1.0 1.2 1.4
z

2

4

6

8

FIG. 8 (color online). Percentage of the Monte Carlo Union2
data sets that give both a dark energy dipole larger than the
observed value and an angular distance between the dark energy
dipole and the � dipole smaller than the observed angular
distance. The result is plotted for the full and partial redshift
bins.
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FIG. 9 (color online). Angular distances (with errors) between
the dark energy dipole obtained in the different redshift bins and
the � dipole obtained from the full redshift range Keckþ VLT
data. Notice that the lowest Union2 redshift bin dipole has the
best alignment with the Keckþ VLT dipole and also has the
smallest error.
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FIG. 10 (color online). Angular distances (with errors) between
the � dipole obtained in the different redshift bins and the dark
energy dipole obtained from the full redshift range Union2 data.
Notice that the alignment of all Keckþ VLT redshift bin dipoles
with the full Union2 dipole is consistent with each other and
similar to the alignment of the full KeckþVLT data set.

ANTONIO MARIANO AND LEANDROS PERIVOLAROPOULOS PHYSICAL REVIEW D 86, 083517 (2012)

083517-8



�rand and ignored two outlier data points. Our results are
almost identical with those of Ref. [15] and this provides a
good test of the validity of our analysis.

IV. PHYSICAL MECHANISM: EXTENDED
TOPOLOGICAL QUINTESSENCE

If the observed coincident large dipole anisotropies are
due to a physical mechanism and not to systematic or
statistical fluctuations, then it is of particular interest to
investigate what could be a physical model that would give
rise simultaneously to these coincident dipoles. Such a
mechanism could involve for example an inhomogeneous
scalar field which couples to electromagnetism through a
nonminimal coupling and whose potential energy could
provide the dark energy required for accelerating expan-
sion. Due to negative pressure such a scalar field would
tend to quickly become homogeneous and isotropic on
Hubble scales. However, nontrivial topology would natu-
rally generate sustainable inhomogeneity [25] of such a
scalar field.

For a proper potential, the scale of the inhomogeneity
would be the observationally required Hubble scale. In
such a Hubble scale topological defect, an off-center ob-
server would observe aligned dipoles in both dark energy
and the fine structure constant. For a large enough core
scale, such a defect would become effectively homogene-
ous and indistinguishable from �CDM. The dipole nature
of observations of off-center observers located in spheri-
cally symmetric inhomogeneities has been discussed in
detail in Refs. [26,27].

In the case of no coupling to electromagnetism, this
mechanism was studied in detail in Ref. [25] (topological
quintessence). Topological quintessence is an extension of
the well known corresponding inflationary model: topo-
logical inflation [28]. In what follows we present some
qualitative features of the extended topological quintes-
sence model and we postpone a more detailed study for a
later publication.

Consider the action

S ¼
Z �

1

2
M2

pR� 1

2
ð@��aÞ2 � Vð�Þ

þ 1

4
Bð�ÞF2

�� þLm

� ffiffiffiffiffiffiffi�g
p

d4x; ; (4.1)

where M�2
p ¼ 8�G is the reduced Planck mass, Lm is the

Lagrangian density of matter fields, �aða ¼ 1; 2; 3Þ is an
Oð3Þ symmetric scalar field, Bð�Þ is a nonminimal cou-
pling to electromagnetism and

Vð�Þ ¼ 1

4
�ð�2 � 	2Þ2; � �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�a�a

p
: (4.2)

We assume the existence of a Hubble scale global mono-
pole formed during a recent cosmological phase transition.
The vacuum energy density in the monopole core and the
size of the core are determined by the two parameters of the
model 	 (the vacuum expectation value) and � (the cou-
pling constant). The global monopole field configuration is
described by the hedgehog ansatz

�a ¼ �ðr; tÞr̂a � �ðr; tÞðsin� cos’; sin� sin’; cos�Þ
(4.3)

shown in Fig. 11(a), with boundary conditions

�ð0; tÞ ¼ 0; �ð1; tÞ ¼ 	;

where 	 is the scale of symmetry breaking assumed to be
such that [25]

�	2

3H2
0

* 1: (4.5)

In Eq. (4.3) we have allowed for a time dependence having
in mind a cosmological setup of an expanding background.
For a slowly evolving global monopole configuration, the
size of the core is approximated by


 ’ ��1=2	�1; (4.6)

while the vacuum energy density in this core region is

�core ’ �	4

4
: (4.7)

For a core size much larger than the Hubble scale, the
model reduces to �CDM. Therefore, the constraints im-
posed on inhomogeneous matter models [29] are not
applicable to this class of inhomogeneous dark energy
models.
The general spherically symmetric spacetime around a

global monopole may be described by a metric of the form

TABLE III. Monopole, dipole magnitude, and direction in the low and high redshift ranges for the Keckþ VLT data. The results
have been obtained fitting the data using the same values of �rand as in Ref. [15] (three values) and removing the two outliers as
identified by Ref. [15]. These results are almost identical with those of Ref. [15] which provides a good test of our analysis. We have
checked that using a single value �rand ¼ 1:0 for all data points (as done in the rest of our analysis) leads to consistent results and
affects mainly the error bars which become somewhat larger.

mK=Vð10�6Þ dK=Vð10�5Þ bdK=V
ð�Þ ldK=V

ð�Þ RAdK=V ðhrÞ decdK=V
ð�Þ dp

0:2223 � z � 1:6 �3:9� 1:1 0:57� 0:26 �16:4� 15:1 336:4� 22:9 18:1� 2:0 �57:3� 20:9 148

1:6< z � 4:1798 1:1� 1:4 1:39� 0:35 �10:5� 7:8 325:5� 11:9 16:6� 1:4 �63:0� 10:2 145
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ds2 ¼ �dt2 þ A2ðr; tÞdr2 þ B2ðr; tÞr2ðd�2 þ sin2�d’2Þ:
(4.8)

A detailed analysis of the cosmological evolution of the
above metric in the presence of the global monopole and
matter is presented in Ref. [25] with Bð�Þ ¼ 1 (see also
Refs. [26,28]).

Consider now a nonminimal coupling of the form

Bð�Þ ¼ 1� �
�2

	2
; (4.9)

where � is constant. The fine structure ‘‘constant’’ is
related to the coupling Bð�Þ as

�ð�Þ ¼ e20
4�Bð�Þ2 ; (4.10)

where e0 is the bare charge that remains constant through-
out the cosmological evolution. Therefore, for small values
of �=	 we have

�
��

�

�
’ 2�

ð�2 ��2
0Þ

	2
; (4.11)

where �0 is the field magnitude at the location of the
observer. The dipole directions shown in Figs. 1 and 3
correspond to higher value of � and lower accelerating

expansion (brighter SnIa compared to �CDM), respec-
tively. Thus, in the extended topological quintessence
picture, for an off-center observer, this would be the
direction pointing away from the global monopole core
where the potential energy of the monopole is lower and
the field magnitude � is larger. In order to have a higher
value of the fine structure constant in the same direction,
we need � > 0.
In Fig. 11 we illustrate the location of an off-center

observer with respect to the monopole core. In Fig. 11(a)
we plot the observer location along with the field magni-
tude and direction denoted by the arrows at each point of
the x-y plane. Clearly, the field magnitude is smaller to-
wards the center of the monopole and this justifies the
variation of � in that direction. Similarly, in Fig. 11(b)
we show the energy density distribution of the global
monopole and the location of the observer. Clearly, there
is higher dark energy density towards the monopole center
and this justifies the higher acceleration rate in that
direction.
We postpone a detailed reconstruction of the global

monopole potential Vð�Þ and coupling Bð�Þ for a later
publication. A comparison of the quality of fit for different
topological defect geometries could also be made (global
vortex or thick domain wall). We also stress that our
extended topological quintessence approach is distinct
from the model of Refs. [20,21] where thin domain walls
were considered in an effort to explain the spatial variation
of �. The approach of Refs. [20,21] does not address the

1.0 0.5 0.0 0.5 1.0
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FIG. 11 (color online). (a) The observer location (thick dot) along with the field magnitude and direction denoted by the arrows at
each point of the x-y plane. Clearly, the field magnitude is smaller towards the center of the monopole and this justifies the variation of
� in that direction. (b) The energy density (�) distribution of the global monopole and the location of the observer. Clearly, there is
higher dark energy density towards the monopole center and this justifies the higher acceleration rate in that direction.
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dark energy dipole and predicts a nondipole anisotropy for
�. The dipole anisotropy, however, has been shown [30] to
provide a better fit to the Keckþ VLT data that the single
wall model [21]. The double wall model [20], however,
involving three additional parameters, has been shown to
provide a better fit than the dipole model.

The extended topological quintessence monopole dis-
cussed above is also distinct from the varying � defects
[31] based on Bekensteins’s theory [32]. According to this
model, the electric charge e (and therefore also the fine
structure constant �) is promoted to a dimensionless scalar
field ’	 lne with zero potential and a kinetic term
multiplied by a large dimensionful parameter !. This is
similar to the corresponding extension of general relativity
along the lines of the Brans-Dicke theory where Newton’s
constant is promoted to a scalar field. As in the Brans-
Dicke theory, the parameter ! is used to partly freeze the
dynamics of ’ so that the charge variation in spacetime
becomes consistent with observational and experimental
constraints [18,33]. The dynamics of the charge field ’
affects the dynamics of the gauge field A� which in turn

affects the dynamics of any scalar field � that couples to
A� via a gauge symmetry. Varying � defects [31] are

gauged defects formed if the vacuum manifold of � has
a nontrivial homotopy group, and their dynamics are in-
directly affected by the dynamics of the fine structure
constant (and of ’). A potential source of severe con-
straints for this class of defects is that they predict massive
photons (spontaneous breaking of electromagnetism) in
regions away from the defect core.

In contrast to these varying � defects, in extended
topological quintessence, the defect is global and is formed
by the same field that represents �. These are global
defects nonminimally coupled to electromagnetism. As a
simple example in Minkowski spacetime, consider a global
vortex nonminimally coupled to electromagnetism. The
dynamics of the complex scalar field �, is determined by
the Lagrangian density

L ¼ ð@��Þ
ð@��Þ � 1

4
Bð�ÞF��F

�� � Vð�Þ: (4.12)

The field equations obtained by variation of�
 and A� are

@�@
�� ¼ � @V

@�? � 1

4

@Bð�Þ
@�
 F��F

��; (4.13)

and

@�½Bð�ÞF��� ¼ 0: (4.14)

For a nonminimally coupled global vortex to form, we set

Vð�Þ ¼ �

4
ð�
�� 	2Þ2; (4.15)

and

Bð�Þ ¼ 1� �
j�j2
	2

: (4.16)

We now use the global vortex the ansatz allowing for a
coaxial magnetic field

� ¼ fðrÞein�; (4.17)

A� ¼ aðrÞ; (4.18)

where fðrÞ and aðrÞ are real functions of r and all other
components of a� are set to zero. We thus obtain the static

field equations for fðrÞ and aðrÞ as

1

r

d

dr

�
r
df

dr

�
�

�
n2

r2
� 	2�

2
þ �

2
f2
�
f

� 1

2

dBðf2Þ
df

�
1

r

d

dr
ðraÞ

�
2 ¼ 0; (4.19)

d

dr

�
Bðf2Þ 1

r

d

dr
ðraÞ

�
¼ 0; (4.20)

since

F��F
�� ¼ 2Fr�Fr� ¼ 2

�
1

r

d

dr
ðraÞ

�
2
: (4.21)

The corresponding energy density of the vortex is

� ¼
�
df

dr

�
2 þ 1

2r2
Bðf2Þ

�
dðraÞ
dr

�
2 þ n2

r2
f2 þ �

4
ðf2 � 	2Þ2:

(4.22)

If there is no external source of electromagnetic field and if
Bðf2Þ> 0 everywhere, we obtain the usual global vortex
solution fðrÞ ¼ f0ðrÞ, aðrÞ ¼ 0. However, if there are re-
gions of space where Bðf2Þ< 0, an instability develops
which proceeds with spontaneous creation of electromag-
netic field in the region where Bðf2Þ< 0. For example for
Bðf2Þ ¼ 1� qVðf2Þ=	4, an instability develops in the
core, for large enough values of q.
If there is an external source of electromagnetic fields

(e.g., a localized magnetic field in the z direction), then the
profile of fðrÞ will be affected in accordance with
Eq. (4.19) and a local additional variation of � will occur.
Thus, a robust prediction of this class of models is a
correlation between regions of strong electromagnetic
fields and variation of �. The nonobservation of such
variation could impose strong constraints on the form of
the coupling Bðf2Þ. The detailed investigation of these
constraints and their consistency with the form of Bðf2Þ

IS THERE CORRELATION BETWEEN FINE STRUCTURE . . . PHYSICAL REVIEW D 86, 083517 (2012)

083517-11



required to explain the observed � dipole represents an
interesting extension of this project.

V. CONCLUSIONS

We have used the Keckþ VLT data set and the Union2
data set to show that the value of the fine structure constant
and the rate of accelerating expansion are better described
by coinciding dipoles than by isotropic cosmological
models. The key feature of our analysis is that it applies
identical method (fit to dipoleþmonopole anisotropy) to
both the Keckþ VLT data set and the Union2 data set.
This consistency, combined with the apparent dipole nature
of the anisotropy, has allowed a consistent comparison of
the two dipoles.

Using Monte Carlo simulations and covariance matrix
error estimates, we find that the probability that these
coinciding dipoles are both produced in the context of a
cosmological model where fine structure constant and dark
energy are isotropic and uncorrelated is less than one part
in 106. A redshift tomography analysis dividing the two
data sets in three redshift bins revealed that the highest data
quality redshift bins correspond to low redshifts for the
Union2 sample and high redshift for theKeckþ VLT data.
The dipole direction for the Keckþ VLT data depends
weakly on redshift while the Union2 dipole direction de-
pends more strongly on redshift and it is the low redshift
(and lowest error) bin that is best aligned with the
Keckþ VLT dipole. The directional uncertainty is signifi-
cantly larger for the medium and higher redshift Union2
dipoles. It is therefore important to improve the quality of
intermediate and high redshift SnIa data in order to further
test the alignment of the dark energy dipole with the fine
structure constant dipole.

An important issue that we have not addressed in the
present paper is the effect of systematic errors of the
Keckþ VLT sample. This issue has been addressed in
detail in Ref. [15] where no significant source of system-
atic errors was identified. The main concern has been the
possibility of careless merging of the two data sets (VLT
and Keck) which, in principle, have different systematics
and effectively cover opposite hemispheres of the sky
which coincide with the direction of the identified Keckþ
VLT dipole. The concern therefore is that the large iden-
tified dipole magnitude originates from a hidden difference
in systematic errors between the VLT and Keck samples
[23]. According to Ref. [15], this does not appear to be the
case for the following reasons:

(1) the dipole directions at high and low redshifts are in
agreement (this is confirmed in our study, too, as
shown in Figs. 7 and 10);

(2) the directions of the dipoles fitted by the VLTand by
the Keck samples separately are in agreement;

(3) the absorbers that are common to both the VLT and
the Keck sample provide consistent values for �.

Even though the above arguments of Ref. [15] are reason-
able, a truly convincing analysis would involve observation
of the same objects with a different telescope. This has
already been done by the Subaru telescope in August 2004
[18]. An analysis of these observations could provide a
particularly useful independent verification of the fine
structure constant dipole.
Finally, we have proposed a theoretical model that has

the potential to predict strong aligned dipoles for the fine
structure constant and for dark energy. The model is based
on a nonminimal coupling of a topologically nontrivial
scalar field to electromagnetism (extended topological
quintessence). In such a model, an off-center observer
with respect to the Hubble scale core of a global monopole
would naturally observe large aligned dipoles for the fine
structure constant and dark energy. In fact, it should be
possible to reconstruct both the scalar field potential and
the nonminimal coupling form using the Keckþ VLT and
the Union2 samples. Note that a spatial variation of the fine
structure constant could reconcile the tension between the
strong constraints on a temporal variation of � based on
Earth bound phenomena [34], with the cosmological ob-
servations that indicate variation of � [15]. This reconcili-
ation would not be possible in the context of a
homogeneous time varying �.
A robust prediction of the nonminimally coupled defect

model is the weak dependence of the value of � on the
existence of local strong magnetic fields as discussed at the
end of the previous section. Another interesting prediction
is the existence of peculiar velocities in the direction away
from the center of the global monopole due to the repulsive
effects of antigravity (negative pressure) in the defect
center. An off-center observer would experience this
Hubble scale flow as a dipole dark flow. Such dipole dark
flow has indeed been observed [2,3] and it is attributed to
the existence of a Great Attractor which could be present
on Gpc scales (perhaps even at a neighboring universe
[35]). In our model such a dark flow could be due to a
‘‘Great Repulser’’ whose role would be played by the core
of the Hubble scale nonminimally coupled defect. The
predicted direction of such a flow should be away from
the defect core (Great Repulser) in the direction of maxi-
mum deceleration (b ¼ �15:1� � 11:5�, l ¼ 309:4� �
18:0�) (see Table II). The direction of the observed dark
flow is (b ¼ 8� � 6�, l ¼ 287� � 9�) [2] which is consis-
tent within 1� with the direction of the dark energy and �
dipoles. It also points towards the region of lower accel-
eration as predicted by our model. A robust prediction of
our model with respect to the dark flow is that it should
reverse direction at large enough redshifts as we start
seeing on the ‘‘other side’’ of the Great Repulser (defect
core).
A detailed investigation of the consistency of the above

predictions with cosmological observations is an interest-
ing extension of the present analysis.
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Numerical Analysis Files: The data, MATHEMATICA, and
Cþþ program files used for the numerical analysis files
may be downloaded from Ref. [36].
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