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Observed angular positions and redshifts of large-scale structure tracers such as galaxies are affected by

gravitational waves through volume distortion and magnification effects. Thus, a gravitational wave

background can in principle be probed through clustering statistics of large-scale structures. We calculate

the observed angular clustering of galaxies in the presence of a gravitational wave background at linear

order including all relativistic effects. For a scale-invariant spectrum of gravitational waves, the effects are

most significant at the smallest multipoles (2 � ‘ � 5), but typically suppressed by six or more orders of

magnitude with respect to scalar contributions for currently allowed amplitudes of the inflationary

gravitational wave background. We also discuss the most relevant second-order terms, corresponding

to the distortion of tracer correlation functions by gravitational waves. These provide a natural application

of the approach recently developed in Schmidt and Jeong {arXiv:1204.3625 [Phys. Rev. D (to be

published)]}.
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I. INTRODUCTION

The origin of the initial perturbations which gave rise to
the structure in the Universe is one of the most profound
questions in cosmology. Currently, the most popular sce-
nario is inflation [1,2], a phase of accelerating expansion in
the very early Universe which produced seed perturbations
as quantum fluctuations frozen after exiting the horizon.
One of the key predictions of inflation is a potentially
observable background of stochastic gravitational waves
(GW). A detection of a GW background would allow for a
determination of the energy scale of inflation, and pose a
significant challenge to competing scenarios for the origin
of the initial perturbations.

The polarization of the cosmic microwave background
(CMB) is widely considered to be the most promising probe
of the primordial GW background in the near future [3,4].
However, given the profound impact of a detection, it is
worth studying complementary observational techniques, in
order to be able to provide independent confirmation of a
positive result. The study of the effect of GWon large-scale
structure observables has a long history. Linder [5] consid-
ered the distortion of galaxy correlation functions and de-
rived an upper limit on the GW background. Bar-kana [6]
studied the apparent proper motion of distant objects in-
duced by GW (see also [7,8]). More recently, Book et al. [9]
have studied the prospects for using gravitational lensing of
the CMB for this purpose. At redshifts of order 10–200, the
21 cm HI emission from the dark ages has been proposed as
a potentially extremely sensitive probe of a GW background
[10,11]. Because of its three-dimensional nature and observ-
able structure on much smaller scales, the 21 cm emission
should in principle be able to probe GW amplitudes orders
of magnitude smaller than the CMB. The shear, measured
through correlations of galaxy ellipticities, has also been

studied as an avenue for detecting a GW background
[12,13], though these authors have concluded that this mea-
surement will likely not be competitive with the CMB (see
also [14]).
The goal of this paper, and its companion [14], is to

systematically and rigorously derive the GW effects on
large-scale structure observables. While we restrict our-
selves to a linear treatment in the tensor perturbations, we
strive to keep the results as general as possible otherwise.
This paper deals with observed densities of large-scale
structure tracers, which have so far not been investigated
in the context of two-point statistics as a probe of GW. The
companion paper deals with shear (as measured from, e.g.,
galaxy ellipticities).
Since there is no 3-scalar that can be constructed from

tensor perturbations at linear order without making refer-
ence to some external (3-)vector or tensor, the ‘‘intrinsic’’
density of tracers, i.e. the density that would be measured
by a local comoving observer, is not affected by tensor
modes at linear order. Thus, the impact of tensor perturba-
tions is exclusively due to projection effects which can be
derived in analogy to [15–18] using the geodesic equation.
The main observable we consider is the angular power
spectrum CðlÞ of tracers. Since the GW effects are most
important on the very largest scales, the 3D power spec-
trum PðkÞ is not a meaningful quantity for this purpose.
Note that in contrast, the shear is itself a tensorial

quantity, and thus there is a possible intrinsic contribution
correlated with the GW background, analogous to the
intrinsic alignment effect present for scalar perturbations.
This issue, which has not been investigated before, is the
topic of the companion paper [14].
As emphasized by Kaiser and Jaffe [19], there are some

key differences in how tensor perturbations affect photon
geodesics as opposed to scalar perturbations: scalar modes
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which are transverse to the line of sight lead to a signifi-
cantly amplified coherent deflection, whereas the same
does not happen for tensor modes as they themselves
propagate at the speed of light. Furthermore, while scalar
modes grow (in the matter-dominated era), tensor modes
redshift away. Thus, the intuition that transverse modes at
lower redshifts contribute most of the projection (lensing)
effects does not hold anymore for tensor modes. Rather, the
GW contribution to the clustering of large-scale structure
tracers is dominated by contributions close to the time of
emission, and time derivatives of the perturbations are (at
least) as relevant as spatial derivatives.

The outline of the paper is as follows. We introduce our
notation and conventions in Sec. II. Section III presents the
geodesic equation for a tensor mode and the derivation of the
tensor mode contributions to the observed galaxy density,
including the magnification bias contribution. The galaxy
angular power spectrum is discussed in Sec. IV. We also
highlight the differences to the scalar case in this calculation.
Section V deals with the relevant higher order terms ne-
glected in Sec. III. We conclude in Sec. VI. The Appendices
contain details on some aspects of the calculation.

II. PRELIMINARIES

We begin by introducing our convention for metric and
tensor perturbations and some notation. For simplicity, we
restrict ourselves to a spatially flat Friedmann-Robertson-
Walker background, and consider only tensor (gravitational
wave) modes in the main part of the paper. The perturbed
metric is then given by

ds2 ¼ a2ð�Þ½�d�2 þ ð�ij þ hijÞdxidxj�; (1)

where hij is a metric perturbation which is transverse and

traceless:

hii ¼ 0 ¼ ðhikÞ;i: (2)

In order to simplify the analysis, we shall also consider the
conformal metric,

d�s2 ¼ �d�2 þ ð�ij þ hijÞdxidxj; (3)

where � denotes the conformal time, for our analysis of the
light deflection.

We then decompose hij into Fourier modes of two

polarization states,

hijðk; �Þ ¼ eþij ðk̂Þhþðk; �Þ þ e�ij ðk̂Þh�ðk; �Þ; (4)

where esijðk̂Þ, s ¼ þ;� are transverse (with respect to k̂)

and traceless polarization tensors normalized through

esije
s0 ij ¼ 2�ss0 . We assume both polarizations to be inde-

pendent and to have equal power spectra:

hhsðk; �Þhs0 ðk0; �0Þi ¼ ð2�Þ3�Dðk� k0Þ�ss0
1

4
PTðk; �; �0Þ:

(5)

Here, � denotes conformal time, and the unequal-time
power spectrum is given by

PTðk; �; �0Þ ¼ TTðk; �ÞTTðk; �0ÞPT0ðkÞ; (6)

where TTðk; �Þ is the tensor transfer function, and the
primordial tensor power spectrum is specified through an
amplitude �2

T and an index nT via

PT0ðkÞ ¼ 2�2k�3

�
k

k0

�
nT
�2

T: (7)

Following WMAP convention [20], we choose k0 ¼
0:002 Mpc�1 as pivot scale. Throughout, we will assume
a scalar-to-tensor ratio of r ¼ 0:2 at k0 (consistent with the
95% confidence level WMAP bound), which together with
our fiducial cosmology determines �2

T . The tensor index is
chosen to follow the inflationary consistency relation,
nT ¼ �r=8 ¼ �0:0025. For the expansion history, we
assume a flat �CDM cosmology with h ¼ 0:72 and�m ¼
0:28. Contributions from scalar perturbations are evaluated
using a spectral index of ns ¼ 0:958 and power spectrum
normalization at z ¼ 0 of �8 ¼ 0:8.
From Eqs. (4) and (5), we easily obtain

hhijðk; �Þhklðk0; �0Þi ¼ ð2�Þ3�Dðk� k0Þ½eþij ðk̂Þeþklðk̂Þ

þ e�ij ðk̂Þe�klðk̂Þ�
1

4
PTðk; �; �0Þ

hhijðk; �Þhijðk0; �0Þi ¼ ð2�Þ3�Dðk� k0ÞPTðk; �; �0Þ:
(8)

Long after recombination, the transverse anisotropic stress
which sources gravitational waves becomes negligible,
and the tensor modes propagate as free waves. During
matter domination, the tensor transfer function then simply
becomes

TTðk; �Þ ¼ 3
j1ðk�Þ
k�

; (9)

which however is still valid to a high degree of accuracy
during the current epoch of acceleration. We will use
Eq. (9) throughout.

III. TENSOR CONTRIBUTIONS TO THE
OBSERVED GALAXY DENSITY

In this section we derive the GW contribution to the
observed density of tracers, including the magnification
bias effect. We follow the notation in Jeong et al. [18] (see
also [21]) which is summarized in their Sec. II A. The
zeroth order photon geodesic in conformal coordinates
[Eq. (3)] is simply

�x �ð�Þ ¼ ð�0 � �; n̂�Þ; (10)

where the comoving distance � along the geodesic serves
as affine parameter, with � ¼ 0 corresponding to the ob-
server’s location. Here and throughout, n̂ denotes the unit

DONGHUI JEONG AND FABIAN SCHMIDT PHYSICAL REVIEW D 86, 083512 (2012)

083512-2



vector in the direction of the observed position of the

source (~̂n in [18]). Hence,

d �x�

d�
¼ ð�1; n̂Þ: (11)

In the following, ~z will stand for the observed redshift of
the source, and ~� � ��ð~zÞ is the conformal distance corre-
sponding to that redshift when evaluating the distance-
redshift relation ��ðzÞ in the background.

We decompose vectors into transverse and longitudinal
parts with respect to the line of sight,

Xk � n̂iX
i; X? � Xi � n̂in̂jX

j; (12)

and correspondingly define longitudinal and transverse
derivatives through

@k � n̂i@i; @i? � @i � n̂i@k: (13)

Finally, we define

r2
? � @?i@

i
? ¼ r2 � @2k �

2

~�
@k; (14)

and make use of

@k ~̂ni ¼ ~̂ni@?i ¼ 0: (15)

A. Photon geodesics with a tensor mode

We now briefly outline the derivation of the dis-
placements �xi of the true emission point from the obser-
vationally inferred position. This is a special case of the
derivation in Appendix B of Schmidt and Jeong [21], to
which the reader is referred for more details. We parame-
trize the linear-order deviation of the photon geodesic as

dx�

d�
¼ ð�1þ ��; n̂þ �eÞ: (16)

The initial conditions for integrating the geodesic equation
are set by demanding that the components of the photon
momentum measured in a locally orthonormal frame at the
observer’s location match n̂. For that, we construct an
orthonormal tetrad ðeaÞ� (a ¼ 0; 1; 2; 3) carried by an ob-

server so that at the observer’s location

g��ðeaÞ�ðebÞ� ¼ �ab: (17)

Then, the photon four-momentum measured by the ob-
server is given by

ð1; n̂iÞ ¼ ððe0Þ�; ðeiÞ�Þdx
�

d�
: (18)

A detailed calculation is presented in Appendix B of [21].
Using that the four-velocity of comoving observers is given
by u� ¼ a�1ð1; 0; 0; 0Þ, this leads to

��ð� ¼ 0Þ ¼ 0; �eið� ¼ 0Þ ¼ � 1

2
ðhijÞon̂j: (19)

Here and throughout, a subscript o indicates that the
quantity is evaluated at the observer’s location. The corre-
sponding initial condition for the geodesic equation for
comoving observers with general metric is presented in
Eq. (B11) of [21]. In case of scalar perturbations, including
�eið� ¼ 0Þ is important to ensure gauge-invariant expres-
sions [18]. While there is no gauge ambiguity in tensor
modes, we will show that the observer term is numerically
important for the quadrupole of the observed galaxy den-
sity. The redshift perturbation is related to the shift in the
frequency through

�zð~�Þ ¼ ��� ¼ 1

2

Z ~�

0
h0kd�; (20)

where we have defined

hk � hijn̂
in̂j: (21)

Here and hereafter, a prime denotes a derivative with
respect to conformal time, if not used for distinguishing
different variables. The distinction between the two should
be clear from the context. The redshift of the photon
along the perturbed geodesic is given by 1þ zð�Þ ¼ ½1þ
�zð�Þ�=aðx0ð�ÞÞ. Requiring that the redshift at emission
equals ~z yields an equation for the first-order perturbation
to the affine parameter at emission �e [18],

�e ¼ ~�þ ��; �� ¼ �x0 � 1þ ~z

Hð~zÞ �z; (22)

where �x0 is the perturbation to the 0th component of the
geodesic evaluated at � ¼ ~�. We now relate the observed
position ~x, inferred assuming the unperturbed geodesic �x�,
and the true position x through (see Fig. 1 in [18])

�x � x� ~x ¼ �xð~�Þ þ n̂��; (23)

where �xð~�Þ is the spatial perturbation to the geodesic
evaluated at � ¼ ~�. We can then decompose the displace-
ment �x into perpendicular and longitudinal parts,

�xk ¼ �xin̂i þ �x0 � 1þ ~z

Hð~zÞ �z (24)

�x? ¼ �xi � n̂i�xk: (25)

Explicitly,

�xk ¼ � 1

2

Z ~�

0
d�hk � 1þ ~z

2Hð~zÞ
Z ~�

0
d�h0k (26)

and

�xi? ¼ 1

2
~�½ðhijÞon̂j � ðhkÞon̂i�

þ
Z ~�

0
d�

�
~�� �

2
@i?hk þ

~�

�
ðhkn̂i � hijn̂

jÞ
�
: (27)

Note that Eqs. (26) and (27) can be obtained directly from
Eqs. (43)–(47) in [21] (with �z ¼ � lna) by setting
A ¼ B ¼ v ¼ 0, or, alternatively, from the corresponding
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Eqs. (38)–(39) in [18] by restricting to a transverse-
traceless metric perturbation and setting Ek ¼ hk=2.

In the following, we will further need the convergence �̂,
defined through (see Appendix A)

�̂ � � 1

2
@?i�x

i
?

¼ 5

4
hko � 1

2
hk � 1

2

Z ~�

0
d�

�
h0k þ

3

�
hk
�

� 1

4
r2

�

Z ~�

0
d�

~�� �

~��
hk: (28)

Here r2
� ¼ �2r2

? is the Laplacian on the sphere. Also, we

will use

@~��xk ¼ � 1

2
hk � 1þ ~z

2Hð~zÞh
0
k �

Hð~zÞ
2

@

@~z

�
1þ ~z

Hð~zÞ
�Z ~�

0
d�h0k;

(29)

where we have used d~� ¼ d~z=Hð~zÞ. While �̂ is the usual
coordinate convergence, @~��xk is the distortion of the

volume along the line of sight and can thus be seen as a
‘‘radial convergence’’.

B. Observed galaxy density

The observed comoving number density of galaxies
a3~ng is related to the true comoving number density

a3ng through

a3ð~zÞ~ngð~x; ~zÞ ¼
�
1þ 1

2
�g��

�
a3ð �zÞngðx; �zÞ

�
1þ @�xi

@~xi

�
:

(30)

The first term in brackets comes from the covariant volume

factor
ffiffiffiffiffiffijgjp

and is equal to unity, since for transverse-
traceless metric perturbations �g�� ¼ 0 at linear order.

The factor a3ð �zÞngðx; �zÞ is the true comoving number

density at the point of emission, which we expand as

a3ð�zÞngðx; �zÞ ¼ a3ð�zÞ �ngð�zÞ½1þ �gðx; �zÞ�; (31)

by defining the intrinsic perturbations to the comoving
number density �g. �z is the redshift that would be measured

for the source in an unperturbed universe, and is related to ~z
through

1þ ~z ¼ ð1þ �zÞð1þ �zÞ: (32)

Note that, when inserting Eq. (31) into Eq. (30), the dis-
tinction between x and ~x in the argument of �g is second

order if we regard intrinsic galaxy density perturbations as
first order, which we will do in this section. The relevant
additional terms will be studied in Sec. V. Finally, 1þ
@i�x

i is the volume distortion due to gravitational waves,
which as derived in [18] becomes

@�xi

@~xi
¼ @~��xk þ 2�xk

~�
� 2�̂: (33)

Thus, gravitational waves affect the observed density
of galaxies through a volume distortion effect, and
by perturbing their redshifts so that we compare the
measured galaxy density ~ng to the ‘‘wrong’’ background

density �ngð~zÞ. The latter effect is quantified by the

parameter

be �
d lnða3 �ngÞ

d lna

��������~z
¼ �ð1þ ~zÞd lnða

3 �ngÞ
dz

��������~z
: (34)

Note that this parameter can be measured for a given
galaxy sample, provided the redshift dependence of the
selection function is understood.
We can now summarize the tensor contributions to the

observed galaxy density perturbation as

~�gTð~x;~zÞ ¼ be�z� 2�̂� 1

~�

�Z ~�

0
d�hk þ 1þ ~z

Hð~zÞ
Z ~�

0
d�h0k

�

� 1

2
hk � 1þ ~z

2Hð~zÞh
0
k �

Hð~zÞ
2

@

@~z

�
1þ ~z

Hð~zÞ
�Z ~�

0
d�h0k:

(35)

Here, the subscript T denotes tensor contributions, and
we have assumed that the intrinsic density perturbation
�g does not correlate with the tensor modes (following

the arguments in Sec. I). Note that hij only enters

through hk. This has to be the case, since the galaxy

density is a scalar quantity and hk is the only nontrivial

scalar linear in hij. The latter also implies that tensor

modes do not contribute to the monopole and dipole of
the galaxy density.

C. Magnification bias

In the last section, we have assumed that all galaxies
are included in the sample. In reality, most large-volume
surveys are limited in flux. A cut on observed flux
induces additional fluctuations in the galaxy density,
since perturbations to the photon geodesic (e.g., gravi-
tational lensing) modify the observed flux of a given
source. The magnification M can be derived as the
perturbation to the angular diameter distance squared
([18], with �Mthere ¼ Mhere),

1þM � �D2
Að~zÞ
D2

A

; (36)

where DA is the true angular diameter distance to the
source while �DAðzÞ is the background angular diameter
distance-redshift relation. Alternatively, one can use the
standard ruler approach of [21], which for a metric of the
form Eq. (1) yields [see Eq. (105) in [21], where we set
d lnr0=d lna ¼ 0 neglecting the higher order effect of an
evolving number count slope]
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M T ¼ �2�zþ 1

2
hk � 2�xk

~�
þ 2�̂: (37)

We then parametrize the effect on the observed galaxy
density through a parameter Q,

~� gT ¼ ~�gTðnomagnÞ þQMT: (38)

For a purely flux-limited survey, Q ¼ �d ln �ng=d lnfcut,

where fcut is the flux cut. More generally, Q can also
receive a contribution from a size cut [22].

D. Summary of tensor contributions

Combining the result of the last two sections, we obtain
the following expression for the linear-order tensor con-
tributions to the observed galaxy density:

~�gT ¼ ðbe � 2QÞ�z� 2ð1�QÞ�̂� 1�Q
2

hk � 1þ ~z

2Hð~zÞh
0
k

� 1�Q
~�

�Z ~�

0
d�hk þ 1þ ~z

Hð~zÞ
Z ~�

0
d�h0k

�

�Hð~zÞ
2

@

@~z

�
1þ ~z

Hð~zÞ
�Z ~�

0
d�h0k: (39)

For later convenience, we reorder the terms as follows:

~� gT ¼ f~�hk þ f0~�h0k þ f
Z d�

�
hk þ ~f

Z d�

~�
hk

þ f0
Z

d�h0k þ f�r2
�

Z
d�

~�� �

�~�
hk þ fohko:

(40)

Here, all terms outside integrals (without subscript o) are
evaluated at ~�, and the integrals go from 0 to ~�. The
coefficients are given by

f~� ¼ � 1

2
ðQ� 1Þ f0~� ¼ � 1þ ~z

2H

f ¼ �3ðQ� 1Þ ~f ¼ Q� 1

f0 ¼ 1

2

�
be � 1� 2Qþ ð1þ ~zÞ dH=d~z

H

�

� ðQ� 1Þ þ ðQ� 1Þ 1þ ~z

H ~�

f� ¼ � 1

2
ðQ� 1Þ fo ¼ 5

2
ðQ� 1Þ: (41)

IV. OBSERVED GALAXY POWER SPECTRUM

A. Angular power spectrum

Consider a galaxy sample with a redshift distribution
dN=dz, normalized to unity in redshift. Then, the projected
galaxy overdensity as a function of position on the sky is
given by

�gðn̂Þ ¼
Z 1

0
d~z

dN

d~z
~�gð ��ð~zÞn̂; ~zÞ: (42)

We will assume that the quantities be, Q describing the
galaxy sample are independent of redshift for simplicity.
We can then write the multipole coefficients of the galaxy
density as

aglm ¼
Z

d2n̂Y�
lmðn̂Þ�gðn̂Þ: (43)

We can write all individual contributions to Eq. (39) as

Aðn̂; ~�Þ ¼
Z ~�

0
d�WAð�; ~�Þhkð�n̂; �Þ

¼
Z ~�

0
d�WAð�; ~�Þ

Z d3k

ð2�Þ3
� eik�n̂�n̂in̂jhijðk; �0 � �Þ: (44)

Note that terms involving h0k can be brought into the form

Aðn̂Þ by including d lnTTðk; �Þ=d� inWAð�Þ. The observer
term 5hko=3 contained in �̂ can similarly be written with

WAð�Þ ¼ 5=3�Dð�Þ. We will deal with that term specifi-
cally in Sec. IVB. By changing the order of integration, we
can then write the contribution to the projected galaxy
overdensity as

Aðn̂Þ¼
Z 1

0
d~z

dN

d~z
Aðn̂; ~�Þ¼

Z 1

0
d�W Að�Þhkð�n̂;�Þ

W Að�Þ�
Z 1

zð�Þ
d~z

dN

d~z
WAð�; ��ð~zÞÞ:

(45)

Note that if WA ¼ �Dð�� ~�Þ, W Að�Þ ¼ ðHdN=dzÞjzð�Þ.
We now consider the contribution of a single plane-wave
tensor perturbation with k-vector aligned with the z direc-
tion. Then,

n̂in̂jhijðk; �Þ ¼ sin2	½cos2
hþðk; �Þ þ sin2
h�ðk; �Þ�
¼ sin2	½ei2
h1 þ e�i2
h2�; (46)

where

h1;2 � 1

2
ðhþ � ih�Þ: (47)

Note that the power spectra of these circular polarization
staters are Ph1h2 ¼ Ph2h2 ¼ PT=8, while Ph1h2 ¼ 0. Let us

denote as Aðn̂;kÞ the contribution to Aðn̂Þ from this plane-
wave tensor perturbation. We have

Aðn̂;kÞ ¼
Z

d�W Að�Þeik��ð1��2Þ½e2i
h1ðk; �0 � �Þ
þ e�2i
h2ðk; �0 � �Þ�; (48)

where � ¼ cos	 is the cosine of the angle between n̂ and

k̂. Note the e�2i
 factors which are the key difference to
the case of scalar perturbations. The multipole coefficients
of A are then obtained as follows:
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aAlm ¼
Z d3k

ð2�Þ3 a
A
lmðkÞ; (49)

aAlmðkÞ ¼
Z

d2n̂Y�
lmðn̂ÞAðn̂Þ

¼
Z

d�W Að�Þ
Z

d2n̂Y�
lmð�;
Þeik��ð1��2Þ

� ½e2i
h1ðk; �0 � �Þ þ e�2i
h2ðk; �0 � �Þ�:
(50)

We now use the relation (see Appendix A1 in [21])

Z
d�Y�

lmð1��2Þe�i2
eix� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�ð2lþ 1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þ!
ðl� 2Þ!

s

� il
jlðxÞ
x2

�m�2; (51)

which yields

aAlmðkÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4�

ðlþ 2Þ!
ðl� 2Þ!

s
ð4�Þil

Z
d�W Að�Þ

� ½h1ðk; �0 � �Þ�m2

þ h2ðk; �0 � �Þ�m�2� jlðk�Þðk�Þ2 : (52)

Further, we can use the properties of the spherical harmon-
ics to obtain

alm½r2
�A� ¼ �lðlþ 1ÞaAlm; (53)

which we will use to evaluate the convergence con-
tribution. Using the definition of the angular power
spectrum, we can now easily write down the cross
correlation between two different projections A, B of
hk (Appendix A1 in [21]):

CAB
l � 1

2lþ 1

X
m

RehaA�lmaBlmi

¼ 1

2�

ðlþ 2Þ!
ðl� 2Þ!

Z
k2dkPT0ðkÞFA

l ðkÞFB
l ðkÞ (54)

FX
l ðkÞ �

Z
d�W Xð�ÞTTðk; �0 � �Þ jlðk�Þðk�Þ2 : (55)

It is then straightforward to evaluate autocorrelations
and cross correlations of the observed angular cluster-
ing of galaxies, neglecting the contribution of the term
hko for the moment (see Sec. IV B). In particular, if

we want to evaluate the total tensor contribution to the
angular (auto)power spectrum of galaxies, we set
WA ¼ WB ¼ Wg, where

Wgð�Þ ¼ f~��Dð�� ~�Þþd lnTT

d�

���������0��
ðf0~��Dð�� ~�Þþf0Þ

þf
1

�
þ ~f

1

~�
�f�lðlþ 1Þ ~���

�~�
; (56)

and the coefficients are defined in Eq. (41). Note that
the divergent pieces / ��1 cancel for l ¼ 2:

f� 6f� ¼ 0; (57)

while for l 	 3 the Bessel function in Eq. (55) ensures
that all terms are regular. Figure 1 shows numerical
results for a galaxy sample with a sharp (observed)
redshift of ~z ¼ 2, and for be ¼ 2:5, Q ¼ 1:5. The
colored lines indicate the separate contributions pro-
portional to projections of hk, h0k, and r2

�hk. While

for l & 4 all terms contribute significantly, the h0k
contribution dominates at higher l. This contribution
is the same as the GW effect �s

h explored in [8]. We

will return to this in Sec. IVD. Note that the total
contribution (black solid line) is significantly smaller
than the individual contributions for l ¼ 2; 3. We will
discuss this in the next section.

B. Quadrupole

Figure 1 shows that the individual tensor contributions to
the observed angular power spectrum increase rapidly
towards small l, while the total contribution is much

FIG. 1 (color online). Contributions to the observed galaxy
angular power spectrum from inflationary gravitational waves,
for a sharp source galaxy redshift of ~z ¼ 2, and using the tensor
mode power spectrum defined in Sec. II. The black solid line
shows the total contribution, while the colored lines show con-
tributions proportional to line-of-sight integrals of hk (blue

dotted), h0k (green short-dashed) and r2
�hk (magenta long-

dashed). Here, we have assumed be ¼ 2:5, Q ¼ 1:5. The black
square at l ¼ 2 indicates the result for l ¼ 2 if the observer term
is neglected (see Sec. IVB).
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smaller. These cancellations are essentially a consequence
of causality, which demands that the observed clustering
of galaxies cannot depend on tensor modes that are super-
horizon today.

In particular, it is important to take into account the last
term in Eq. (40), which quantifies the shearing of the
observer’s coordinate system by the gravitational waves.
We refer to this as the observer term. Since hijðoÞ is a

constant (transverse-traceless) tensor, this term only con-
tributes to the quadrupole l ¼ 2. Specifically, we have an
additional contribution to Eq. (55) for galaxies,

Fg
l¼2ðkÞ ! Fg

l¼2ðkÞ þ Fg;o
2 ðkÞ

Fg;o
2 ðkÞ ¼ fo lim

�!0
TTðk; �0 � �Þ j2ðk�Þðk�Þ2 ¼ 1

15
foTTðk; �0Þ:

(58)

The solid black line in Fig. 1 includes this term, while the
black square indicates the value of Cl¼2 we would obtain
without this term. Neglecting the observer term results in
an overestimation of the tensor contribution to the galaxy
quadrupole by 3 orders of magnitude. The reason for this
significant effect becomes clear when considering the con-
tributions to Fg

l¼2 as a function of k (Fig. 2). The individual
contributions to Fg

l approach a constant as k ! 0, while the
sum goes to zero for k=H0 & 1, as demanded by causality.
When neglecting the observer term (light blue in Fig. 2) on
the other hand, a residual constant contribution to Fg

l¼2

remains for k ! 0, which together with the steeply falling
tensor power spectrum leads to a significant overestimation
of the quadrupole.

C. Limber approximation

In the context of angular galaxy clustering, one often
uses the Limber approximation [23] which significantly
simplifies the calculation of Cg

l . The underlying assump-

tion is that the dominant contribution to the angular clus-
tering comes from galaxy pairs that are at similar distances
along the line of sight. It is instructive to consider this
approximation in the context of tensor modes. Since the
Limber approximation works best for a broad redshift
distribution, we will here consider a redshift distribution
roughly as expected for the Large Synoptic Survey
Telescope (LSST [24]),

dN

dz
/ z2 exp

�
�
�
z

z0

�
�
�
; (59)

with z0 ¼ 0:15 and � ¼ 0:73, yielding a mean redshift
of 1.2.
The Limber approximation can formally be applied

by using

2

�

Z
k2dkFðk; �Þjlðk�Þjlðk�0Þ 
 Fðlþ1=2

� ; �Þ
�2

�Dð�� �0Þ:
(60)

In the usual application to scalars, the functions of k, �
involved (apart from the Bessel functions) are smooth and
positive, whereas for tensor modes, the transfer function is
oscillatory. Performing the k and then one of the � inte-
grals in Eq. (54) leads to

CAB
l 
 ðlþ 2Þ!

ðl� 2Þ!
1

ðlþ 1=2Þ4
1

4

Z d�

�2
PT0

�
lþ 1=2

�

�
W Að�Þ

�W Bð�Þ
�
TT

�
ðlþ 1=2Þ�0 � �

�

��
2
: (61)

Here we have used that TT is only a function of k�. Note
that for l � 1, the prefactor approaches 1=4. Given that
PT0 / k�3þnT , we immediately see that the Limber ap-
proximation predicts Cg

l / l�3þnT for large l, if W A;B are

l independent.
Figure 3 shows the different contributions to Cg

l (as in

Fig. 1) for the redshift distribution Eq. (59) using the full
calculation (thick lines) and using the Limber approxima-
tion (thin lines). Clearly, the Limber approximation pre-
dicts the wrong l scaling of all terms, and we do not see any
improvement in the approximation for high l as in the
scalar case. Thus, the Limber approximation is not appli-
cable for calculating the tensor contribution to the angular
galaxy power spectrum at any ‘. There are two reasons for
this. First, the tensor mode power spectrum is falling as
�k�3, so that the assumption that pairs of comparable line-
of-sight distance dominate because they have the smallest
separation does not hold. Second, tensor modes oscillate
and decay towards late times (while scalar modes grow), so
that the contributions to Cg

l are concentrated at large scales

and high redshifts near the source.

FIG. 2 (color online). Contributions to the kernel FlðkÞ for
l ¼ 2 (thick) and l ¼ 20 (thin, only total contribution shown,
scaled by 104), for a sharp source redshift ~z ¼ 2 and the same
parameters as in Fig. 1. Note that the separate contributions have
nonzero weight for k ! 0, while the total Fg

l (black solid) is only

nonzero for k * 10�4 h=Mpc, as required by causality.
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D. Dependence on galaxy sample

Figure 4 shows the tensor contribution toCg
l for different

source redshifts. Here, we have assumed a Gaussian red-
shift distribution centered on ~z with root-mean square
(RMS) width of 0:03ð1þ ~zÞ, emulating the effect of
photometric redshift errors. We have kept be ¼ 2:5, Q ¼
1:5 fixed. While the low multipoles (l & 4) do not depend
very strongly on ~z, the contribution for higher l grows by an
order of magnitude when going from ~z ¼ 1 to ~z ¼ 2, and

from ~z ¼ 2 to ~z ¼ 5. We found that reducing the width �~z
of the redshift distribution has no impact on the results at
relevant l. The reason is that the bulk of the tensor mode
contribution comes from near horizon-scale modes, as
tensor modes decay once they enter the horizon. Such
long-wavelength modes are not affected by averaging
over a reasonably narrow redshift window (�~z < 1).
Figure 5 shows the effect of varying the galaxy sample

parameters be, quantifying the redshift evolution of the
average number density, and Q, which determines the
magnification bias contribution. We see a significant effect
at low multipoles when varying Q and especially be. This
is not surprising since we have seen that there is a high
degree of cancellation between different terms at low l
(Figs. 1 and 2), so that varying the coefficients of the
different terms can have a large impact.
On the other hand, Cg

l is insensitive to changes in be and
Q for l * 10. While surprising initially, this fact can be
understood straightforwardly. At high l, the contributions
from h0k dominate (Fig. 1). Specifically, following Eq. (39)

there are two contributions, f0~�h0k and f0
R
h0kd�. The for-

mer contribution is a pure line-of-sight volume distortion
effect, and the coefficient f0~� / H�1ð~zÞ is independent of
the galaxy sample. Now consider a single Fourier mode
contributing to both terms. Neglecting factors of order
unity, we can estimate the ratio between the two terms as

f0
R~�
0 h

0
kd�

f0~�h0k
�Hð~zÞ

R~�
0 T

0
Tðkð�0 � �ÞÞd�

T0
Tðkð�0 � ~�ÞÞ ; (62)

FIG. 3 (color online). Contributions of tensor modes to the
angular galaxy power spectrum for a broad redshift distribution
[Eq. (59)] expected for LSST, separated into different contribu-
tions as in Fig. 1 (again using be ¼ 2:5, Q ¼ 1:5). The thick
lines show the exact calculation, while the thin lines show the
Limber approximation using Eq. (61).

FIG. 4 (color online). Total tensor mode contribution to the
angular galaxy power spectrum as a function of source redshift,
for a Gaussian redshift distribution centered on ~z with an RMS
width of 0:03ð1þ ~zÞ. Here, be ¼ 2:5, Q ¼ 1:5 fixed.

FIG. 5 (color online). Relative impact on the total tensor mode
contribution to galaxy clustering when changing be from 2.5 to 4
and 1 (thick and thin green long-dashed, respectively), and when
changing Q from 1.5 to 3 and 0 (thick and thin red dot-dashed,
respectively). Here, a Gaussian redshift distribution centered on
~z ¼ 2 with RMS width 0:03ð1þ ~zÞ was assumed.
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where T0
T ¼ dTT=d�. Since T0

T decays rapidly once the
argument k� becomes of order unity, we can approximate
the numerator asZ ~�

0
T0
Tðkð�0 � �ÞÞd�� T0

Tðkð�0 � ~�ÞÞ��; (63)

where �� ¼ �ðk�Þ=k� 1=k is the range in � that con-
tributes to the integral. Thus, we arrive at an order-of-
magnitude estimate of

f0
R~�
0 h

0
kd�

f0~�h0k
�Hð~zÞ

k
: (64)

Physically, the integral of h0k along the line of sight leads to
significant cancellations that become more severe as k
increases. It is not surprising then that the volume distor-
tion term f0~�h0k dominates at high l. Specifically, using the

kernel Fg
l ðkÞ for l ¼ 20 shown in Fig. 2, we can estimate

that the typical wave number of tensor modes contributing
to multipole l is

ktyp � 0:003 h=Mpc� l

10
: (65)

Equation (64) then says that we expect f0~�h0k to dominate

for l * 10, in good agreement with Fig. 5.
Thus, the line-of-sight volume distortion / h0k=H is the

single dominating term in Cg
l at high l, which explains why

the tensor contribution is independent of the galaxy sample
at high multipoles. Note however, that the prospects for
detecting this effect are mostly restricted to l & 10 anyway
due to the steep decline of the signal.

V. HIGHER ORDER TERMS

So far, we have only kept terms linear in all perturba-
tions. While all terms second and higher order in hij are

likely irrelevant given the small amplitude of tensor per-
turbations, there are terms of order hij�g which can be

much less suppressed on small scales where �g can be-

come order unity. There are more terms of order hijA

where A stands for any scalar metric perturbation.
However, those terms are much smaller than hij�g and

can be neglected. Note that as long as scalar and tensor
modes do not correlate, the lowest nontrivial statistic in-

duced by these terms is a four-point function of ~�g. A

specific quadratic estimator for the tensor modes can be
constructed based on these terms [10,11]. Physically, one
uses the anisotropy of the small-scale correlation function

of ~�g to search for coherent large-scale distortions induced

by tensor modes. Most of the signal-to-noise for detecting a
GW background is contained on very small scales [11].

Noting that x ¼ ~x��x and 1þ �z ¼ ð1þ ~zÞð1� �zÞ,
the relevant terms neglected in going from Eq. (30) to
Eq. (35) are given by

~� gT;2nd ¼ �g½~x� �x; ð1þ ~zÞð1� �zÞ � 1� � �gð~x; ~zÞ

¼ ��x � r�gð~x; ~zÞ � �z
@

@ lnð1þ ~zÞ�gð~x; ~zÞ;
(66)

where �g is the intrinsic fractional perturbation in the

comoving galaxy density. Note that both �x and �z are
linear in hij. If we approximater�g � �g=r, where r is the

scale on which the correlation function of �g is measured,

then the second term is suppressed with respect to the first
term by a factor of r=~�, since @ ln�g=@ lnð1þ zÞ is typi-
cally order unity. This term is thus highly suppressed on
small scales where the second-order terms become rele-
vant. While the intrinsic two-point function �ðrÞ of the
tracer is isotropic and location independent (neglecting
redshift-space, tidal distortions and intrinsic anisotropy/
inhomogeneity [10,25]), the observed correlation function

~�ðn̂; ~z; n̂0; ~z0Þ ¼ h~�ð~xÞ~�ð~x0Þi (67)

is anisotropic and depends on the location ~x. This can be
used to measure the distortions by tensor perturbations.
Specifically, since we have 6 free parameters in ~x, ~x0, we
can measure 6 components of the distortion field. At this
point, it is important to stress that the terms in Eq. (66)
are not observable directly (as a simple example, consider
the case of a constant deflection �x ¼ const). In order to
determine which quantities are actually observable, con-

sider contours of constant ~�,

~�ðn̂; ~z; n̂; ~z0Þ ¼ �0: (68)

These contours correspond to a fixed physical scale r0 (on a
constant-proper-time hypersurface) at the source through

�ðr0Þ ¼ �0: (69)

In other words, the intrinsic homogeneous and isotropic
correlation function �ðrÞ is supplying us with a ‘‘standard
ruler’’ r0 (or, a set of standard rulers as we are free to vary
�0). In Schmidt and Jeong [21], we carefully define a
general standard ruler and derive the properties of the
deflection field which are observable through it. As we
have seen here, the distortion of correlation functions by
tensor modes is one application of the results of [21].
Finally, we point out that a nonzero three-leg coupling

h�ðk1Þ�ðk2Þhijðk3Þi present at an early stage of the uni-

verse can also imprint its signature as a local departure
from statistical homogeneity. The optimal estimator for the
amplitude of tensor perturbations given such a coupling
has been constructed in [25].

VI. DISCUSSION

We have derived the complete tensor contributions to the
observed galaxy density at linear order. The result is sum-
marized in Eq. (39). At this order, gravitational waves do
not perturb the intrinsic physical density of tracers; thus
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all contributions are projection effects from the effects of
GW on the propagation of light. We have found that,
contrary to gravitational lensing by scalar perturbations,
tensor perturbations contribute mainly at redshifts close to
the source redshift. Together with the scale-invariant power
spectrum of GW, this results in a steeply falling angular
power spectrum of the tensor contributions, with multi-
poles l� 10 already being suppressed by an order of
magnitude with respect to l ¼ 2–4.

Figure 6 shows a comparison of the tensor contributions
with the scalar contributions to the galaxy density. Here,
we have assumed a linear bias of b ¼ 2, and all relativistic
corrections are included following [18] (see Appendix B
for details). Clearly, the tensor contributions are sup-
pressed by �7 orders of magnitude with respect to the
scalar contributions at the largest scales, for the maximum
currently allowed value of r ¼ 0:2. One might wonder
whether galaxy cross correlations, i.e. between different
redshift bins, could be more promising. After all, when
cross correlating widely separated redshift slices, there is
little intrinsic correlation of galaxies, and the main contri-
bution comes from lensing [magnification bias effect /
2ðQ� 1Þ�̂]. Hence, the most optimistic case for detecting
tensor modes through their modulation of the galaxy den-
sity would consist of cross correlating two galaxy popula-
tions widely separated in redshift, both of which have
Q ¼ 1 so that the magnification bias effect drops out
(this could be achieved, for example, by selecting galaxies
on surface brightness). This most optimistic case is shown
in Fig. 7. We find that the tensor contribution can become
as large as 10�3 times the residual scalar contribution;
however, this is still much too small to be detectable.

Thus, given that we are not able to directly distinguish
between scalar and tensor contributions to the galaxy
angular power spectrum, we do not expect much detection
potential for gravitational waves from the leading order
effect on the angular power spectrum of galaxies. However,
there are terms of order hij�g (where �g is the intrinsic

galaxy overdensity) which induce a particular four-point

correlation function in the observed galaxy density ~�g.

This is the effect exploited in [10,11] for projected
constraints from 21 cm emission from the dark ages. In
essence, the intrinsic (homogeneous and isotropic) corre-
lation function provides us with a standard ruler that allows
us to observe certain properties of the distortion field, as
derived in [21]. Thus, one can apply the scalar-vector-
tensor decomposition on the sky described in [21]. Most
importantly, both the (2-)vector and (2-)tensor components
allow for an E=B decomposition, so that any scalar con-
tributions to the distortion (e.g. from lensing or redshift-
space distortions) do not contribute to the B mode at linear
order. We leave a more detailed investigation of these
possibilities for future work.
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APPENDIX A: CONVERGENCE

We define the convergence through the divergence of
the transverse displacements:

FIG. 6 (color online). Comparison between tensor mode con-
tributions to the galaxy power spectrum (black solid) for ~z ¼ 2
(cf. Fig. 4), and scalar contributions for a linear bias b ¼ 2 (see
Appendix B for details on the calculation of the scalar contri-
butions).

FIG. 7 (color online). Comparison between tensor mode and
scalar contributions to the angular cross correlation between two
widely separated redshift bins (~z ¼ 1, ~z0 ¼ 4) and for Q ¼ 1 so
that most magnification contributions drop out (linear bias ¼ 2;
other parameters as in Fig. 4).
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�̂ � � 1

2
@?i�x

i
?: (A1)

First, taking the transverse divergence of Eq. (27) yields

�2�̂ ¼ 1

2
~�ðhij@?in̂

j � hk@?in̂
iÞo

þ
Z ~�

0
d�

�
�@?iðhijn̂j � hkn̂iÞ

þ 1

2
ð~�� �Þ�

~�
r2

?hk
�
: (A2)

Using the fact that hij is transverse and that @� ¼ @k � @�,

straightforward algebra then yields

�̂ ¼ 5

4
hko � 1

2
hk � 1

2

Z ~�

0
d�

�
h0k þ

3

�
hk
�

� 1

4
r2

�

Z ~�

0
d�

~�� �

~��
hk: (A3)

The last term is familiar as the one dominating on
small scales (Newtonian limit) for the scalar case, and
is shown separately as blue dotted lines in Figs. 1–3.
Note that due to the very different power spectrum of
tensor modes, and the fact that tensor modes decay with
decreasing redshift, this term actually becomes sup-
pressed on small scales.

APPENDIX B: ANGULAR GALAXY POWER
SPECTRUM FROM SCALAR PERTURBATIONS

In this section, we provide expressions for the angular
power spectrum of galaxies due to scalar perturbations (see
Figs. 6 and 7), including all relativistic corrections as
derived in [15–18].

It is convenient to use expressions in conformal-
Newtonian gauge, where we write the metric as

ds2 ¼ a2ð�Þ½�ð1þ 2�Þd�2 þ ð1þ 2�Þ�ijdx
idxj�:

(B1)

Further, for convenience we write the velocity vi in terms
of a scalar velocity potential V, vi ¼ V;i, and relate V, �,

� to the density contrast �sc
m in synchronous-comoving

gauge through (see [26,27])

Vðk; �Þ ¼ aHfk�2Dðað�ÞÞ�sc
mðk; �0Þ

�ðk; �Þ ��ðk; �Þ ¼ D��ðk; �Þ�sc
mðk; �0Þ

�ðk; �Þ þ�ðk; �Þ ¼ gðk; �ÞD��ðk; �Þ�sc
mðk; �0Þ

) �ðk; �Þ ¼ 1

2
½gþ 1�D���

sc
mðk; �0Þ

�ðk; �Þ ¼ 1

2
½g� 1�D���

sc
mðk; �0Þ

ð���Þ0ðk; �Þ ¼ DISWðk; �Þ�sc
mðk; �0Þ;

(B2)

where f � d lnD=d lna, DðaÞ is the matter growth factor
(normalized to unity at a ¼ 1) and we have defined general

coefficient functions D�� , g, DISW to allow for nonstan-

dard cosmologies. In a �CDM cosmology, we have

D��ðk;�Þ¼3�m

a2H2

k2
Dðað�ÞÞ¼3�m0

H2
0

k2
a�1ð�ÞDðað�ÞÞ

gðk;�Þ¼0: (B3)

Here, the subscript 0 denotes that the quantity is evaluated
at z ¼ 0. Throughout, we will drop observer terms corre-
sponding to the monopole and dipole, but keep terms that
contribute to the quadrupole.
Converting Eqs. (55) and (72) in [18] from synchronous-

comoving gauge to conformal-Newtonian gauge, using
the relations given in Appendix D of [18], we obtain (see
also [16])

~�gð~xÞ ¼ �g þ beð�z� aHVÞ � 1

aH
@2kV

�
�
1� 1

aH

dH

dz
þ 2

aH ~�

�
~z
½�z� aHV�

þ 2ð�þ aHVÞ � 2

~�
V � 2

~�

Z ~�

0
d�ð���Þ

� 2�� 1

aH
ð�þ aHVÞ0 þQM

M ¼ �2�� 2aHV þ 2

~�
V þ 2�þ 2

~�

Z ~�

0
ð���Þd�

þ 2

�
1

aH ~�
� 1

�
ð�z� aHVÞ;

where

�z ¼ @kV ��þ
Z ~�

0
d�ð���Þ0

� ¼ � 1

2

Z ~�

0
d�ð~�� �Þ�

~�
r2

?ð���Þ
(B4)

denote the redshift perturbation and convergence, respec-
tively, in conformal-Newtonian gauge. Assuming a linear
bias relation in synchronous-comoving gauge (as discussed
in [18]), and expanding the different contributions, we
obtain

~�gð~xÞ¼b�sc
mþ

�
be�1�2Qþ 1

aH

dH

dz
þ2ðQ�1Þ 1

aH ~�

�
�z

þ
�
ð3�beÞaH�dH

dz

�
Vþ2ð1�QÞ�

þ2ðQ�1Þ
Z ~�

0

d�

~�
ð���Þþ2ðQ�1Þ�

� 1

aH
½@2kVþð�þaHVÞ0�: (B5)

We can now evaluate the contribution of a single planewave
along the z axis, i.e. �sc

mðx;�Þ¼�sc
mðk;�0ÞDðað�ÞÞeixk.

Further, we write x ¼ n̂�, and x � k ¼ x� with x ¼ k�,
~x ¼ k~�. First, we have
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�z ¼ �sc
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(B6)

Following the procedure described in Appendix A1 of [21], it is then straightforward to derive the angular power spectrum
of ~�g, for a sharp source redshift ~z, in terms of the matter power spectrum today PmðkÞ in synchronous-comoving gauge:

C~gðlÞ ¼ 2

�

Z
k2dkPmðkÞjF~g

l ðkÞj2

F~g
l ðkÞ ¼ bDð~aÞjlð~xÞ þ

�
be � 1� 2Qþ 1

aH

dH

dz
þ 2ðQ� 1Þ 1

aH ~�

�
~z
F�z
l ðkÞ þ

�
ð3� beÞ � 1

aH

dH

dz

�
~z

�
aH

k

�
2

~z
ðfDÞ~zjlð~xÞ

þ 2ð1�QÞ 1
2
ð½gþ 1�D��Þ~zjlð~xÞ þ 2ðQ� 1Þ

�Z ~�

0

d�

~�
D��jlðxÞ þ

1

2
lðlþ 1Þ

Z ~�

0
d�

~�� �

�~�
D��jlðxÞ

�

� ðfDÞ~z@2~xjlð~xÞ �
1

aH

1

2
ðg0D�� þ ½gþ 1�DISWÞ~zjlð~xÞ �

�
aH

k

�
2

~z
ðfDÞ~z

�
2
d lnaH

d lna
þ d lnfD

d lna

�
~z
jlð~xÞ (B7)

F�z
l ðkÞ ¼

�
aHfD

k
@~x � 1

2
ðg� 1ÞD��

�
~z
jlð~xÞ

þ
Z ~�

0
d�DISWjlðxÞ; (B8)

where again x ¼ k�, ~x ¼ k~�. We can also easily derive the
power spectrum of the magnification itself, which is an
observable (see [21]):

CMðlÞ ¼ 2

�

Z
k2dkPmðkÞjFM

l ðkÞj2

FM
l ðkÞ ¼ 2

�
1

aH ~�
� 1

�
F�z
l ðkÞ � ð½gþ 1�D��Þ~zjlð~xÞ

þ lðlþ 1Þ
Z ~�

0
d�

~�� �

�~�
D��jlðxÞ

þ 2
Z ~�

0

d�

~�
D��jlðxÞ: (B9)

These expressions are for a sharp source redshift. It is
straightforward to generalize them to a distribution
dN=d~z of source redshifts (where dN=d~z is assumed nor-

malized), following the discussion in Sec. IVA. In particu-
lar, contributions to FX

l ðkÞ of the formZ ~�

0
d�Wð~�; �ÞQ̂ðxÞjlðxÞ; (B10)

where Q̂ðxÞ is any derivative operator, are generalized toZ ~�

0
d�Wð~�; �ÞQ̂ðxÞjlðxÞ !

Z 1

0
d�W ð�ÞQ̂ðxÞjlðxÞ

W ð�Þ ¼
Z 1

zð�Þ
d~z

dN

d~z
Wð~� ¼ ��ð~zÞ; �Þ:

(B11)

Further, contributions evaluated at the source are general-
ized to

Að~�ÞQ̂ð~xÞjlð~xÞ !
Z 1

0
d�W ð�ÞQ̂ðxÞjlðxÞ

W ð�Þ ¼
�
dN

dz
HðzÞ

�
zð�Þ

Að�Þ:
(B12)
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