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The high-mass end of the halo mass function is a sensitive probe of primordial non-Gaussianity (NG).

In a recent study [9], we have computed the NG halo mass function in the context of the excursion set

theory and shown that the primordial NG imprint is coupled to that induced by the nonlinear collapse of

dark matter halos. We also found an excellent agreement with N-body simulation results. Here, we

perform a more accurate computation which accounts for the interval validity of the bispectrum expansion

to next-to-leading order and extend the calculation to the case of a nonvanishing primordial trispectrum.
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I. INTRODUCTION

The excursion set theory initially introduced by Bond
et al. [1] provides a self-consistent mathematical framework
to infer the properties of the halo mass distribution from the
statistics of the initial density field. The formalism general-
izes the original Press-Schechter idea [2] by formulating the
halo mass counting problem as one of stochastic calculus.
The starting point is the realization that at any location in
space, the linear matter density fluctuation field performs a
randomwalk as a function of a filtering scale R. On average,
this scale naturally defines a mass scaleM ¼ ��VðRÞ, where
�� is the mean matter density and VðRÞ the enclosed spatial
volume. By counting the number of trajectories which first-
cross a collapse threshold, it is then possible to compute the
fraction of mass elements in halos FðMÞ and consequently
derive the halo mass function dn=dM ¼ ð1=VÞdF=dM.
The requirement of first-crossing is key to solving the so
called ‘‘cloud-in-cloud’’ problem affecting the original
Press-Schechter result. In fact, the first-crossing condition
guarantees that in the small scale limit (R ! 0) and inde-
pendently of the properties of the randomwalks, the fraction
of mass into collapsed objects always tends to unity.

The excursion set is analytically solvable in the case of
uncorrelated (Markov) random walks for which the evalu-
ation of the first-crossing distribution is reduced to solving a
standard diffusion problem. However, uncorrelated random
walks are generated by a special filtering of the linear density
field which corresponds to a nonphysical halo mass defini-
tion. In contrast, any filtering which specifies a physically
meaningful mass generates correlated random walks for
which FðMÞ can be inferred only through a numerical com-
putation. This has represented a major limitation since
Monte Carlo simulations are computationally expensive
and moreover do not provide the same level of physical
insight of analytic solutions. The seminal work by
Maggiore and Riotto [3] has made a major step forward in
this direction. Using the path-integral formulation of the

excursion set theory, the authors have shown that the first-
crossing distribution of correlated random walks can be
computed as a perturbative expansion about the Markovian
solution. Using this methodology, it has been possible to
derive analytical formulae for the halo mass function under
different halo collapse model assumptions as well as
Gaussian and non-Gaussian (NG) initial conditions [4–6].
In a series of papers [7–9], we have used this formalism

to evaluate the imprint of the nonspherical collapse of
halos on the mass function. To this end, we have introduced
an effective stochastic diffusive drifting barrier (DDB)
model which parametrizes the main features of the ellip-
soidal collapse of halos. Accounting for such effects can
reproduce the halo mass function from N-body simulations
with remarkable accuracy both for Gaussian and non-
Gaussian initial conditions.
Here, we extend the work presented [9] to derive a more

accurate expression of the contribution to the halo mass
function of the primordial bispectrum expanded in the
large-scale limit to next-to-leading order and compute the
leading-order contribution of the primordial trispectrum.
The paper is organized as follows. In Sec. II, we review

the path-integral formulation of the excursion set and its
application to Gaussian and non-Gaussian initial condi-
tions in the case of the DDBmodel. In Sec. III, we evaluate
a lower limit on the interval validity of the bispectrum
expansion at next-to-leading order. In Secs. IV and V, we
compute the bispectrum and trispectrum contribution to the
mass function respectively. Finally, we present our con-
clusion in Sec. VI.

II. EXCURSION SET MASS FUNCTION AND
DIFFUSIVE DRIFTING BARRIER

Here, we briefly review the main features of the path-
integral formulation of the excursion set theory. First, let us
introduce the variance of the linear density field � filtered
on a scale R:
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�2ðRÞ � SðRÞ ¼ 1

2�2

Z
dkk2PðkÞ ~W2ðk; RÞ; (1)

where PðkÞ is the linear matter power spectrum and
~W2ðk; RÞ is the Fourier transform of the filter function in
real space, Wðx; RÞ. As already mentioned, by selecting a
volume VðRÞ ¼ R

d3xWðx; RÞ the filter naturally asso-
ciates a mass to the enclosed region, M ¼ ��VðRÞ. Thus
we have a one-to-one relation between R (or M) and S.

In the excursion set theory, the filtered density field
�ðx; RÞ at any random point in space performs a random
walk as function of R,M or equivalently S which plays the
role of a pseudotime variable. The random walks start at
S ¼ 0 with � ¼ 0, since in the large scale limit (R ! 1),
we have S ! 0, and the matter density distribution tends
toward homogeneity, i.e., � ! 0. We are interested in
counting trajectories which at a given value of S cross for
the first time a collapse density threshold B such that �¼B.
This threshold encodes all information on the gravitational
collapse of halos. In order to model features of the non-
spherical collapse, the absorbing barrier B is promoted to a
stochastic variable (see e.g., Refs. [4,10,11]) also perform-
ing a random walk as a function of S (i.e., R orM). In such
a case, it is convenient to introduce Y ¼ B� �, which
performs a random walk starting at Yð0Þ ¼ Y0 with barrier
crossing at Yc ¼ 0.

Our goal is to compute the probability distribution
�ðY0; Y; SÞ of trajectories starting at Y0 which reach the
value Y at S without ever touching the barrier Yc ¼ 0. This
can be computed as a path-integral over the ensemble of the
random trajectories (see Ref. [3] for a detailed derivation).
Let us discretize the pseudotime variable S in equally spaced
steps, �S ¼ �, such that Sk ¼ k� with k ¼ 1; . . . ; n. The
probability distribution of trajectories starting at Y0 and
ending in Yn at Sn and which have never crossed the barrier
before is given by

��ðY0; Yn; SnÞ ¼
Z 1

Yc

dY1 � � �
Z 1

Yc

dYn�1WðY0; . . . ; Yn; SnÞ;
(2)

where

WðY0; . . . ; Yn; SnÞ ¼
Z

D�ei
P

n
i¼1

�iYihe�i
P

n
i¼1

�iYðSiÞi;
(3)

where the brackets h. . .i refer to an ensemble average of
the random walks and the averaged quantity is the exponen-
tial of

Z ¼ X1
p¼1

ð�iÞp
p!

Xn
i1¼1

� � � Xn
ip¼1

�i1 . . .�iphYi1 . . .Yipic (4)

which is the partition function of the system written in terms
of the p-point connected correlation functions hYi1 . . .Yipic
of the random walks. Thus, the properties of the stochastic
system are entirely determined by the connected correlators.

Once these are specified, then Eq. (2) can be integrated in
the continuous limit to finally obtain the first-crossing
distribution

dF

dS
� F ðSÞ ¼ � @

@S

�Z 1

Yc

dY�ðY0; Y; SÞ
�
; (5)

and the halo mass function is given by

dn

dM
¼ fð�Þ ��

M2

d log��1

d logM
; (6)

where fð�Þ ¼ 2SF ðSÞ is the so called ‘‘multiplicity’’
function.

A. Gaussian initial conditions

Let us consider a Gaussian density field smoothed with a
top-hat filter in real space. On average, the density field is
homogeneous, thus implying that h�ðSÞic ¼ 0. Therefore,
due to the Gaussian nature of the field, the only nonvanishing
connected correlator is the 2-point function h�ðSÞ�ðS0Þic,
while all higher-order connected correlators identically
vanish.Maggiore andRiotto [3] have shown that for standard
cosmological scenarios with cold dark matter power spectra,
the 2-point function smoothed with a sharp x is well-
approximated by h�ðSÞ�ðS0Þic¼minðS;S0Þþ�ðS;S0Þ, where
thefirst termcorresponds toMarkov randomwalks generated
by a sharp-k filter and the second term is well-approximated
by �ðS; S0Þ ¼ �S=S0ðS0 � SÞ with a nearly constant ampli-
tude� < 1. Thus, the pseudotime correlations induced by the
filter function can be treated as a small correction about the
Markovian case and the mass function obtained using a
perturbative expansion of the partition function in the path-
integral in powers of �.
Concerning the barrier random walks, in Refs. [7,8], we

have introduced a stochastic model with linear drift and
Gaussian diffusion characterized by hBðSÞi ¼ �c þ �S
and hBðSÞBðS0Þic ¼ DB minðS; S0Þ, where �c is the linearly
extrapolated critical spherical collapse density, � is the
average linear rate of deviation from the spherical collapse
prediction, and DB is the amplitude of the scatter about the
average.1In such a case, the nonvanishing connected cor-
relators of the Y variable are

hYðSÞic ¼ �c þ �S (7)

1In the excursion set, the barrier diffusion coefficient parame-
trizes the stochasticity inherent to the ellipsoidal collapse of
halos. However, it is important to keep in mind that in the
excursion set, halos can form out of any random position. On
the other hand, numerical simulations show that halos form
preferentially out of peaks of the linear density field as suggested
by the hierarchical model of structure formation. Thus, when
comparing with N-body results, the value ofDB can be biased by
the underlying assumption of the excursion set approach (see
Ref. [12] for an extension of the formalism to random walks
around density peaks).
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hYðSÞYðS0Þic ¼ ð1þDBÞminðS; S0Þ þ�ðS; S0Þ: (8)

Substituting these expressions in Eq. (4) and performing a
double expansion in � and�, we have derived the Gaussian
multiplicity function

fGð�Þ ¼ f0ð�Þ þ f�¼1ð�Þ; (9)

where f0ð�Þ is the Markovian contribution and f�¼1ð�Þ is
the filter correction to first order in � and up to second
order in � which read as

f0ð�Þ ¼ �c

�

ffiffiffiffiffiffi
2a

�

s
e
� a

2�2
ð�cþ��2Þ2

(10)

and

f�¼1ð�Þ ¼ fm�m
1;�¼0ð�Þ þ fm�m

1;�ð1Þ ð�Þ þ fm�m
1;�ð2Þ ð�Þ (11)

with

fm�m
1;�¼0ð�Þ ¼ �~�

�c

�

ffiffiffiffiffiffi
2a

�

s 2
4e�a�2c

2�2 � 1

2
�

0
@0; a�2

C

2�2

1
A
3
5; (12)

fm�m
1;�ð1Þ ð�Þ ¼ �a�c�

2
4~�Erfc

0
@�c

ffiffiffiffiffiffiffiffiffi
a

2�2

r 1
Aþ fm�m

1;�¼0ð�Þ
3
5;
(13)

fm�m
1;�ð2Þ ð�Þ ¼ �a�

�
�

2
�2fm�m

1;�¼0ð�Þ þ �cf
m�m
1;�ð1Þ ð�Þ

�
; (14)

where ~� ¼ a� and a ¼ 1=ð1þDBÞ. Equation (14) in-
cludes a term Oð�2Þ which was missing in the original
derivation presented in Refs. [7,8]. As we explain in the
Appendix, this is due to having neglected a factor
expð��2S=2Þ in the computation of the probability
��ðYc; Yc; SÞ2 which enters in the calculation of the
memory-of-memory term to first order in �.

B. Non-Gaussian initial conditions

In the case of non-Gaussian initial conditions, the higher-
order connect correlators of the linear density field are
nonvanishing. Let us consider the case of primordial non-
Gaussianity sourced by a bispectrum term, hence in addition
to Eqs. (7) and (8), the partition function contains the
contribution of a nonvanishing 3-point connected correla-
tion function hYðSiÞYðSjÞYðSkÞic ¼ �h�ðSiÞ�ðSjÞ�ðSkÞic
with

h�ðSiÞ�ðSjÞ�ðSkÞic
¼
Z d3ki
ð2�Þ3

d3kj

ð2�Þ3
d3kk
ð2�Þ3

~Wðki;Ri½Si�Þ ~Wðkj;Rj½Sj�Þ
� ~Wðkk;Rk½Sk�ÞMðkiÞMðkjÞMðkjÞ
�h	ðkiÞ	ðkjÞ	ðkkÞic; (15)

where ~W is the Fourier transform of the sharp-x filter,
MðkÞ ¼ 2=ð5H2

0�mÞTðkÞk2, H0 is the Hubble constant,

�m the matter density, TðkÞ the transfer function, and 	ðkÞ
is the curvature perturbation with

h	ðkiÞ	ðkjÞ	ðkkÞic¼ð2�Þ3�DðkiþkjþkkÞBðki;kj;kkÞ;
(16)

where Bðki; kj; kkÞ is the so called ‘‘reduced’’ bispectrum.

By expanding Eq. (3) in powers of the amplitude of the
reduced bispectrum (usually parametrized by the coeffi-
cient fNL), we obtain to first order in fNL the non-Gaussian
part of the first-crossing distribution

F NGðSÞ ¼ � @

@S
FNGðSÞ; (17)

where FNGðSÞ is the continuous limit of

FNGðSÞ¼1

6

Xn
i;j;k¼0

h�ðSiÞ�ðSjÞ�ðSkÞic

�
Z 1

Yc

dY
Z 1

Yc

dY1 . . .dYn�1@i@j@kW0ðY0; . . . ;Y;SÞ;

(18)

where W0ð. . .Þ is the Gaussian Markovian probability den-
sity distribution. Equation (18) can be evaluated provided
we have an analytical expression for the primordial bispec-
trum. In Ref. [9], we have used the standard approach of
considering a triple Taylor series of the primordial bispec-
trum in the large scale limit. In the next section, we will
study in detail the range of validity of such an expansion
and infer the relevant contribution to the non-Gaussian
halo mass function.

III. INTERVALVALIDITY OF PRIMORDIAL
BISPECTRUM EXPANSION

Let us expand the bispectrum Eq. (15) in a triple Taylor
series around Si � Sj � Sk � S (for convenience, we set

S ¼ Sn):

h�ðSiÞ�ðSjÞ�ðSkÞic ¼
X1

p;q;r¼0

ð�1Þpþqþr

p!q!r!
ðS� SiÞp

� ðS� SiÞqðS� SkÞrGðp;q;rÞ
3 ðSÞ;

(19)

where2We thank Ruben van Drongelen for pointing this to us.
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Gðp;q;rÞ
3 ðSÞ� dp

dSpi

dq

dSqj

dr

dSrk
h�ðSiÞ�ðSjÞ�ðSkÞicji;j;k¼n: (20)

We expect the signature of primordial non-Gaussianity
to be stronger at large scales (S ! 0) where the evolution
of the density field remains linear. Hence, the leading-order
contribution to the halo mass function is given by the
lowest-order term of the bispectrum expansion. This cor-
responds to having pþ qþ r ¼ 0 which gives the
leading-order term h�3ðSÞiwhich can be computed numeri-
cally using Eq. (15) for a given type of primordial NG. It is
convenient to introduce the normalized skewness S3ðSÞ ¼
h�3ðSÞi=S2. In Ref. [9], we have provided a fitting formula
for S3ðSÞ and its derivatives which are accurate to a few
percent for local and equilateral non-Gaussianity.

The next-to-leading order contribution is given by three
terms corresponding to the case pþ qþ r ¼ 1. Hence,
up to next-to-leading order, the primordial bispectrum
reads as

h�ðSiÞ�ðSjÞ�ðSkÞic¼h�3ðSÞi�ðS�SiÞGð1;0;0Þ
3 ðSÞ�ðS�SjÞ

�Gð0;1;0Þ
3 ðSÞ�ðS�SkÞGð0;0;1Þ

3 ðSÞ;
(21)

since Si � Sj � Sk, we can collect the terms in ðS� SiÞ.
Moreover, by computing Gð1;0;0Þ

3 , Gð0;1;0Þ
3 , and Gð0;0;1Þ

3 as

derivatives of Eq. (15), one can notice that

G1;0;0
3 ðSÞ þG0;1;0

3 ðSÞ þG0;0;1
3 ðSÞ ¼ dR

dS

d

dR
h�3ðRÞi; (22)

and introducing

U 3ðSÞ ¼ 1

S

dR

dS

d

dR
h�3ðRðSÞÞi; (23)

we can rewrite Eq. (21) as

h�ðSiÞ�ðSjÞ�ðSkÞic � S2S3ðSÞ � ðS� SiÞSU3ðSÞ: (24)

We can now derive a lower limit, Smin, on the value of Si,
Sj, Sk for which such an expansion remains valid. This is

obtained by imposing the next-to-leading order term to be
smaller than the leading one. We find

Smin ¼ S

�
1� S3ðSÞ

U3ðSÞ
�
; (25)

using the fitting formulae for S3ðSÞ and U3ðSÞ derived in
Ref. [9]. We find that to good approximation, Smin ¼ S=

with 
�1

loc ¼ 0:373 and 
�1
equi ¼ 0:382 for local and equi-

lateral NG respectively.

IV. NON-GAUSSIAN HALO MASS FUNCTION AND
BISPECTRUM EXPANSION ACCURACY

Having inferred a lower limit on the interval validity of
the bispectrum expansion up to next-to-leading order, we
can infer a more accurate estimate of its contribution to the
multiplicity function. Given the bispectrum expansion
Eq. (24), we can split Eq. (18) as

FNGðSÞ ¼ FL
NGðSÞ þ FNL

NGðSÞ: (26)

As shown in Ref. [9], the leading-order term is given by

FL
NGðSÞ ¼

1

6
S2S3ðSÞ

Z 1

Yc

dY
@3

@Y3
c

�0ðY0; Y; SÞ; (27)

where �0ðY0; Y; SÞ is the probability distribution of the
Gaussian random walks in the case of the diffusing drifting
barrier model given by Eq. (8) in Ref. [7]. The integral can
be computed analytically to finally obtain the leading-
order contribution to the multiplicity function [9]:

fLNGð�Þ¼
a

6

ffiffiffiffiffiffi
2a

�

s
�e

�að�cþ��2Þ2
2�2

�
S3ð�Þ

�
a2

�4
�4
c�2

a

�2
�2
c�1þ3

a2

�2
��3

cþ3a��cþa2�3�2�cþ3a2�2�2
cþ13a�2�2

�

þdS3ð�Þ
dlog�

�
a

�2
�2
c�1þ3a��cþ4a�2�2

��
þ2

3
a3�3�4e�2a��cErfc

� ffiffiffiffiffiffiffiffiffi
a

2�2

r
ð�c���2Þ

��
4S3ð�ÞþdS3ð�Þ

dlog�

�
:

(28)

On the other hand, let us detail more the derivation of
the next-to-leading order term which differs from that
of Ref. [9]. In such a case, we have from Eq. (18)
that

FNL
NGðSÞ ¼ � 1

6
SU3ðSÞ

Ximax

imin

ðS� SiÞ

�
Z 1

Yc

dY
Xn
j;k¼1

Z 1

Yc

dY1 . . .
Z 1

Yc

dYn�1@i@j@kW0;

(29)

where we have decomposed the sum in Eq. (18) and kept
only the terms up to n� 1. In fact, as shown in Ref. [9], the
integral in dYn of the terms with i, j, k ¼ n vanishes since
the integrands are total derivatives. Furthermore, it is easy
to show that

P
j;k ! @2=@Y2

c ; thus,

FNL
NGðSÞ ¼ � 1

6
SU3ðSÞ

Xn�1

i¼imin

ðS� SiÞ �
Z 1

Yc

dY
@2

@Y2
c

�
�Z 1

Yc

dY1 . . .
Z 1

Yc

dYn�1@iW0

�
; (30)
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where the sum is bounded from below due to the fact that
Smin < Si < S. The multiple integral in the above expres-
sion can be computed by part, and using the fact that W0

obeys the Chapman-Kolmogorov equation

W0ðY0; . . . ; Ŷi; . . . ;Y;SÞ¼W0ðY0; . . . ;Yc;Si�Simin
Þ

�W0ðYc; . . . ;Y;S�SiþSimin
Þ;
(31)

we have

FNL
NG ¼ � 1

6
SU3ðSÞ

Xn�1

i¼imin

ðS� SiÞ

�
Z 1

Yc

dY
@2

@Y2
c

�
�

�
Y0; Yc; Si � S




�

��

�
Yc; Y; S� Si þ S




��
; (32)

where �ðY0; Yc; Si � S=
Þ and �ðYc; Y; S� Si þ S=
Þ
are given by Eqs. (3.20) and (3.21) in Ref. [9] respectively.
In the continuous limit and taking into account that the

bispectrum expansion up to next-to-leading order is
valid in the range Smin � S=
 < Si < S, we haveP

n�1
i¼imin

! R
S
S=
 dSi.

Finally, we obtain the first-crossing distribution to next-
to-leading order which reads as

F NL
NGðSÞ ¼ � 1

6

�
@2I
NL

dY2
c

�
U3 þ S

dU3

dS

�
þ SU3

@

@S

@2I
NL

dY2
c

�
(33)

with

@2I
NL

@Y2
c

¼�a

�

Z S

S



dSi

S3=2i

e
� a

2Si
ð�cþ�SiÞ2

�
S

�
1� 1




�
�Si

�

�
�
�2a�þa2�2�cþa

�c

Si

�
�3þ2a��cþa

�2
c

Si

��

�
�
e�a

2�
2ðS�SiÞþ�

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�aðS�SiÞ

q

�Erfc

�
��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

2
ðS�SiÞ

r ��
(34)

and

@

@S

@2I
NL

@Y2
c

¼ � a

�

Z S

S



dSi

S3=2i

e
� a

2Si
ðY0þ�SiÞ2

(
�2a�þ a2�2�c þ a

�c

Si

"
�3þ 2a��c þ a

�2
c

Si

#)

�
(
e�a

2�
2ðS�SiÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S� Si

p
"
1� 1



þ 1




Si
S� Si

þ 1



a�2 Sþ Siffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S� Si
p

#

þ
ffiffiffiffiffiffiffi
a�

2

r
�

 
1� 1




!
Erfc

"
��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

2
ðS� SiÞ

r #)
: (35)

The integrals in Eqs. (34) and (35) can be computed
numerically to finally evaluate the next-to-leading order
contribution to the multiplicity function, fNL

NGð�Þ ¼
2�2F NL

NGð�2Þ.
In Fig. 1, we plot fLNGð�Þ, fNL

NGð�Þ and their sum in units

of fNL for local (top panel) and equilateral (bottom panel)
non-Gaussianity. We have set the DDB model parameters
to the values best fitting the Gaussian halo mass function
inferred from Gaussian N-body simulations in Ref. [13].
The mass interval shown here corresponds to that probed
by these numerical simulations. We may notice that in the
local and equilateral cases, the leading-order term is larger
than the next-to-leading order one at high masses
(log10�

�1 > 0:1), while at lower masses, the next-to-
leading order is larger. This is expected since as already
mentioned, the signature of primordial non-Gaussianity at
large masses results of the lowest order in the bispectrum
expansion.

We can now evaluate the overall contribution to the halo
multiplicity function, fð�Þ ¼ fGð�Þ þ fNGð�Þ. In Fig. 2,
we plot the relative difference of the NG halo mass func-
tion with and without the next-to-leading order term for

local (top panel) and (bottom panel) equilateral non-
Gaussianity respectively in the case of fNL ¼ 150. As we
can see, the differences are no larger than 2% in the low
mass range; hence, the next-to-leading term remains neg-
ligible even for large non-Gaussianities in the mass range
corresponding to halos with M> 1013M� and can be
neglected for practical purposes.

V. TRISPECTRUM CONTRIBUTION TO THE
NON-GAUSSIAN HALO MASS FUNCTION

A number of scenarios of primordial inflation predict
deviation from Gaussianity of the form (see e.g.,
Refs. [14,15])

	 ¼ 	G þ 3

5
fNLð	2G � h	2GiÞ þ

9

25
gNL	

3
G þOð	4GÞ; (36)

where 	G is the primordial curvature perturbation and gNL

is the amplitude of the cubic term which gives rise to a
nonvanishing 4-point connected correlation function of the
linear density field given by
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h�ðSiÞ�ðSjÞ�ðSkÞ�ðSlÞic
¼
Z d3ki

ð2�Þ3
d3kj

ð2�Þ3
d3kk
ð2�Þ3

� d3kl
ð2�Þ3

~Wðki; RiÞ ~Wðkj; RjÞ ~Wðkk; RkÞ ~Wðkl; RlÞ
�MðkiÞMðkjÞMðkkÞMðklÞ
� h	ðkiÞ	ðkjÞ	ðkkÞ	ðklÞic; (37)

where h	ðkiÞ	ðkjÞ	ðkkÞ	ðklÞic¼ð2�Þ3�Dðkiþkjþkkþ
klÞTðki;kj;kk;klÞ and Tðki;kj;kk;klÞ is the trispectrum.

We can compute the trispectrum contribution to the
multiplicity function by including the 4-point connect
correlator in the partition function and expand the path-
integral for small values of the trispectrum amplitude.

As in the case of the bispectrum, to leading order in a
large scale expansion, the trispectrum can be approxi-
mated as

h�ðSiÞ�ðSjÞ�ðSkÞ�ðSlÞic ’ h�4ðSÞic: (38)

To first order in the trispectrum amplitude, we have

F Tri;L
NG ðSÞ ¼ � @

@S
FTri;L
NG ðSÞ; (39)

where FTri;L
NG ðSÞ is the continuous limit of

FTri;L
NG ðSÞ ¼ � 1

4!

X
i;j;k;l

h�4ðSÞic

�
Z 1

Yc

dY
Z 1

Yc

dY1 . . . dYn�1@i@j@k@lW0:

(40)

Using the fact that
P

i;j;k;l ! @4=@Y4
c , we obtain

FTri;L
NG ðSÞ ¼ � 1

4!
h�4ðSÞic @4

@Y4
c

Z 1

Yc

�0ðY0; Y; SÞdY; (41)

and the integral can be computed analytically,

@4

@Y4
c

Z 1

Yc

�ðY0; Y; SÞdY

¼
ffiffiffiffiffiffiffiffiffi
a

2�S

r
e

a
2Sð�cþ�SÞ2 �

�
�16ða�Þ3 þ 8

a2

S
�

þ 6
a2

S2
Y0 � 14

a3

S
�2�c � 8

a3

S2
��2

c � 2
a3

S3
�3
c

�

� 8ða�Þ4e�2a�Y0Erfc

� ffiffiffiffiffiffi
a

2S

r
ðY0 � �SÞ

�
: (42)

FIG. 2. Relative difference between the non-Gaussian halo
mass function with and without next-leading order contribution
in the case of local (panel a) and equilateral non-Gaussianity
(panel b).

FIG. 1 (color online). Leading-order (red dashed line), next-to-
leading order (blue dotted line) contribution to the non-Gaussian
multiplicity function (black solid line) for local (top panel) and
equilateral (bottom panel) non-Gaussianities respectively.
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As in the case of the bispectrum, it is convenient to introduce the 4th-order reduced cumulant, S4ðRÞ � h�4ðRÞi=S3.
Substituting in Eq. (41) and evaluating the first-crossing distribution Eq. (39), we finally obtain the trispectrum
contribution to the multiplicity function:

fTri;LNG ð�Þ ¼ 2S4ð�Þ�6ða�Þ4e�2a��cErfc

� ffiffiffiffiffiffiffiffiffi
a

2�2

r
ð�c���2Þ

�
þS4ð�Þe�

a

2�2
ð�cþ��2Þ2

�ða�Þ2
ffiffiffiffiffiffiffi
2a

�S

s �
�1

2
��2þ 11

6
a�3�4� 1

8
�cþað��Þ2�cþ 1

24
a2ð��Þ4�cþ 1

6
ða��cÞ2�3þ 1

4
ða�Þ2�3

c� 1

6
a
�3
c

�2

þ 1

6

a2

�2
��4

cþ 1

24
a2

�5
c

�4

�
þ 1

3

dS4ð�Þ
d log�

�6ða�Þ4e�2a��c �Erfc

� ffiffiffiffiffiffiffiffiffi
a

2�2

r
ð�c���2Þ

�
þdS4ð�Þ

d log�
e
� a

2�2
ð�cþ��2Þ2

�ða�Þ2
ffiffiffiffiffiffiffi
2a

�S

s �
�1

6
��2þ 1

3
a�3�4� 1

8
�cþþ 7

24
að��Þ2�cþ 1

6
a��2

cþ 1

24
a
�3
c

�2

�
: (43)

It can be noticed that by setting the barrier model
parameters to the spherical collapse values a ¼ 1 and
� ¼ 0, we recover the formula derived in Ref. [16]. It is
also worth noticing that in the spherical collapse limit and
neglecting the filter correction to first order in �, the NG
multiplicity function given by the sum of the Markovian
term, the bispectrum and trispectrum leading-order contri-
butions, has the same functional form as that derived in
Ref. [17] using the Edgeworth expansion to describe the
non-Gaussian probability distribution of the initial density
perturbations.

The above formula has been derived without making
any assumption on the mechanism which generates the
nonvanishing 4-point correlation function of the primor-
dial density field, namely the specific form of the trispec-
trum, Tðki; kj; kk; klÞ. Furthermore, the amplitude of the

trispectrum is affected not only by the cubic term in
Eq. (36) and parametrized in terms of gNL, but also by
the skewness which is parametrized by fNL. In models
where curvature perturbations are sourced by a single
scalar field, as in the case of the curvaton model (see
e.g., Ref. [18]), the skewness contribution to the kurtois
(parametrized in terms of �NL) is given by �NL ¼
36=25f2NL. In Ref. [19], it has been shown that a variety
of inflationary scenarios holds the disequality �NL 	
36=25f2NL. Recently, the authors of Ref. [20] have argued
that violating such an inequality would imply some non-
trivial new physics, since the inequality results on the one
hand from the fact that NG is generated on superhorizon
scales and on the other hand on the positivity of the
2-point correlation function. Thus, testing such an in-
equality may provide hints of fundamental physics at
the epoch of inflation.

It is beyond the scope of this paper to compute the trispec-
trum for specific primordial non-Gaussian scenarios for
which the 4th-order reduced cumulant needs to be numeri-
cally computed for a given trispectrum template. Hence, for
simplicity, we limit to a local type of non-Gaussianity for
which a fitting function of S4ð�Þ have been computed in

FIG. 3 (color online). Leading-order contribution of the bis-
pectrum (red dashed line), the trispectrum (blue dotted line), and
their sum (black solid line) for a local type of primordial non-
Gaussianity for fNL ¼ 100, �NL ¼ 104 in the case of gNL ¼ 0
(bottom panel) and gNL ¼ 106 (top panel) respectively.
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Ref. [21]. Even in such a restricted case, we can still infer
some relevant information on the imprint of the trispectrum
on the halo mass function and the implication for testing the
Suyama-Yamaguchi inequality.

To this purpose, we set the DDB model parameters to
their Gaussian value3 and plot in Fig. 3 the contribution of
the bispectrum (red dashed line), trispectrum (blue dotted
line), and their sum (black solid line) to the multiplicity
function for values of primordial non-Gaussian amplitude
which are consistent with cosmic microwave background
(CMB) limits [22]. In particular, we set fNL ¼ 100,
�NL¼104 and consider gNL ¼ 0 (bottom panel) and
gNL ¼ 106 (top panel) respectively. We can see that
even for gNL ¼ 106 and �NL ¼ 104, the trispectrum sig-
nal exceeds that of the bispectrum only in a very limited
low-mass range. In contrast, for gNL ¼ 0 and �NL ¼ 104,
the trispectrum contribution to the non-Gaussian multi-
plicity function remains very small compared to that
of the bispectrum. This suggests that within current
CMB limits, a violation of the Suyama-Yamaguci in-
equality will be hardly detectable solely using the halo
mass function. It is possible that measurements of the
galaxy bias may be more informative as investigated in
Ref. [20]. On the other hand, constraints on the halo mass
function from cluster counts may still be a useful probe
when used in combination with estimates of the halo bias
from the clustering of massive clusters. As shown in
Ref. [23] for the case of primordial bispectrum, these
tests can provide improved constraints on primordial
non-Gaussianity from the upcoming generation of cos-
mic structure surveys.

VI. CONCLUSION

The halo mass function carries an imprint of the statistics
of the primordial density field as well as the properties of the
halo collapse process. The path-integral formulation of the
excursion set theory provides a powerful and self-consistent
mathematical framework to account for these effects on the
halo mass function. Here, we have extended a previous
analysis [9] and performed a more accurate derivation of
the contribution of the primordial bispectrumexpanded in the
large scale limit to next-to-leading order for the diffusive
drifting barrier model introduced in Refs. [7,8]. We have
shown that the next-to-leading order term of the primordial
bispectrum decomposition contributes to nomore than�2%
of the non-Gaussian mass function. Thus, for all practical
purposes, it can be neglected. We have also derived an
analytic formula for the trispectrum contribution. As in the
case of the bispectrum, the multiplicity function depends on
terms which couple the parameters encoding the ellipsoidal
collapse of halos with the primordial 4-point correlation
function. Also in this case, we find that in the spherical
collapse limit, the trispectrum contribution reduces to the

functional form derived in the Press-Schechter formalism
using the Edgeworth expansion. However, in order to repro-
duceN-body simulation results, the latter requires two adhoc
prescriptions. First, the non-Gaussian prediction is rescaled
by a Gaussian simulation calibrated multiplicity function,
such as to account for the imprints of the ellipsoidal collapse,
thus implicitly assuming that the effect of the nonspherical
collapse of halos on the mass function is independent of the
amplitude of primordial non-Gaussianity. In principle, the
trispectrum signature on the halo mass function can probe
multifield inflation by testing the validity of the Suyama-
Yamaguchi inequality.However, assuming values offNL and
�NL consistent with current CMB limits, we find that bispec-
trum contribution is always the dominent NG signal at large
masses. It is possible that tests of the scale-dependent halo
bias can be more informative regarding the trispectrum sig-
nature. In such a case, it will be interesting to investigate, in
the context of the peak background split, how the mass
filtering corrections and the coupling between nonspherical
collapse parameters and primordial non-Gaussian ampli-
tudes alter the linear halo bias prediction.

ACKNOWLEDGMENTS

We thank James G. Bartlett for his support and his advice.
We also thank Ruben van Drongelen and Koenraad Schalm
for useful discussions. I. Achitouv is supported by a scholar-
ship of the Ministère de l’Education Nationale, de la
Recherche et de la Technologie (MENRT). The research
leading to these results has received funding from
the European Research Council under the European
Community’s Seventh Framework Programme (FP7/2007-
2013 Grant Agreement No. 279954).

APPENDIX

Here, we derive the finite correction to the probability
distribution of the random walks starting and ending at the
barrier, �"ðYc; Yc; SnÞ which enters the calculation of the
memory-of-memory term due to the non-Markovian filter
corrections (see Eq. (11) in Ref. [7]). Following the deri-
vation presented in Ref. [8], let us consider the Chapman-
Kolmogorov equation:

�"ðY0; Yn; SnÞ ¼
Z 1

Yc

dYn�1c "ð�Y � �"Þ

��"ðY0; Yn�1; Sn�1Þ; (A1)

with

c "ð�Y � �"Þ ¼
ffiffiffiffiffiffiffiffiffi
a

2�"

r
e�að�Y��"Þ2

2" : (A2)

Expanding in Taylor series the left-hand-side of Eq. (A1) in
powers of " and the right-hand-side in powers of �Y, we
obtain3As shown inRef. [9], this is a good approxiamtion forfNL<150.
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�"þ"
@�"

@Sn
þ"2

2

@2�"

@S2n
þ���

¼ 1ffiffiffiffi
�

p
Z Y�"��Ycffiffiffiffiffiffi

2"=a
p

�1
dx

�
2"

a

�n
2

�
xþ "�ffiffiffiffiffiffiffiffiffiffiffi

2"=a
p �

n
e�x2 : (A3)

It is worth noticing that the Markovian probability dis-
tribution starting at the barrier value Y0 ¼ YC vanishes inffiffiffi
"

p
, while for Y ¼ Y0 ¼ Yc, the first finite corrections to

the probability distribution function are in ". At order one
in " for Y ¼ Yc, this equation gives

@�"

@Sn
¼ a

2

@2�"

@Y2
� �

2

@�"

@Y
; (A4)

which has the same form as that of the Fokker-Planck
equation associated with the Markovian solution for the

DDB model in the continuous limit whose solution for a
barrier at a generic point Yc is given by Eq. (3.11) in
Ref. [9]. In such a case for Y ¼ Y0 ¼ Yc, the drifting
term stays in a factor of Gaussian minus anti-Gaussian.
Therefore, we can assume that

�"ðYc; Yc; SnÞ ¼ C"
e�a�2Sn=2

S3=2n

: (A5)

The value of the constant C can be evaluated using the
path-integral Eq. (2) for n ¼ 2 with Y0 ¼ Y2 ¼ Yc and the
explicit form of W0ð. . .Þ given by Eq. (A3) in Ref. [8].
Thus, equating Eq. (A5) on the left-hand-side to the result
of the integral over W0ð. . .Þ on the right-hand-side, we

obtain C ¼ ffiffiffiffiffi
a
2�

p
.
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