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In this paper, we study massless braneworld black holes as gravitational lenses. We find the weak and

the strong deflection limits for the deflection angle, from which we calculate the positions and

magnifications of the images. We compare the results obtained here with those corresponding to

Schwarzschild and Reissner-Nordström spacetimes, and also with those found in previous works for

some other braneworld black holes.
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I. INTRODUCTION

In braneworld cosmological models, the ordinary matter
is on a three-dimensional space called the brane, which
is embedded in a larger space denominated the bulk,
where only gravity can propagate. These models were
proposed to solve the hierarchy problem, i.e., the difficulty
in explaining why the gravity scale is sixteen orders of
magnitude greater than the electroweak scale. Motivated
by string theory (M-theory), they have received great
attention in recent years [1]. The properties of black holes
will be different due to the presence of the extra dimen-
sions [2]. In the simplest of the braneworld scenarios, the
Randall-Sundrum [3] model (a positive tension brane in a
bulk with one extra dimension and a negative cosmological
constant), primordial black holes formed in the high energy
epoch would have a longer lifetime [4], because of a
different evaporation law. These primordial black holes
could have a growth of their mass through accretion of
surrounding radiation during the high energy phase,
increasing their lifetime [5], so they might have survived
up to the present. Within these cosmological models, high-
energy collisions in particle accelerators or in cosmic rays
could also create black holes [2]. In the Randall-Sundrum
scenario, a spherically symmetric black hole solution on a
three-dimensional brane was found [6], characterized by a
tidal charge due to gravitational effects coming from the
fifth dimension. A general class of braneworld black holes
with spherical symmetry was presented in Ref. [7]. Within
this class, there are black hole solutions without mass, i.e.,
where the curvature is produced only by a tidal effect [7].

The discovery of supermassive black holes at the center
of galaxies, including our own, has led to a growing
interest in the study of black holes as gravitational lenses.
The observable quantities, such as the positions, magnifi-
cations, and time delays of the relativistic images,
produced by photons passing close to the photon sphere,

can be calculated by using the strong deflection limit, which
was introduced by Darwin [8] for the Schwarzschild
spacetime. This method, consisting in a logarithmic
approximation of the deflection angle, was rediscovered
by other authors [9], and then extended to the Reissner-
Nordström metric [10], and to any spherically symmetric
object with a photon sphere [11]. Numerical studies of
black hole lenses were also done [12]. Other interesting
works considering strong deflection lenses with spherical
symmetry can be found in Refs. [13–15]. In particular,
nonrotating braneworld black holes were analyzed as
lenses [16–19] in recent years. The optical effects of Kerr
black holes were analyzed by several authors [20–23]. The
apparent shapes or shadows of rotating black holes present
an optical deformation due to the spin, topic which has been
recently examined in several articles [22,24–26], in the
belief that direct observation of these objects will be pos-
sible in the near future [26]. Optical properties of rotating
braneworld black holes [27] were studied in Ref. [28].
A recent review of black hole lensing, with a discussion
of the observational prospects, can be found in Ref. [29].
In this article, we study massless black holes as gravi-

tational lenses, in the Randall-Sundrum braneworld
scenario. In Sec. II, we introduce the metric and we find
the exact expression of the deflection angle. In Sec. III, we
perform the weak deflection limit and we obtain the posi-
tions and magnifications of the primary and secondary
images. In Sec. IV, we find the strong deflection limit,
from which we calculate the positions and magnifications
of the relativistic images. Finally, in Sec. V, we present
a discussion of the results. We adopt units such that
G ¼ c ¼ 1.

II. DEFLECTION ANGLE

We start from the spherically symmetric geometry [7]:

ds2 ¼ �AðrÞdt2 þ BðrÞdr2 þ CðrÞðd�2 þ sin2�d�2Þ;
(1)

where the metric functions are given by
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AðrÞ¼1�h2

r2
;

BðrÞ�1¼
�
1�h2

r2

��
1þ ��hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2r2�h2
p

�
;

CðrÞ¼r2;

(2)

with � and h > 0 constants. It is useful to adimensionalize
all quantities with h, by introducing x ¼ r=h, T ¼ t=h, and
� ¼ �=h, so the metric takes the form

ds2 ¼ �AðxÞdT2 þ BðxÞdx2 þ CðxÞðd�2 þ sin2�d�2Þ;
(3)

where

AðxÞ ¼ 1� 1

x2
;

BðxÞ�1 ¼
�
1� 1

x2

��
1þ �� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2x2 � 1
p

�
;

CðxÞ ¼ x2:

(4)

If �> 0 the geometry corresponds to a black hole [7] with
a simple horizon at the surface xh ¼ 1, while if � ¼ 0 this
horizon is double. When �< 0, there is a symmetric
wormhole throat outside the horizon [7] with radius

xth ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1� �Þ2p

=
ffiffiffi
2

p
> 1, where BðxÞ�1 has a simple

zero. We are solely interested in black holes, so we adopt
�> 0. These braneworld black holes have no matter and
no mass, and they only exist as a tidal effect of the bulk
gravity [7]. The effective energy-momentum tensor on the
brane (see Ref. [7]) does not satisfy the null energy con-
dition (then the weak and strong energy conditions are also
violated) in the region outside the horizon, i.e., it is exotic.
The simplest metric corresponds to � ¼ 1, leading to
AðxÞ ¼ BðxÞ�1 ¼ 1� 1=x2, which can be identified as
the Reissner-Nordströmmetric with zero mass and a purely
imaginary charge, having the horizon at xh ¼ 1 and the
singularity at x ¼ 0. When 0 � �< 1, the horizon is at
xh ¼ 1, and the geometry have a point singularity at x ¼ 0

and a singular surface at x ¼ 1=
ffiffiffi
2

p
; between this surface

and the horizon there is a throat with radius 1=
ffiffiffi
2

p
< xth ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð1� �Þ2p
=

ffiffiffi
2

p � 1; note that the throat is covered by
the horizon, so we speak of a black hole instead of a
wormhole. In the case with �> 1, we have again the
horizon at xh ¼ 1, a point singularity at x ¼ 0, and a

singular surface at x ¼ 1=
ffiffiffi
2

p
, but the throat is not present

because the function BðxÞ�1 has no zeros.

The deflection angle for a photon coming from infinity
can be written as a function of the adimensionalized closest
approach distance x0 ¼ r0=h, in the form [14,30]

�ðx0Þ ¼ Iðx0Þ � �; (5)

where

Iðx0Þ¼
Z 1

x0

2
ffiffiffiffiffiffiffiffiffiffi
BðxÞp

dxffiffiffiffiffiffiffiffiffiffi
CðxÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Aðx0ÞCðxÞ½AðxÞCðx0Þ��1�1
p : (6)

The deflection angle � grows as x0 approaches to the
photon sphere radius xps, where diverges. Replacing the

metric functions (2) in Eq. (6), the exact deflection angle is
obtained, and it is plotted in Fig. 1 for different values of �.
In the case �> 1 the deflection angle becomes negative
from a certain value (larger than xps) to infinity.

III. WEAK DEFLECTION LIMIT

When x0 � xps, the deflection angle is small. Defining

the variables k ¼ x0=x and z ¼ 1=x0, the integral (6) has
the form

Iðx0Þ ¼ 2
Z 1

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p hðkÞdk; (7)

where

hðkÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�z2 � k2z2 þ 1Þ

h
1þ ð�1þ �Þz

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�z2 þ 2k�2

p ��1
ir : (8)

Expanding hðkÞ to first order in z ¼ 0, replacing it in the Eq. (7), integrating all the terms separately and rewriting
x0 ¼ 1=z, the deflection angle as a function of the closest approach distance, in the weak deflection limit, finally adopts
the form
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FIG. 1. The deflection angle � as a function of the (dimen-
sionless) closest approach distance x0 ¼ r0=h, for the cases
0<�< 1 (shown � ¼ 0:1, solid line), � ¼ 1 (dashed line)
and �> 1 (shown � ¼ 2, dotted line). Note that for �> 1 the
deflection angle becomes negative as x0 grows.

ERNESTO F. EIROA AND CARLOS M. SENDRA PHYSICAL REVIEW D 86, 083009 (2012)

083009-2



�ðx0Þ � ð1� �Þffiffiffi
2

p 1

x0
: (9)

It is convenient to express this angle in terms of the
dimensionless impact parameter u, which is related to the
closest approach distance x0 by [14,30]

u ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Cðx0Þ
Aðx0Þ

s
; (10)

so inverting it we have

x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2ðu2 � 4Þp
2

s
: (11)

Replacing Eq. (11) in Eq. (9) and making a first-
order expansion in 1=u, for large u the deflection angle
becomes

�ðuÞ � ð1� �Þffiffiffi
2

p 1

u
: (12)

The optical axis can be defined as the line joining the
observer (o) and the lens (l). The angular positions of the
source (s) and the images, seen from the observer, are �
(taken positive) and �, respectively. From the lens geome-
try it is clear that u ¼ dol sin� � dol�, with dol the adi-
mensionalized observer-lens angular diameter distance;
so the deflection angle in the weak deflection limit takes
the form

�ð�Þ � ð1� �Þffiffiffi
2

p
dol

1

�
: (13)

When 0<�< 1, the leading term of the deflection angle
is positive and for �> 1 this term becomes negative,
which is in accordance with Fig. 1. For � ¼ 1, the first
order term vanishes and a higher-order expansion is
required.

For a small deflection angle, i.e., light rays passing far
from the photon sphere, the lens equation is given by the
expression

� ¼ �� dls
dos

�; (14)

where dls and dos are the adimensionalized lens-source and
observer-source angular diameter distances, respectively.
For perfect alignment of the source, lens and observer
(� ¼ 0), the Einstein ring is formed, and for 0<�< 1
its radius is given by

�E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� �Þdlsffiffiffi

2
p

doldos

s
: (15)

In terms of this quantity and conserving only the 1=� term
in Eq. (13), when 0<�< 1 the deflection angle becomes

�ð�Þ � �2Edos
dls

1

�
: (16)

Replacing (16) in the lens equation (14), two solutions for
the angular positions of images are found:

�þ ¼ �þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 4�2E

q
2

(17)

and

�� ¼ ��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 4�2E

q
2

; (18)

corresponding to the primary and the secondary images.
If � ¼ 1, from Eq. (13) we see that the first order term

vanishes in the expansion of the deflection angle, so the
approximation adopted here (first order in 1=u) is no longer
valid. So, for� ¼ 1, higher order or numerical methods are
required to obtain the positions of the two weak deflection
images. When �> 1, the deflection angle is small and
negative for large values of x0, as it can be seen from
Fig. 1. In this case, the black hole then behaves like a
divergent lens. For small �, the lens equation (14) has no
real solutions, which means that the deflected photons
never reach the observer and no weak deflection images
are formed. Also, for � ¼ 0 the Einstein ring is not present
for large x0. As shown in Fig. 1, there is a value of x0 near
to the photon sphere but not too close to it, namely xz, for
which the deflection angle is zero. For any x0 larger than
xz, we have that�ðx0Þ< 0 and a similar reasoning as above
leads to no images for high alignment, and no Einstein ring
if � ¼ 0. But when x0 < xz the deflection angle is positive
and the lens is convergent. For values of x0 slightly smaller
than xz, the small and positive deflection angle gives way
to two images for high alignment and an Einstein ring if
� ¼ 0. In this case, the approximation given by Eq. (9) no
longer holds, and one has to rely on numerical methods for
obtaining the positions of the images, which is outside the
scope of our work.
The quotient of the solid angles subtended by the image

and the source gives the magnification:

� ¼
��������sin�sin�

d�

d�

��������
�1

; (19)

which for small angles reduces to

� ¼
����������

d�

d�

��������
�1

: (20)

For 0<�< 1, and using equations (17) and (18), the
magnifications of the primary and secondary images are
given by

�þ ¼

�
�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 4�2E

q �
2

4�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 4�2E

q ; (21)
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and

�� ¼

�
��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 4�2E

q �
2

4�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 4�2E

q : (22)

The magnifications of the weak deflection images are
plotted in Fig. 2, as functions of the angular position of
the source divided by the corresponding Einstein radius,
for the case 0<�< 1. Note that the magnifications in-
crease as � decreases, i.e., when the alignment is higher.

IV. STRONG DEFLECTION LIMIT

Now, we consider the case of the images produced by
photons passing close to the photon sphere. The radius xps
of the photon sphere is given by the largest positive solu-
tion of the equation

A0ðxÞ
AðxÞ ¼ C0ðxÞ

CðxÞ ; (23)

where the prime represents the derivative with respect to x.

For the massless black hole is the constant value xps ¼
ffiffiffi
2

p
.

We take the observer-source dos, observer-lens dol and the
lens-source dls angular diameter distances much greater
than the horizon radius xh. In this approximation, the lens
equation has the form [31]

tan� ¼ dol sin�� dls sinð�� �Þ
dos cosð�� �Þ : (24)

The lensing effects are more important when the objects
are highly aligned, so wewill only study this case, in which
the angles � and � are small, and � is close to an even
multiple of �. When � � 0 two infinite sets of point
relativistic images are obtained. The first set of relativistic
images have a deflection angle that can be written as
� ¼ 2n�þ��n, with n 2 N and 0<��n � 1. In this
approximation, the lens equation results [11,31]

� ¼ �� dls
dos

��n: (25)

For the other set of images, � ¼ �2n����n, then ��n

is replaced by���n in Eq. (25). For the calculation of the
deflection angle for photons passing close to the photon
sphere, following Ref. [11], it is useful to separate the
integral as a sum

Iðx0Þ ¼ IDðx0Þ þ IRðx0Þ; (26)

of a divergent part

IDðx0Þ ¼
Z 1

0
Rð0; xpsÞf0ðz; x0Þdz (27)

and a regular part

IRðx0Þ ¼
Z 1

0
½Rðz; x0Þfðz; x0Þ � Rð0; xpsÞf0ðz; x0Þ�dz;

(28)

where

z ¼ AðxÞ � Aðx0Þ
1� Aðx0Þ ; (29)

Rðz; x0Þ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðxÞBðxÞp

A0ðxÞCðxÞ ½1� Aðx0Þ�
ffiffiffiffiffiffiffiffiffiffiffiffi
Cðx0Þ

q
; (30)

fðz;x0Þ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðx0Þ�½ð1�Aðx0ÞÞzþAðx0Þ�Cðx0Þ½CðxÞ��1

p ;

(31)

and

f0ðz; x0Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
’ðx0Þzþ 	ðx0Þz2

p ; (32)

with

’ðx0Þ ¼ 1� Aðx0Þ
A0ðx0ÞCðx0Þ ½Aðx0ÞC

0ðx0Þ � A0ðx0ÞCðx0Þ�; (33)

and

	ðx0Þ ¼ ½1� Aðx0Þ�2
2½A0ðx0Þ�3½Cðx0Þ�2

f2½A0ðx0Þ�2Cðx0ÞC0ðx0Þ

� Aðx0ÞA00ðx0ÞCðx0ÞC0ðx0Þ þ Aðx0ÞA0ðx0Þ
� ½Cðx0ÞC00ðx0Þ � 2½C0ðx0Þ�2�g: (34)

When x0 � xps, it is easy to see that ’ � 0 and f0 � 1=
ffiffiffi
z

p
,

then the integral IDðx0Þ converges. But if x0 ¼ xps, by

using Eq. (33) we obtain that ’ ¼ 0 and f0 � 1=z, thus
IDðx0Þ has a logarithmic divergence. Then, IDðx0Þ is the
term which contains the divergence at x0 ¼ xps and IRðx0Þ
is regular because the divergence has been subtracted.
The impact parameter u is more easily connected to the
lensing parameters than x0; they are related by Eq. (10).
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FIG. 2. The magnifications of the primary (solid line) and
secondary (dashed line) images for 0<�< 1, as functions of
the quotient of the angular position of the source � and the
angular Einstein radius �E, which is a function of � and the
lensing distances (see text).
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The logarithmic divergence of the deflection angle for
photons passing close to the photon sphere, in terms of
the impact parameter, has the general form [11]

�ðuÞ ¼ �c1 ln

�
u

ups
� 1

�
þ c2 þOðu� upsÞ; (35)

where ups is the impact parameter evaluated at x0 ¼ xps,

c1 ¼
Rð0; xpsÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
	ðxpsÞ

q (36)

and

c2 ¼ ��þ cR þ c1 ln
2	ðxpsÞ
AðxpsÞ ; (37)

with

cR ¼ IRðxpsÞ: (38)

This logarithmic approximation is called the strong deflec-
tion limit. For the massless braneworld black hole, using

that xps ¼
ffiffiffi
2

p
, we obtain that ups ¼ 2, AðxpsÞ ¼ 1=2,

	ðxpsÞ ¼ 1=2, and Rð0; xpsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

p
=ð ffiffiffi

3
p � 1þ �Þ

q
. Then,

from Eqs. (36) and (37), we find that the coefficients of the
strong deflection limit are given by

c1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3
p

2ð ffiffiffi
3

p � 1þ �Þ

vuut (39)

and

c2 ¼ ��þ cR þ c1 ln2; (40)

where cR have to be calculated numerically for each value
of �, because the integral (28) cannot be obtained analyti-
cally. The strong deflection limit coefficients c1 and c2 are
plotted in Fig. 3.

The deflection angle given by Eq. (35) can
be written in terms of the image position �, since
u ¼ dol sin� � dol�:

�ð�Þ � �c1 ln

�
dol�

ups
� 1

�
þ c2: (41)

By inverting Eq. (41) and performing a first order Taylor
expansion around � ¼ 2n�, the angular position of the
n-th image is obtained:

�n ¼ �0n � 
n��n; (42)

where

�0n ¼
ups
dol

½1þ eðc2�2n�Þ=c1�; (43)

and


n ¼
ups

c1dol
eðc2�2n�Þ=c1 : (44)

Replacing �n in Eq. (25), ��n ¼ ð�n � �Þdos=dls. Putting
this expression in Eq. (42), we have

�n ¼ �0n � 
ndos
dls

ð�n � �Þ; (45)

then, using that 0< 
ndos=dls < 1 and keeping only the
first-order term in 
ndos=dls, the angular positions of the
images finally take the form

�n ¼ �0n þ 
ndos
dls

ð�� �0nÞ: (46)

The angular positions of the other set of the relativistic
images are obtained analogously, and are given by the
expression

�n ¼ ��0n þ 
ndos
dls

ð�þ �0nÞ: (47)

.
The magnification of the n-th relativistic image is

obtained from Eq. (19), with � replaced by �n; using
Eq. (46) and that the angles are small, we have

�n ¼ 1

�

�
�0n þ 
ndos

dls
ð�� �0nÞ

�

ndos
dls

; (48)

and performing a first order Taylor expansion in 
ndos=dls,
we finally obtain

�n ¼ 1

�

�0n
ndos
dls

: (49)
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FIG. 3. Strong deflection limit coefficients c1 and c2 as functions of the parameter �.
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For the other set of relativistic images, the expression of
the n-th magnification is also given by Eq. (49). From
Eq. (43) and (44), it can be seen that the magnifications
decrease exponentially with n, which means that the first
relativistic image is the brightest one. The magnifications
are very faint because they are proportional to ðups=dolÞ2,
which is a very small factor, unless the lens and the source
are highly aligned (� close to zero).

To relate the results obtained analytically with observa-
tions, following [11] we can define the observables:

�1 ¼ ups
dol

; (50)

s ¼ �1 � �1; (51)

and

r ¼ �1P1
n¼2 �n

: (52)

The quantity s is the angular separation between the posi-
tion of the first relativistic image and the limiting value of
the others �1, and r is the quotient between the flux of the
first image and the flux coming from all the other images.
As shown in Ref. [11], for high alignment, these expres-
sions can be reduced to the form

s ¼ �1eðc2�2�Þ=c1 ; (53)

and

r ¼ e2�=c1 : (54)

The values of these observables, as functions of � are
shown in Fig. 4. From the plots, we see that the relative
angular separation of the images decreases with �, and
the first image grows in intensity with respect to the others
as � increases. By measuring �1, s and r and inverting
Eqs. (53) and (54), the coefficients of the strong deflection
limit c1 and c2 can be calculated, and they can be compared
with the values predicted by the theoretical models to
identify the nature of the black hole acting as a lens.

V. DISCUSSION

In this article, we have studied the gravitational lensing
by braneworld black holes with no matter and mass. These
black holes are characterized by two parameters: h and �
(or �), which come from the tidal effects from the bulk on
the brane. The effective energy-momentum tensor is rather
peculiar, because it does not satisfy the usual energy con-
ditions in the region outside the horizon. We have analyzed
in detail the image production for high alignment, by using
the weak and the strong deflection limits.
The value of the parameter h that appears in the metric

functions gives the size of the object, i.e., rh ¼ h, so by
measuring �1 and the observer-lens distance one can
obtain h. As �1 should be large enough to be resolved
by the available or future instruments, h should be large for
distant black holes and can have smaller values if these
objects exist nearby. The parameter � is obtained from c1
and c2; although large values of � will be very difficult to
find, because in this case the first relativistic image is very
close to the others to be separated and it is also too bright
compared to them.
It is interesting to compare the results obtained in

the present work, with those corresponding to the spheri-
cally symmetric black hole solutions in General Relativity
[10,11], i.e., the Schwarzschild and theReissner-Nordström
geometries. For Schwarzschild black holes cSch1 ¼ 1 and

cSch2 ¼ ln½216ð7� 4
ffiffiffi
3

p Þ� � � � �0:4002, in our case

there is a small value of � for which c1 ¼ 1, but
c2 <�0:6 for any value of �. In the case of Reissner-
Nordström metric, cRN1 	 1 and grows with the absolute

value of the electromagnetic chargeQ, then for small� and
Q, the coefficients c1 and c

RN
1 can take the same value; but

c2 is clearly in a smaller range of values than cRN2 . Then, if

the strong deflection limit coefficients can be obtained from
observational data, the massless black hole studied in the
present work can be clearly distinguished from the
Schwarzschild and the Reissner-Nordström solutions.
We can also compare our results with those previously

obtained for two other braneworld black hole spacetimes.
In the case of the Myers-Perry geometry, the strong de-

flection limit coefficients [17] are cMP
1 ¼ ffiffiffi

2
p

=2 � 0:707
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FIG. 4. Strong deflection limit observables s=�1 and r as functions of the parameter �.
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and cMP
2 ¼ ffiffiffi

2
p

lnð4 ffiffiffi
2

p Þ � � � �0:691; we can see from
Fig. 3 that the pair of values fc1; c2g calculated here, never
coincide with fcMP

1 ; cMP
2 g, for any value of �. For tidal

charge black holes, from Fig. 4 of Ref. [18] one can see
that coefficient cTC1 grows with the tidal charge, while the

coefficient cTC2 decreases with it; by comparing with our

Fig. 3, it is clear that the black holes can be easily distin-
guished by their strong deflection limit coefficients.

The observation of the relativistic images is a major goal
in astrophysics, since they correspond to a full description
of the near horizon region of black holes. New observa-
tional facilities, most of them space-based, will be fully
operational in the next years, and will be able to measure in
the radio and X bands. We can mention three of them,
namely, RADIOASTRON, MAXIM and Event Horizon
Telescope. The first one is a space-based radio telescope,
launched in July 2011, which will be capable of carrying
out measurements with high angular resolution, about
1–10 �as [26,32]. The MAXIM project [33] is a space-
based X-ray interferometer with an expected angular
resolution of about 0:1 �as. The third one is a project

based on very long baseline interferometry, which proposes
to combine existing and planned millimeter/submillimeter
facilities into a high-sensitivity, high angular resolution
telescope [34]. Several observational aspects of the
Galactic center black hole, including some strong deflec-
tion features, are discussed in the recent review [35].
Nevertheless, it seems that subtle effects, like the compari-
son of different models of black holes corresponding to
alternative theories, will need of a second generation of
future instruments. If the braneworld model is a suitable
description of the Universe and the massless black holes
studied here exist, a very large resolution and a high
sensitivity will be necessary for the observation of the
effects discussed in this work.
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