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Direct observations of the Hubble rate, from cosmic chronometers and the radial baryon acoustic

oscillation scale, can outperform supernovae observations in understanding the expansion history, because

supernovae observations need to be differentiated to extractHðzÞ. We use existingHðzÞ data and smooth the

data using a new Gaussian processes package, GaPP, from which we can also estimate derivatives. The

obtained Hubble rate and its derivatives are used to reconstruct the equation of state of dark energy and to

perform consistency tests of the �CDM model, some of which are newly devised here. Current data are

consistent with the concordance model, but are rather sparse. Future observations will provide a dramatic

improvement in our ability to constrain or refute the concordance model of cosmology. We produce

simulated data to illustrate how effective HðzÞ data will be in combination with Gaussian processes.
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I. INTRODUCTION

Different methods and data sets are being used to recon-
struct the dark energy (DE) equation of state w ¼ pde=�de

and thereby also to test the concordance model (which has
w ¼ �1). The results vary significantly according to the
methods and data sets used, and the error bars and uncer-
tainties are large. It is clear that higher-precision data are
needed for an effective reconstruction and for robust test-
ing of models. But just as important, more effort is needed
to improve the statistical methods and the design of ob-
servational tests. In particular, there is a need for effective
model-independent statistical methods and for tests that
target the concordance model.

One of the most direct ways to reconstruct w is via
supernovae (SNIa) observations that give the luminosity
distance dL. Model-independent approaches to recon-
structing w have been developed [1–19]. SNIa observa-
tions lead indirectly to HðzÞ via the derivative d0LðzÞ. Then
we need the second derivative of dLðzÞ to reconstruct w.
This is very challenging for any reconstruction technique
since any noise on the measured dLðzÞ will be magnified in
the derivatives. The problem can be lessened if direct HðzÞ
data are used because only the first derivative needs to be
calculated to determine wðzÞ.

In this paper we focus on observations that directly give
HðzÞ. Presently, this may be derived from differential ages
of galaxies (‘‘cosmic chronometers’’) and from the radial
baryon acoustic oscillation (BAO) scale in the galaxy
distribution. Compared to SNIa observations, less HðzÞ
observational data are needed to reconstruct w with the
same accuracy. For the cosmic chronometer data, it has
been estimated [20] that 64 data points with the accuracy of
the measurements in Ref. [21] are needed to achieve the
same reconstruction accuracy as from the Constitution
SNIa data [22].

We use a model-independent method for smoothing
HðzÞ data to also perform consistency tests of the concord-
ance model (flat �CDM) and of curved �CDM models.
These consistency tests are formulated as functions of
HðzÞ and its derivatives which are constant or zero in
�CDM, independently of the parameters of the model
(see Ref. [23] for a review). Deviations from a constant
function indicate problems with our assumptions about DE,
theory of gravity, or perhaps something else, butwithout the
usual problems of postulating an alternative to �CDM.
Some of the tests we use here are given for the first time.
Gaussian processes (GP) provide a model-independent

smoothing technique that can meet the challenges of re-
constructing derivatives from data [24,25]. We follow the
same GP approach that has been applied to supernova data
in a previous work [19] by some of the authors of this
paper. We use GaPP (Gaussian Processes in Python), their
publicly available code.1 (See Refs. [14,18] for different
uses of GP in this context.) A brief description of the GP
algorithm is given in the Appendix .

II. TESTING �CDM

The Friedmann equation,

h2ðzÞ � H2ðzÞ
H2

0

¼ �mð1þ zÞ3 þ�Kð1þ zÞ2 þ ð1��m ��KÞ

� exp

�
3
Z z

0

1þ wðz0Þ
1þ z0

dz0
�
; (1)

can be rearranged to give

1http://www.acgc.uct.ac.za/~seikel/GAPP/index.html.
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wðzÞ�pde

�de

¼ 2ð1þzÞhh0 �3h2þ�Kð1þzÞ2
3½h2��mð1þzÞ3��Kð1þzÞ2� : (2)

In principle, given hðzÞ data we can smooth it, attempt to
estimate its derivative, and reconstruct wðzÞ. However,
reconstruction of wðzÞ is compromised by various difficul-
ties. It depends on the values of �m and �K, so we need
independent information about these parameters when we
reconstruct wðzÞ from HðzÞ data. These are difficult to
estimate without assuming a form for wðzÞ [26–28].

These difficulties reflect the fact that we cannot use data
to construct physical models—rather, we need to use data
to test physical models. The �CDM model could be tested
by looking for deviations from w ¼ �1. However, there is
a more focused approach: to develop null hypotheses for
�CDM, independently of the parameters�m and�K [23].

To test the concordancemodel—i.e., flat�CDM—we can
use (1) to define a diagnostic function of redshift [29–31]:

O ð1Þ
m ðzÞ � h2 � 1

zð3þ 3zþ z2Þ : (3)

Then

O ð1Þ
m ðzÞ ¼ �m implies the concordance model:

IfOð1Þ
m ðzÞ is not a constant, this is a signal of an alternativeDE

ormodified gravity model. Given observed hðzÞ data, we can
estimate confidence limits forOð1Þ

m . If these are not consistent

with a constant value, we can rule out the concordance
model.
It is more effective to measure deviations from zero than

from a constant. The more effective diagnostic is thus the

vanishing of the derivative Oð1Þ0
m ðzÞ. This is equivalent to

Lð1Þ ¼ 0, where [29]

L ð1Þ � 3ð1þ zÞ2ð1� h2Þ þ 2zð3þ 3zþ z2Þhh0: (4)

The null test is therefore

L ð1Þ � 0 falsifies the concordance model:

To apply this test, we need to reconstruct h0ðzÞ from the
data.
If the concordance model is ruled out, it is still possible

that a curved �CDM model describes the Universe.
Equations (1) and (2) (with w ¼ �1) form a linear system
for�m and�K. Solving for these parameters we can define

O ð2Þ
m ðzÞ � 2

ð1þ zÞð1� h2Þ þ zð2þ zÞhh0
z2ð1þ zÞð3þ zÞ ; (5)

O KðzÞ�3ð1þzÞ2ðh2�1Þ�2zð3þ3zþz2Þhh0
z2ð1þzÞð3þzÞ ; (6)

and we have

Oð2Þ
m ðzÞ ¼ �m implies�CDM;

OKðzÞ ¼ �K implies�CDM:
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FIG. 1 (color online). hðzÞ ¼ HðzÞ=H0 (top) and h0ðzÞ (bottom) reconstructed from cosmic chronometer data (left), BAO data
(middle) and CCþ BAO data (right), using GP. Shaded areas represent 68% and 95% CL. The dashed (red) curve is flat �CDM with
�m ¼ 0:27; the solid (blue) curve is the GP mean. Note that while the BAO data appear to give an inconsistent h0ðzÞ, this is driven by
the two highest redshift points, both of which happen to lie below the flat �CDM curve.
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These quantities are equivalent to those derived in
Ref. [32] in terms of DðzÞ, the dimensionless comoving
luminosity distance. The DðzÞ forms contain second
derivatives D00 whereas the hðzÞ forms above contain
only first derivatives h0. Given observed Hubble rate data
from which we can estimate the derivative h0ðzÞ, we can

then estimate confidence limits for Oð2Þ
m ðzÞ and Oð2Þ

K ðzÞ. If
these are not consistent with a constant value, we can rule
out�CDM in general, and conclude that DE hasw � 1 (or
there is modified gravity).

The more effective diagnostic of these consistency tests
is the vanishing of the derivatives of (5) and (6). The

vanishing of Oð2Þ0
m is equivalent to Lð2Þ ¼ 0, where

Lð2ÞðzÞ � 3ð1þ zÞ2ðh2 � 1Þ � 2zð3þ 6zþ 2z2Þhh0
þ z2ð3þ zÞð1þ zÞðh02 þ hh00Þ: (7)

Then

L ð2ÞðzÞ � 0 falsifies�CDM:

The vanishing of Oð2Þ0
K does not give any independent

information—it is also equivalent to Lð2Þ ¼ 0.
Given observations of hðzÞ, we can construct this func-

tion independently of the parameters of the model and test
�CDM by measuring consistency with zero. This has the
advantage that it is easier to detect deviations from zero
rather than a constant, but at the expense of requiring an
extra derivative in the observable. This is akin to detecting
deviations from constant in w, but without reliance on the
parameters of the model.
For the application of these consistency tests, it is crucial

to use a model-independent method to reconstruct Oð1Þ
m ,

Oð2Þ
m , OK, Lð1Þ and Lð2Þ. Model-dependent approaches

have the problem that they affect or even determine the
outcome of the consistency test: while fitting a �CDM
model to the data would always lead to a result that is
consistent with �CDM, fitting a model that does not
include �CDM as a special case would result in incon-
sistencies with �CDM. The only model-dependent
approaches that do not entirely determine the outcome of
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FIG. 2 (color online). Oð1Þ
m ðzÞ (top), Oð2Þ

m ðzÞ (middle) and OKðzÞ (bottom) reconstructed from cosmic chronometers (left), BAO

(middle) and CCþ BAO (right). ForOð1Þ
m ðzÞ, the dashed (red) curve is flat �CDM. ForOð2Þ

m ðzÞ andOKðzÞ it is a curved �CDM model.
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the test are those assuming a model which includes�CDM
as a special case. Nevertheless, they affect the result by
forcing the data into a specific parametrization, which
might not reflect the true model. The only way to avoid
this problem is to use a nonparametric approach. Here, we
use GP, which are described in the Appendix .

III. RECONSTRUCTION AND CONSISTENCY
TESTS FROM HðzÞ DATA

Cosmic chronometers are based on observations of the
differential ages of galaxies [21,33–35]. The Hubble rate at
an emitter with redshift z is

HðzÞ ¼ � 1

1þ z

dz

dte
; (8)

where te is the proper time of emission. The differential
method uses passively evolving galaxies formed at the

same time to determine the age difference �te in a
small redshift bin �z, assuming a Friedmann back-
ground. To find old galaxies sharing the same formation
time, we have to look for the oldest stars in both galaxies
and show that they have the same age. This method is
effective; but while the differential approach signifi-
cantly reduces the systematics that would be present
when determining the absolute ages of galaxies, it still
faces uncertainties due to the assumptions that are made
to estimate the age.
The second way to measureHðzÞ is the observed line-of-

sight redshift separation �z of the BAO feature in the
galaxy 2-point correlation function [36–38],

HðzÞ ¼ �z

rsðzdÞ ; (9)

where rsðzdÞ is the sound horizon at the baryon drag epoch.
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FIG. 4 (color online). wðzÞ reconstructed from cosmic chronometers (left), BAO (middle—note the different z range) and CCþ
BAO (right) by marginalizing over �m ¼ 0:275� 0:016. The dashed (red) curve is a �CDM model.
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A. Results: real data

We use the following HðzÞ data sets:
CC: 18 cosmic chronometer data points [39].
BAO: 6 radial BAO data points [36–38].
CCþ BAO: Combination of CC and BAO sets.
We normalize HðzÞ using H0 ¼ 70:4�

2:5 km s�1 Mpc�1. The uncertainty in H0 is transferred to
hðzÞ as �2

h ¼ ð�2
H=H

2
0Þ þ ðH2=H4

0Þ�2
H0
. The reconstructed

functions hðzÞ and h0ðzÞ are shown in Fig. 1. The shaded
regions correspond to the 68% and 95% confidence levels
(CL). The true model is expected to lie 68% of the plotted
redshift range within the 68% CL. Note that this is only an
expectation value. The actual value for a specific function
may deviate from the expectation. The dependence of the
actual percentage on the smoothness of the function has
been analyzed in Ref. [19].

Figure 2 shows the reconstruction of Oð1Þ
m . The recon-

struction ofOð2Þ
m andOK is shown in Figs. 2 and 3 givesLð1Þ

and Lð2Þ. We actually plot a modified Lm ¼ L=ð1þ zÞ6
which stabilizes the errors at high redshift without affecting

the consistency condition. The reconstructed wðzÞ, also re-
quiring h0, is shown in Fig. 4, where we assume the con-
cordance values�m ¼ 0:275� 0:016 and�K ¼ 0 [40].

B. Results: mock data

To demonstrate how a larger number of data will affect
our results when reconstructing w and testing �CDM, we
simulated a data set of 64 points forHðzÞ, drawing the error
from a Gaussian distribution N ð ��; �Þ with �� ¼ 10:64zþ
8:86 and � ¼ 0:125ð12:46zþ 3:23Þ, adapting the method-
ology of Ref. [20].
We simulated data points for two different models:

Concordance model, �K ¼ 0, �m ¼ 0:27.
A model with a slowly evolving equation of state:

wðzÞ ¼ � 1

2
þ 1

2
tanh3

�
z� 1

2

�
; (10)

and the same concordance density parameters.
The GP reconstructions are shown in Figs. 5–8.
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FIG. 5 (color online). hðzÞ (top), h0ðzÞ (middle) and h00ðzÞ (bottom) reconstructed from simulated data, assuming a concordance
model (left) and model (10) with slowly evolving wðzÞ (right).
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C. Discussion

Figure 2 shows that for the CC and CCþ BAO data
(18 and 24 points), we get good reconstructions when
there is no differentiation of hðzÞ involved. The BAO
data set only contains six data points up to redshift
0.73. Beyond that redshift, the reconstruction differs
significantly from �CDM. The results from the CC and
CCþ BAO sets are however in very good agreement
with �CDM.

The BAO data appear to be inconsistent with the con-
cordance model. However, six data points are not sufficient
for a reliable reconstruction. The two data points with
highest redshift happen to be below the concordance curve,
which pulls the reconstructed curve down. This is probably
just a coincidence, but it illustrates the importance of
having the derivative of the data consistent with the model,
as well as the data itself. Current and upcoming large-
volume surveys, such as BOSS [41], EUCLID [42] and
SKA [43], will provide radial BAO measurements of in-
creasing number and precision.

The reconstruction of Oð2Þ
m and OK shown in Fig. 2 is

more challenging for the available data set, since we
need the first derivative of h. With present data sets,
the uncertainties in the reconstruction are quite large.
Using CC and CCþ BAO, these results, as well as the

results for Lð1Þ and Lð2Þ shown in Fig. 3, are consistent
with �CDM.
For the mock data sets, Figs. 5 and 6 show that the GP

reconstructions recover the assumed models very effec-
tively. We can clearly distinguish the model with slowly

evolving wðzÞ from �CDM in Oð1Þ
m . For Oð2Þ

m and OK, the
reconstruction errors are too large to see this difference.

The same is true for consistency tests Lð1Þ and Lð2Þ shown
in Fig. 7.
The reconstruction of the equation of state wðzÞ also

shows a clear difference of the two models, assuming we
can accurately determine H0, �m and �K separately from
wðzÞ: see Fig. 8. GP works very well to recover the
assumed w. With less than 100 data points, we can recon-
struct a dynamical DE model far better than is achievable
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using thousands of SNIa data—compare to analogous
reconstructions in Ref. [19].

IV. CONCLUSIONS

We have considered the information that current and
future HðzÞ data can give us. Currently such data come
from cosmic chronometers and BAO data, and are plainly
consistent with the concordance model. Future data,
however, will provide a powerful discriminator between
models. It is remarkable how few data points are required
compared to supernovae: to reconstruct wðzÞ accurately in
our nonparametric way requires many thousands of SNIa,
compared to less than 100HðzÞ data points.

We have derived and analyzed new consistency tests for
the �CDM model, which we have formulated in terms of
HðzÞ directly, rather than using the more familiar distance

function [23,32]. By smoothing the data points using GP,
we have shown that these can be very effective in deter-
mining that �CDM is the incorrect model, but without
having to assume the key parameters �m and �K, which
currently only have constraints derived by assuming
�CDM or a similar alternative. These tests not only require
that the data points themselves are consistent with the
model, but that their derivative is also.
Future datawhich directlymeasure the expansion history

will therefore play an important role in future DE studies.
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FIG. 8 (color online). wðzÞ reconstructed from simulated data, assuming a concordance model (left) and model (10) (right), by
marginalizing over �m ¼ 0:275� 0:016.
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APPENDIX: GAUSSIAN PROCESSES

For a data set fðzi; yiÞji ¼ 1; . . . ; ng, where Z represents
the training points zi, i.e., the locations of the observations,
we want to reconstruct the function that describes the data
at the test input points Z�.

A GP is a distribution over functions and is thus a
generalization of a Gaussian distribution. It is defined by
the mean �ðzÞ and covariance kðz; ~zÞ:

fðzÞ �GP ð�ðzÞ; kðz; ~zÞÞ: (A1)

At each zi, the value fðziÞ is drawn from a Gaussian distri-
bution with mean �ðziÞ and variance kðzi; ziÞ. fðziÞ and
fðzjÞ are correlated by the covariance function kðzi; zjÞ.

Choosing the covariance function is one of the main
points for achieving satisfactory results. The squared ex-
ponential is a general purpose covariance function, which
we use throughout this paper:

kðzi; zjÞ ¼ �2
f exp

�
�ðzi � zjÞ2

2‘2

�
: (A2)

The ‘‘hyperparameters’’ are �f (signal variance) and ‘

(characteristic length scale). ‘ can be thought of as the
distance moved in input space before the function value
changes significantly. �f describes the typical change in y

direction. In contrast to actual parameters, they do not
specify the exact form of a function, but describe typical
changes in the function value.

For Z�, the covariance matrix is given by
½KðZ�;Z�Þ�ij ¼ kðz�i ; z�j Þ. Then the vector f� with entries

fðz�i Þ is drawn from a Gaussian distribution:

f � �N ð�ðZ�Þ; KðZ�;Z�ÞÞ: (A3)

This can be considered as a prior for the distribution of f�.
One needs to add observational information to obtain the
posterior distribution.

The observational data have a covariance matrix C. For
uncorrelated data, C is a diagonal matrix with entries �i.
The combined distribution for f� and the observations y is
given by

y

f�

" #
�N

0
@ �

��

" #
;

KðZ;ZÞ þ C KðZ;Z�Þ
KðZ�;ZÞ KðZ�;Z�Þ

" #1A:
(A4)

While the values of y are already known, we want to
reconstruct f�. Thus, we are interested in the conditional
distribution

f �jZ�;Z; y�N ð �f�; covðf�ÞÞ; (A5)

where

�f � ¼ �� þ KðZ�;ZÞ½KðZ;ZÞ þ C��1ðy��Þ; (A6)

cov ðf�Þ¼KðZ�;Z�Þ�KðZ�;ZÞ½KðZ;ZÞþC��1KðZ;Z�Þ;
(A7)

are the mean and covariance of f�, respectively. The
variance of f� is simply the diagonal of covðf�Þ. Equation
(A5) is the posterior distribution of the function given the
data and the prior (A3).
In order to use this equation, we need to know the values

of the hyperparameters �f and ‘. They can be trained by

maximizing the log marginal likelihood:

lnL ¼ lnpðyjZ; �f; ‘Þ
¼ � 1

2
ðy��ÞT½KðZ;ZÞ þ C��1ðy��Þ

� 1

2
lnjKðZ;ZÞ þ Cj � n

2
ln2�: (A8)

Note that this likelihood only depends on the observational
data, but is independent of the locations Z� where the
function is to be reconstructed.
Derivatives of the function can be reconstructed in a

similar way. For the first derivative, the conditional distri-
bution is given by [19]

f �0jZ�;Z; y�N ð �f�0; covðf�0ÞÞ; (A9)

where

�f �0 ¼��0þK0ðZ�;ZÞ½KðZ;ZÞþC��1ðy��Þ; (A10)

covðf�0Þ¼K00ðZ�;Z�Þ
�K0ðZ�;ZÞ½KðZ;ZÞþC��1K0ðZ;Z�Þ: (A11)

For the covariance matrices, we use the following notation:

½K0ðZ;Z�Þ�ij ¼
@kðzi; z�j Þ

@z�j
; (A12)

½K00ðZ�;Z�Þ�ij ¼
@2kðz�i ; z�j Þ
@z�i @z�j

: (A13)

K0ðZ�;ZÞ is the transpose of K0ðZ;Z�Þ.
To calculate a function gðf; f0Þ which depends on f

and f0, we also need to know the covariances between
f� ¼ fðz�Þ and f�0 ¼ f0ðz�Þ at each point z� where g is
to be reconstructed. This covariance is given by

covðf�; f�0Þ ¼ @kðz�; ~zÞ
@~z

��������z�

� K0ðz�;ZÞ½KðZ;ZÞ þ C��1KðZ; z�Þ:
(A14)

g� ¼ gðz�Þ is then determined by Monte Carlo sampling,
where in each step f� and f�0 are drawn from a multivariate
normal distribution:

f�

f�0

" #
�N

0
@ �f�

�f�0

" #
;

varðf�Þ covðf�; f�0Þ
covðf�; f�0Þ varðf�0Þ

" #1A:
(A15)
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