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The observations of gravitational-wave signals from astrophysical sources such as binary inspirals will

be used to test general relativity for self-consistency and against alternative theories of gravity. I describe a

simple formula that can be used to characterize the prospects of such tests, by estimating the matched-

filtering signal-to-noise ratio required to detect non-general-relativistic corrections of a given magnitude.

The formula is valid for sufficiently strong signals; it requires the computation of a single number, the

fitting factor between the general-relativistic and corrected waveform families; and it can be applied to all

tests that embed general relativity in a larger theory, including tests of individual theories such as Brans-

Dicke gravity, as well as the phenomenological schemes that introduce corrections and extra terms in the

post-Newtonian phasing expressions of inspiral waveforms. The formula suggests that the volume-limited

gravitational-wave searches performed with second-generation ground-based detectors would detect

alternative-gravity corrections to general-relativistic waveforms no smaller than 1%–10% (corresponding

to fitting factors of 0.9 to 0.99).
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I. INTRODUCTION AND MAIN RESULTS

The possibility of performing high-precision tests of
general relativity (GR) in its dynamical, strong-gravity
regime [1] is perhaps the most exciting prospect of the
budding field of gravitational-wave (GW) astronomy [2].
Several authors have carried out detailed analyses of such
tests for both ground-based and space-based GW detectors
[3–25]; by and large, the tests proposed so far belong in
two classes.

In the first, GR is tested against specific alternative
theories, such as scalar-tensor or massive-graviton theo-
ries, which recover GR for particular value of one or more
additional parameters, such as the Brans-Dicke coupling
constant, or the graviton mass [3–18]. Thus, the strength of
the tests is characterized by the accuracy with which the
alternative-theory parameters can be measured and either
found to be consistent with GR, or to deviate from it.

In the second class of tests, GR is tested for self-
consistency by treating some of the coefficients in the
post-Newtonian (PN) expansion of the phasing as free
variables rather than deterministic functions of the source
parameters, and verifying whether the recovered values
are consistent with GR predictions [19–22]. The strength
of these tests is characterized by the amplitude of the
deviations from GR that could be discerned in the PN
coefficients. More general tests are possible with the
parametrized post-Einstein (ppE) formalism [23,26],
which, in addition to modifying the PN coefficients, adds
extra terms to the PN amplitude and phasing and to the
merger and ringdown waveforms, and recovers individual
alternative theories for specific forms of the extra terms.

As advocated in [24,25], GR-by-GW tests find a more
satisfying formulation in Bayesian model selection
[27,28], which compares the Bayesian evidence, given

the observed data s, for the alternative-theory/modified-
GR scenario (henceforth ‘‘AG,’’ for ‘‘alternative gravity’’)
and for the Einstein-GR hypothesis. Model selection was
applied to the PN consistency tests in Refs. [24,29,30], and
to ppE inspiral waveforms in [25]. (For a comprehensive
discussion of model selection in the context of GW detec-
tion, rather than GR tests, see also Refs. [31–34].) To wit,
in model selection we compute the Bayesian odds ratio,

O ¼ PðAGjsÞ
PðGRjsÞ ¼

PðAGÞRpðsj�i;aÞpð�i;aÞd�i;a
PðGRÞRpðsj�iÞpð�iÞd�i ; (1)

where PðAGÞ and PðGRÞ are the prior probabilities
assigned to the AG and GR hypotheses; �i and �a are the
source parameters (masses, spins, etc.) and additional AG
parameters, respectively; pðsj�Þ is the likelihood of the
observed data s given �; and pð�Þ is the prior probability
distribution for �.1 The odds ratio describes the degree to
which we should prefer one hypothesis over the other after
having observed the data, and it incorporates the Bayesian
law of parsimony (also known as Occam’s razor)—
although models with additional parameters will always
fit the data better, they will be relatively disfavored by the
improbability that more parameters assume particular
values in their prior ranges [27,28].
A cogent way of understanding the statistical signifi-

cance of odds ratios is to set up a decision scheme based on
the value of O [30,31]. Namely, we declare that we have
detected AG whenever O is greater than a set threshold
Othr. We set Othr by requiring a given false-alarm rate F:
this is the fraction of observations in which the underlying
signal is GR, but O happens to pass the threshold. F gets

1In this paper we forgo annotating probabilities with the
customary conditional dependence on ‘‘all other’’ assumptions,
usually denoted as I.
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smaller the more averse we are to falsely claiming AG
detection, and its choice in practice should be guided by the
prior PðAGÞ. Now, for a given Othr, the efficiency E of
detection is the fraction of observations in which the under-
lying signal is AG, and O passes the threshold, so AG is
detected correctly.2 Away of understanding the strength of
a test of GR is then to choose a reasonably low F (say,
10�4) and ask how strong an AG effect and how loud a GW
signal we would need to detect AG with reasonably high E
(say, 1=2, but it turns out in practice that E rises sharply
after that).

In Ref. [25], Cornish and colleagues point out that the
odds ratio for AG over GR grows with the signal-to-noise
ratio (henceforth, SNR) of the residual obtained after the
best-fit GR waveform has been subtracted from the data;
thus, alternative models that are not fit well by varying the
GR parameters can be detected more easily than models
that are. Indeed, Cornish and colleagues show that in the
limit of large signal SNR and small AG deviations the
logarithm of the odds ratio scales as ð1� FFÞSNR2,
with FF the fitting factor [36] between the GR and AG
waveforms:

FF ð�AGÞ ¼ max
�GR

ðhGRð�GRÞ; hAGð�AGÞÞ
jhGRð�GRÞjjhAGð�AGÞj : (2)

Here hGRð�GRÞ and hAGð�AGÞ are the GR and AG wave-
form families (so �GR � �i and �AG � �i;a), and ð�; �Þ is
the standard noise-weighted inner product, such that the
sampling probability of a Gaussian-noise realization n is

/ e�ðn;nÞ=2, and the optimal matched-filtering SNR of an

observed signal h is its norm jhj�ðh;hÞ1=2 (see, e.g., [37]).
In the FF, the parameters �AG are fixed by the AG wave-
form contained in the data, and the inner product is maxi-
mized over �GR. The FF is by definition independent of
SNR, and it tends to one when the AG corrections vanish or
can be completely reabsorbed by varying �GR.

In this paper, I formalize and generalize this scaling
statement by deriving the full expression of the odds ratio
for the AG and GR hypotheses, in the limit of large SNR;
the result is valid when AG embeds GR, which is the case
for all classes of tests discussed above3 (see Sec. II).
Moreover, I derive the decision-scheme statistics for the
resultingO, and show that the efficiency EðFÞ is a remark-
ably simple function [Eq. (19), a combination of the error

function and its inverse] of the effective signal-to-noise

ratio SNR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� FF

p
(see Sec. III). No other information

about the waveforms is needed.
Thus, AG detection by model comparison allows us to

characterize very generally both kinds of tests discussed
above, by computing the SNR required to positively detect
an AG correction as a function of its FF. Given the sensi-
tivity curve of the detector and the projected detection rates
for a source class, we can then derive the magnitude of the
AG corrections that we expect to be able to constrain in our
observation campaigns. The FF can be computed from the
GRFishermatrix using the formulas ofRef. [38], or directly
by maximizing the normalized product (2) over �GR.
The AG-detection SNR is shown in Fig. 1 for

F ¼ 10�8–10�4, and it is a rather exacting function of
1� FF. For the typical observations produced by volume-
limited searches, which have SNRs at the event-detection
threshold ( ’ 8), only 10% AG corrections (1� FF ¼ 0:1)
would be detectable, although for most waveform families
the strong-signal approximationwould not be appropriate at
such low SNRs [39]. The required SNR grows roughly
threefold for each decade of 1� FF, to SNR * 30 for 1%
effects, SNR * 100 for one-in-a-thousand effects, and
SNR * 1; 000 for one-in-ten-thousand effects.
We can also compute easily the total volume-limited

detection rates that would yield one event strong enough
(on the median) to detect AG corrections with a given
1� FF (see Sec. III); these are shown on the right-side
vertical axis of Fig. 1. Comparison with the expected
binary-inspiral detection rates for second-generation
ground-based detectors [40] suggests that precise tests of
GR would have to wait for the much higher rates afforded
by third-generation detectors [41]. Even pooling together
the evidence from all observed events [42] may not help
much, reducing the number of required detections by a
factor of only a few, because the evidence is dominated by
the few loudest sources (see again Sec. III). By contrast,
space-based observatories such as the LISA concept [43]

FIG. 1 (color online). SNR required for AG detection with
efficiency E ¼ 1=2, with false-alarm probability F ¼ 10�4 and
10�8, as a function of FF. The right-side vertical axis shows the
number of events required in a volume-limited search with
detection threshold of 8 to yield a loudest event with the
(median) SNR on the left-side vertical axis.

2The performance of decision schemes is characterized by
their receiver operating characteristic EðFÞ [35]. Note that the
term ‘‘fraction,’’ used above in defining F and E, is ideally the
fraction of an infinite number of observations of the same GW
signal immersed in different realizations of noise. This charac-
terization of decision schemes is therefore a frequentist state-
ment (about the Bayesian statistic O), but one that this Bayesian
author finds very reasonable.

3I thank Curt Cutler for pointing out that this is true also for
the PN-coefficient tests.
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(or its latest incarnation, the European-led eLISA [44]) are
not volume limited for some source classes, and would see
some events with large SNRs.

The rest of this paper is organized as follows: in Sec. II,
I derive the odds ratio in the two cases where the under-
lying signal is AG and GR; in Sec. III, I study the statistics
of the AG decision scheme; in Sec. IV, I discuss the
significance and applications of these results.

II. AG-GR ODDS RATIO IN THE HIGH-SNR LIMIT

In the following, we let �i be the m-dimensional vector
of GR parameters, and �� � ð�i; �aÞ the vector of AG
parameters, which augments �i with the single AG parame-
ter �a; the derivation can be extended easily to more
AG parameters. We write the true signal as hAGð��trueÞ ¼
h0 þ �h, with h0 a GR signal, and �h the AG correction,
with magnitude proportional to �atrue.

In a sufficiently small neighborhood of ��true, the signal
can be expanded as hAGð��Þ ¼ h0 þ �hþ���h�, with

��� ¼ �� � �
�
true and h� � @h=@��, evaluated at h0. If

the SNR is sufficiently large, this approximation is valid
throughout the region of parameter space that supports
most of the likelihood [39].

We can now compute the value PðAGjsAGÞ of the
evidence for the AG hypothesis when the data contain an
AG signal, sAG ¼ hAGð��trueÞ þ n. The likelihood can be
written as

pðsAGj���Þ ¼ N e�jsAG�hð��Þj2=2 ¼ N e�jn����h�j2=2;
(3)

and it is maximized by ��
�
ML ¼ ðG�1Þ��ðn; h�Þ, with

G�� ¼ ðh�; h�Þ the ðmþ 1Þ-dimensional AG Fisher

matrix. Switching to parameters ��� ¼ ��� � ���ML

that describe displacements around the maximum, we
resum the exponential as

pðsAGj���Þ ¼ N e�jnj2=2þðG�1Þ��ðn;h�Þðn;h�Þ=2�G����
����=2:

(4)

The evidence follows by integrating out the ���, which we
do under the assumptions of flat priors pð��Þ ¼ 1=��

�
prior

in the relevant region of parameter space, large enough to
encompass the Fisher-matrix exponential:

PðAGjsAGÞ ¼ PðAGÞ
Z

pð��ÞpðsAGj���Þ

¼ PðAGÞ ð2�Þ
ðmþ1Þ=2 ffiffiffiffiffiffiffiffiffiffiffiffijG�1jp
Q
�
���prior

�N e�jnj2=2þðG�1Þ��ðn;h�Þðn;h�Þ=2: (5)

This expression can be understood as the product of the
maximum likelihood (the normalized exponential) with the
prior PðAGÞ and the Bayesian Occam factor (the fraction),
which weighs (by volume) the region of uncertainty for
the AG parameters after the observation with the region
allowed by their priors. In the high-SNR limit, the posterior
region of uncertainty is just the Fisher 1-� ellipsoid, which

has volume proportional to
ffiffiffiffiffiffiffiffiffiffiffiffijG�1jp

. The second term in the
exponential is the enhancement of likelihood due to over-
fitting noise: this is a random variable (a function of the
noise realization) with expectation value4 equal to mþ 1.
We repeat this computation for the GR hypothesis,

expanding the signal as hGRð�iÞ ¼ h0 þ ��ihi, with
��i ¼ �i � �itrue, and integrating over ��i ¼ ��i �
ðF�1Þijðnþ�h; hjÞ, with Fij the m-dimensional GR

Fisher matrix. From the point of view of GR waveforms,
�h behaves as an additional noise component. Thus,

PðGRjsAGÞ ¼ PðAGÞ ð2�Þ
m=2

ffiffiffiffiffiffiffiffiffiffiffiffijF�1jp
Q
i
��iprior

�N e�jnþ�hj2=2þðF�1Þijðnþ�h;hiÞðnþ�h;hjÞ=2;

(6)

where Fij � ðhi; hjÞ is the m-dimensional Fisher matrix.

We can now form the odds ratio OAG¼PðAGjsAGÞ=
PðGRjsAGÞ, using the shorthand X� � ðX; h�Þ:

OAG ¼ pðAGÞ
pðGRÞ

ð2�Þ1=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijG�1j=jF�1jp
��AGprior

e½j�hj2�ðF�1Þij�hi�hj�=2þ½ð�h;nÞ�ðF�1Þij�hinj�þ½ðG�1Þ��n�n��ðF�1Þijninj�=2; (7)

this expression can be simplified considerably by noting
that ðF�1Þijhiðhj; �Þ acts as the linear projector PGR onto
the local tangent space of signal derivatives taken with
respect to GR parameters, so

j�hj2 � ðF�1Þij�hi�hj ¼ jð1� PGRÞ�hj2;
ð�h; nÞ � ðF�1Þij�hinj ¼ ðð1� PGRÞ�h; nÞ;

(8)

thus it is only the component �h? � ð1� PGRÞ�h of the
AG correction that enters the odds ratio; this is indeed
the residual that cannot be reabsorbed by shifting the

estimated values of the GR parameters, and the larger the
�h?, the more evidence there is for the AG hypothesis.
The Occam factor and noise-overfitting contributions to

themaximum likelihood also bear some simplification: using
the block-matrix decomposition of G�� and its inverse,

4From the definition of inner product as ða; bÞ ¼
4Re

R
a�ðfÞbðfÞ=SnðfÞdf and the definition of noise spectral

density Sn from hn�ðfÞnðf0Þi ¼ SnðfÞ�ðf� f0Þ=2, it follows in
general that hðn; aÞðn; bÞin ¼ ða; bÞ. Then hðG�1Þ��ðn; h�Þ�ðn; h�Þi ¼ ðG�1Þ��G�� ¼ I

�
� ¼ mþ 1.
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G�� ¼ Fij bi

bj c

 !
; ðG�1Þ�� ¼ ðF�1Þij þ ðF�1ÞikbkblðF�1Þlj=k �ðF�1Þikbk=k

�bkðF�1Þkj=k 1=k

 !
; (9)

where bi ¼ ðhi; haÞ, c ¼ ðha; haÞ, and k ¼ c�
bibjðF�1Þij, we can show that

jGijj ¼ jcFij � bibjj ¼ jFijjk;
ðG�1Þ��n�n� � ðF�1Þijninj ¼ ð�h?; nÞ2=j�h?j2; (10)

so

O AG¼pðAGÞ
pðGRÞ

ð2�Þ1=2��aest
��aprior

ej�h?j2=2þxj�h?jþx2=2; (11)

where x ¼ ð�h?; nÞ=j�h?j is a normal random variable
with zero mean and unit variance (see again footnote 4),
and ��aest ¼ k�1=2 is the estimation error for the AG
parameter, as given by the corresponding diagonal element
of the inverse Fisher matrix G�1. Remarkably (if logi-
cally), the odds ratio turns out to be a function of the
posterior uncertainty and prior range for the additional
AG parameter alone.

We can link �h? to the fitting factor FF by finding the
��i that maximizes the normalized match,

FF ¼ max
��i

ðh0 þ�h; h0 þ ��ihiÞ
jh0 þ�hj � jh0 þ��ihij ; (12)

which is given (unsurprisingly) by ��i ¼ ðF�1Þijð�h; hjÞ,
and replacing it in Eq. (12), yielding

1� FF ¼ 1

2

j�h?j2
jh0j2

¼ 1

2

j�h?j2
SNR2

; (13)

which is valid to OðSNR�4Þ. Thus, for fixed FF the odds
ratio scales as SNR2, just as it does in the Bayesian
decision scheme for the (non)detection of a known signal
in noise; for fixed SNR the odds ratio scales as 1� FF, so
the odds ratio is larger with stronger and less reabsorbable
AG deviations. The effects of detector noise add some
statistical fluctuations through the random variable x.

This derivation can be repeated with small changes to
yield the odds ratio when the data contain a GR signal,
sGR ¼ hGRð�itrueÞ þ n, with hGRð�itrueÞ ¼ h0, leading to

O GR ¼ pðAGÞ
pðGRÞ

ð2�Þ1=2��aest
��aprior

ex
2=2; (14)

where again x is a normal random variable with zero mean
and unity variance. Equations (11), (13), and (14) comprise
the main novel result of this paper, and in the next section we
use them to characterize the statistics of our decision scheme.

III. AG-GR DECISION SCHEME

The distribution ofOGR, as implied by the distribution of
x through Eq. (14), determines the background of false AG
detections for a chosen threshold Othr, quantified by the

false-alarm probability F ¼ PðOGR >OthrÞ. We choose
Othr to yield the desired F, and evaluate the corresponding
efficiency E ¼ PðOAG >OthrÞ from Eq. (11). Surprisingly,
because the ratios of priors PðAGÞ=PðGRÞ and the Occam
factors are the same inOGR andOAG, their only effect is to
rescale Othr, and they cancel out when we compute E as a
function of F. We can then work with the renormalized
odds ratios

O 0
GR ¼ ex

2=2; O0
AG ¼ ex

2=2þ ffiffi
2

p
xSNRAGþSNR2

AG ; (15)

where SNRAG � SNR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� FF

p
plays the role of an

effective SNR for AG detection.
This is not to say that the priors PðAGÞ and PðGRÞ are

unimportant. Indeed, our prior degree of belief in AG sets
our requirements for F [31]. From basic Bayesian reason-
ing, the probability that AG is true when it is ‘‘detected’’
the odds-ratio decision scheme is

PðAGjdetectedÞ ¼ E� PðAGÞ
E� PðAGÞ þ F� PðGRÞ

¼
�
1þ F

E

PðGRÞ
PðAGÞ

��1
; (16)

since GR is so well tested, it seems reasonable that
PðAGÞ � PðGRÞ; then F must be � PðAGÞ if we are to
believe that we have truly detected AG, because a false
alarm is a priorimuch more probable than a true detection.
Combining Eq. (14) with the definition of F and the

sampling distribution pðxÞ ¼ e�x2=2=
ffiffiffiffiffiffiffi
2�

p
, we obtain

F ¼ erfc
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

logO0
thr

q �
; (17)

with erfcðzÞ ¼ 1� erfðzÞ the complementary error func-

tion, defined from the error function5 erfðzÞ ¼ ð2= ffiffiffiffi
�

p Þ�R
z
0 e

�t2dt. Likewise, combining Eq. (11) with the defini-

tion of E and pðxÞ, we find
E ¼ 1

2
ðerfð�SNRAG þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logO0

thr

q
Þ

� erfð�SNRAG �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logO0

thr

q
ÞÞ: (18)

Next, we solve Eq. (17) for O0
thr and replace it in Eq. (18):

E ¼ 1� 1

2
ðerfð�SNRAG þ erfc�1ðFÞÞ

� erfð�SNRAG � erfc�1ðFÞÞÞ; (19)

where z ¼ erfc�1ðPÞ is the solution of erfcðzÞ ¼ P.
Solving EðSNRAGÞ ¼ 1=2 yields the SNRAG required

5With this definition, the cumulative density function (cdf) of
a normal variable x with zero mean and unit norm is cdfðxÞ ¼
1=2ð1þ erfðx= ffiffiffi

2
p ÞÞ.
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for confident AG detection as a function of F, ranging
from 2.75 to 4.05 for F ¼ 10�4 down to 10�8. The
GW-detection SNR required for AG detection is just

SNRAGðFÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� FF

p
, and it is plotted in Fig. 1 for

F ¼ 10�4 and 10�8. We already discussed the meaning
of these curves in Sec. I.

An interesting question to ask is what detection rates
would be needed in a volume-limited search so that the
loudest observed signal could be used to detect AG
corrections of given FF. In such a search, neglecting cos-
mological effects for simplicity, source distances are distrib-
uted aspðDÞ ¼ 3=DhorðD=DhorÞ2, out to the horizondistance
Dhor where sources are detected at the threshold SNRthr.
For N GW detections, the minimum distance is distributed6

as pðDminÞ¼3N=DhorðD=DhorÞ2ð1�ðD=DhorÞ3ÞN�1, which

has median Dhorð1� 2�1=NÞ1=3. If follows that the median

maximum SNR is SNRthrð1� 2�1=NÞ�1=3. Setting this equal

to SNRAGðFÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� FF

p
and solving for N, we obtain the

required number of detections, which scales as ð1� FFÞ�3=2,
and is shown in Fig. 1 on the right-side vertical axis for
SNRthr ¼ 8.

Figuring out what happens if we pool together the
evidence from a number of observed events [29,42] of
the same kind is a little harder computationally. The odds
ratios take forms similar to the one-signal case:

O 0
GR ¼ e

P
i

x2i =2

; O0
AG ¼ e

P
i

x2i =2þ
ffiffi
2

p P
i

xiSNRAG;iþSNR2
AG;i

;

(20)

where the xi are independently distributed normal varia-
bles with zero mean and unit variance, and the SNRAG;i are

the effective AG-detection SNRs for the individual obser-
vations. Here I limit myself to a small Monte Carlo explo-
ration: assuming for simplicity that the FF is the same for
all the sources, and taking the median over all fSNRAG;ig
realizations in a volume-limited search with SNRthr ¼ 8, I
find that with F ¼ 10�4 we need �9=200=4500 observa-
tions to detect AG with 1� FF ¼ 10�2=10�3=10�4, to be
compared with �28=900=30 000 using evidence from the
loudest source alone. Essentially, because SNRs are dis-
tributed as 1=SNR4, the Bayesian-inference problem is
dominated by a few very loud events, and there are not
very many of those for moderate detection rates. (However,
this conclusion differs from the findings of Ref. [29], and it
would be interesting to understand why.)

VI. DISCUSSION

In this paper, I have shown that, under the assumptions
of strong signals and Gaussian detector noise, the prospects
for detecting alternative-gravity corrections to general
relativity can be characterized very simply. A single num-
ber, the fitting factor FF between the GR and AGwaveform
families, determines the source SNR required for the
alternative-gravity hypothesis to be favored in a decision
scheme based on the Bayesian odds ratio (see Fig. 1).
This happens because the FF is an SNR-independent

measure of the strength of the AG corrections �h? that
cannot be reabsorbed by changing the GR source parame-
ters from their true values. The GR parameters are not
known a priori, but must be determined from the same
observation, so such ‘‘reabsorbable’’ AG effects cannot be
detected positively, and theywould result in a ‘‘fundamental
bias’’ [23] on the GR parameters if AG is true, but post-
detection parameter estimation is performed with GR
model templates. In Ref. [25], Cornish and colleagues call
such errors ‘‘stealth bias’’ if they are comparable to or larger
than the noise-induced statistical errors in the GR parame-
ters, and yet AG cannot be detected positively. In the terms
of this paper, stealth bias corresponds to FF very close to
one and AG-induced errors ðF�1Þijð�h; hjÞ that are large

compared to the Fisher-matrix statistical errors
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðF�1Þiip

.
My formalism can also be applied to other contexts7

where we need to decide between a simpler model and
one with additional parameters, such as binary inspirals of
nonspinning vs spinning compact objects, orbit-aligned vs
precessing spins, or pointlike vs extended-object dynamics.
My formulas cannot predict what happens when the

high-SNR, linearized-parameter approximation is not war-
ranted; whether that is the case can be determined using the
test described in Sec. VI of Ref. [39]. At low SNRs, full-
fledged Monte Carlo integration [24,25,29] would be
required for accurate predictions, although the FF formula
could be used as a preliminary step, and its comparison
with the full result would be very instructive. I note how-
ever that it is for the strongest signals that GR-by-GW tests
become most interesting, and that the results discussed
above would persist as the leading-order contributions to
the evidence at any SNR (see again [39], Sec. VII).
Beyond the statistical characterization of the tests, we

should always ask ourselves what it is that we could really
detect, and whether we should really believe a positive AG
detection if we get it. These are very hard questions, and
here I offer only some qualitative considerations that
should be kept in mind whenever we discuss the sensitivity
of GR-by-GW tests.
First, it seems evident that a test based on matching AG

corrections of a certain functional form �h would only be
sensitive to non-GR effects that have nonzero projection

6Why? Consider first the minimum xmin among N variables
independently and uniformly distributed in ½0; 1�. Its distribution
is pðxminÞ ¼ Nð1� xminÞN�1, since we could pick any of the N
as the minimum, and then its probability of being in ½xmin; xmin þ
dx� is just dx times the probability that the other N � 1 are in
½xmin; 1�. The minimum ymin among N variables with distribution
pðyminÞ follows from the transformation x ¼ cdfðyÞ, from which
pðyminÞ ¼ pðxminÞ dxdy jymin

.

7I thank Ilya Mandel for pointing this out and providing these
examples.
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along �h. (For instance, AG waveforms with additional
phasing parameters would not be sensitive to amplitude
corrections.) Now, both the consistency checks based on
altering PN coefficients and the ppE framework consider
rather general corrections, so it may be hard to imagine that
thewaveform imprint from any reasonable AG theory would
be fully orthogonal to them. Indeed, Ref. [26] argues that
for quasicircular binary inspirals, the well-posedness of the
initial-value problem restricts possible phasing terms to fre-

quency powers fn=3 (where n can be negative), which could
be covered in the ppE scheme. However, if the projection is
small, the resulting 1� FF would be strongly reduced, and
the test would be sensitive only to much larger effects.

Second, any positive detection of an AG correction �h
could also be explained as one of many systematic wave-
form corrections [45] that have nonzero projection along
�h, such as the effects of detector calibration and non-
Gaussian detector noise, of standard-GR physics not in-
cluded in the waveforms (spins, eccentricity, higher-PN
terms), and of astrophysical perturbations (accretion disks,
three-body systems). All of these effects should be consid-
ered a priori more likely than a modification of the exten-
sively well tested GR, so they must be controlled by
including them explicitly in the GR model, or at least by
establishing that they are sufficiently orthogonal to AG
corrections. On the plus side, instrumental systematics

would be different for the same signal as observed in
multiple detectors, and GR-theoretical and astrophysical
systematics would be different for multiple signals from
similar sources, which would help discriminate AG
corrections [46]. Nevertheless, preliminary claims of sen-
sitivity to specific AG corrections may be overoptimistic,
because �h could be largely reabsorbed by systematic
effects that are initially neglected.
Testing GR with GWs remains one of the exciting

frontiers of GW astronomy, but appropriate caution is
needed to provide the proper context for current and future
investigations, and to allocate research efforts wisely as we
move toward the GW detection era. Computing some FFs
will help.
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[37] C. Cutler and É. E. Flanagan, Phys. Rev. D 49, 2658

(1994).

[38] C. Cutler and M. Vallisneri, Phys. Rev. D 76, 104018
(2007).

[39] M. Vallisneri, Phys. Rev. D 77, 042001 (2008).
[40] J. Abadie et al., Classical Quantum Gravity 27, 173001

(2010).
[41] B. Sathyaprakash et al., Classical Quantum Gravity 29,

124013 (2012).
[42] I. Mandel, Phys. Rev. D 81, 084029 (2010).
[43] T.A. Prince et al., LISA: Probing the Universe with

Gravitational Waves [http://list.caltech.edu/mission_
documents], 2009.

[44] P. Amaro-Seoane et al., Classical Quantum Gravity 29,
124016 (2012).

[45] B. Kocsis, N. Yunes, and A. Loeb, Phys. Rev. D 84,
024032 (2011).

[46] N. Yunes, B. Kocsis, A. Loeb, and Z. Haiman, Phys. Rev.
Lett. 107, 171103 (2011).

TESTING GENERAL RELATIVITY WITH GRAVITATIONAL . . . PHYSICAL REVIEW D 86, 082001 (2012)

082001-7

http://dx.doi.org/10.1103/PhysRevD.85.082003
http://dx.doi.org/10.1088/1742-6596/363/1/012028
http://dx.doi.org/10.1088/0264-9381/25/18/184010
http://dx.doi.org/10.1088/0264-9381/25/18/184010
http://dx.doi.org/10.1103/PhysRevD.78.022001
http://dx.doi.org/10.1103/PhysRevD.77.082002
http://dx.doi.org/10.1103/PhysRevD.77.082002
http://dx.doi.org/10.1103/PhysRevD.80.063007
http://dx.doi.org/10.1103/PhysRevD.80.063007
http://arXiv.org/abs/0804.1161
http://dx.doi.org/10.1103/PhysRevD.52.605
http://dx.doi.org/10.1103/PhysRevD.49.2658
http://dx.doi.org/10.1103/PhysRevD.49.2658
http://dx.doi.org/10.1103/PhysRevD.76.104018
http://dx.doi.org/10.1103/PhysRevD.76.104018
http://dx.doi.org/10.1103/PhysRevD.77.042001
http://dx.doi.org/10.1088/0264-9381/27/17/173001
http://dx.doi.org/10.1088/0264-9381/27/17/173001
http://dx.doi.org/10.1088/0264-9381/29/12/124013
http://dx.doi.org/10.1088/0264-9381/29/12/124013
http://dx.doi.org/10.1103/PhysRevD.81.084029
http://list.caltech.edu/mission_documents
http://list.caltech.edu/mission_documents
http://dx.doi.org/10.1088/0264-9381/29/12/124016
http://dx.doi.org/10.1088/0264-9381/29/12/124016
http://dx.doi.org/10.1103/PhysRevD.84.024032
http://dx.doi.org/10.1103/PhysRevD.84.024032
http://dx.doi.org/10.1103/PhysRevLett.107.171103
http://dx.doi.org/10.1103/PhysRevLett.107.171103

