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We study the production of prompt photons in strongly coupled out-of-equilibrium super Yang-Mills

plasma using the AdS/CFT correspondence. Our goal is to determine the photon emission spectrum at

different stages of a thermalization process, which is modeled via the gravitational collapse of a thin

spherical shell in AdS5 space. Particular emphasis is placed on the limit of large frequencies, which we are

able to treat analytically.
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I. INTRODUCTION AND SETUP

In heavy ion experiments highly energetic electromag-
netic probes, such as photons and dileptons, provide
important information on the evolution and eventual ther-
malization of the produced plasma (for reviews, see e.g.,
Refs. [1,2]). This is due, in particular, to their weak cou-
pling to the plasma constituents, which implies that once
produced, they are free to propagate through the plasma
almost unaltered. The spectrum of direct photons measured
in central Au-Au collisions indeed shows an enhancement
above the scaled p-p spectrum for transverse momenta
less than 2 GeV [3–5]. This appears to be consistent with
the production of thermal photons in a strongly coupled
quark-gluon plasma, as indicated by both RHIC [6] and
LHC experiments [7].

On the theory side, the dynamics of strongly interacting
field theories out of thermal equilibrium is a notoriously
difficult problem, as perturbative results are only appli-
cable in the limit of asymptotically high energies, while
lattice methods are, in general, constrained to equilibrium
quantities [8,9]. In this context, the gauge/gravity duality
has proved itself highly useful, as it allows one to reduce
the strongly coupled dynamics of certain field theories to
classical gravity problems in curved spacetime [10–12].
Thermalization on the field theory side is argued to be dual
to the formation of a black hole in an (asymptotically) anti–
de Sitter (AdS) spacetime, which one can model e.g., via
the gravitational collapse of a thin shell of matter in this
geometry [13–18].

In the present paper we concentrate on the production of
prompt photons in a thermalizing plasma, aiming to extend
our previous work on dileptons [17]. In particular, we are
interested in the (isotropic) differential production rate of
on-shell photons with energy k0 ¼ k [19,20],

k0
d��

d3k
¼ 1

4�k

d��

dk0
¼ �

4�2
����<

��ðk0 ¼ kÞ; (1)

where � is the fine structure constant and �<
�� the

electromagnetic current Wightman function. In thermal
equilibrium, the fluctuation dissipation theorem allows

one to further relate �<
�� to the (transverse) photon spec-

tral function ���,

����<
��ðk0 ¼ kÞ ¼ nBðk0Þ��

�ðk0Þ � nBðk0Þ�ðk0Þ: (2)

While this is not generically true out of equilibrium, it was
shown to hold in the quasistatic limit of the falling shell
system in Appendix B of Ref. [17].
The gravity setup we work in is thoroughly explained in

Ref. [17] and only briefly summarized here. We place an
infinitesimally thin shell of unspecified matter at some
radius rs in AdS5 space and let it fall gravitationally in
the radial direction. The limit where rs approaches the
Schwarzschild radius rh of the shell is conjectured to
correspond to thermalization in strongly coupled,
large-Nc N ¼ 4 super Yang-Mills (SYM) plasma, while
rh (and thus the mass of the shell) is related to the final
equilibrium temperature of the field theory.
Next, we introduce in the SYM theory a U(1) gauge field

coupled to the conserved current corresponding to a U(1)
subgroup of the SU(4) R symmetry. According to the
standard AdS/CFT prescription [21], the corresponding
retarded correlator—and thus the ‘‘photon’’ spectral
function—is calculable by studying linearized fluctuations
of an (unrelated) U(1) gauge field in the bulk, where par-
ticular care must be taken of the boundary conditions of
the field at the shell [17]. We perform the calculation in the
so-called quasistatic approximation [13], in which the shell
is assumed to move slowly compared to the other time
scales of interest. As discussed in Sec. 4 of Ref. [17], this
condition is satisfied in the later stages of thermalization as
well as for highly energetic photons, with frequency larger
than the inverse timescale associated with the motion
of the shell.
Finally, during the past few months, a number of related

works on the subject of holographic thermalization have
appeared on the e-print server at Los Alamos National
Laboratory; for details, we refer the interested reader to
Refs. [22–26] and references therein.

PHYSICAL REVIEW D 86, 081901(R) (2012)

RAPID COMMUNICATIONS

1550-7998=2012=86(8)=081901(6) 081901-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.86.081901


II. THE METRIC AND THE EQUATION
OF MOTION

The metric of the falling shell setup consists of a black
hole solution outside the shell, r > rs, and of pure AdS
space inside it, r < rs. The parameter rs is assumed to be
larger than the Schwarzschild radius of the shell, rs > rh,
so that initially there is no black hole and the dual system is
out of equilibrium. Assuming rh to be much larger than the
curvature radius of AdS space, rh � L, the line element of
the spacetime can be written in the form

ds2 ¼ r2

L2
ð�fðrÞdt2 þ dx2Þ þ L2

r2
dr2

fðrÞ ; (3)

where we have defined

fðrÞ ¼
8<
:
1� r4

h

r4
; for r > rs

1; for r < rs
: (4)

The Hawking temperature of the eventual black hole is
given by T ¼ rh

�L2 ; this is also the temperature in the field

theory that we will be referring to throughout the evolution
of the system (although it is, in principle, well defined only
at the end). For notational convenience, we will in the
following set L ¼ 1 and introduce a new radial variable

u � r2
h

r2
. In this new coordinate, the boundary is located at

u ¼ 0 and the horizon at u ¼ 1, while the only relevant
parameter of the gravity setup, the shell location, takes the

form us ¼ r2
h

r2s
.

To study photon production, we need to investigate a
transverse electric field E?ðt; u;xÞ [20,27]. Denoting
k0 ¼ ! and using the fact that for an on-shell photon
k ¼ k0, we obtain for its equation of motion in momentum
space [19]

@2uE
? þ @uf

f
@uE

? þ !̂2u

f2
E? ¼ 0; @u � @

@u
; (5)

where we have introduced the dimensionless variable !̂ �
k0

2rh
¼ k0

2�T . This equation has two linearly independent

solutions, which are given by hypergeometric functions
[28] (see also Ref. [20])

E?
inð!̂;uÞ¼ ð1�uÞ�i!̂

2 ð1þuÞ�!̂
2

� 2F1

�
1�1þ i

2
!̂;�1þ i

2
!̂;1� i!̂;

ð1�uÞ
2

�
;

(6)

E?
outð!̂;uÞ¼ ð1�uÞi!̂2 ð1þuÞ�!̂

2

� 2F1

�
1�1� i

2
!̂;�1� i

2
!̂;1þ i!̂;

ð1�uÞ
2

�
;

(7)
where E?

in satisfies an infalling and E?
out an outgoing

boundary condition at the horizon.
In a black hole background, the physical solution is the

one obeying infalling boundary conditions, as classically

nothing can escape from a black hole [21,27]. In the case of
a falling shell, there is, however, no horizon, and hence we
must write our full solution as a linear combination of the
infalling and outgoing components,

E?
outsideð!̂; uÞ ¼ cþE?

inð!̂; uÞ þ c�E?
outð!̂; uÞ; (8)

and match this to the solution inside the shell. As discussed
in Ref. [17], the discontinuity of the time coordinate across
the shell implies that the frequency outside the shell is

related to the inside one through a rescaling by
ffiffiffiffiffiffi
fm

p �ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2s

p
. Taking this into account, the equation of motion

inside the shell is given by

@2uE
?
inside þ

!̂2ð1� fmÞ
fmu

E?
inside ¼ 0; (9)

the solution of which reads, in terms of Bessel functions,

Einsideð!̂; uÞ ¼ ffiffiffi
u

p ½J1ð2 ~!
ffiffiffi
u

p Þ þ iY1ð2 ~!
ffiffiffi
u

p Þ�

¼u!1 u1=4ffiffiffiffi
~!

p e2i ~!
ffiffi
u

p
; (10)

where we have denoted

~! � !̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� fm
fm

s
: (11)

The matching of the two solutions then leads to the result
(for details, see Ref. [17])

c�
cþ

¼� E?
in@uE

?
inside�

ffiffiffiffiffiffi
fm

p
E?
inside@uE

?
in

E?
out@uE

?
inside�

ffiffiffiffiffiffi
fm

p
E?
inside@uE

?
out

��������u¼us

: (12)

In the limit us ! 1, this ratio vanishes as

c�
cþ

! ið1� usÞ1=2�i!̂

4
ffiffiffi
2

p
!̂

! 0; (13)

which serves as a consistency check of our calculation
(note that we are only interested in real values of !̂ here).

III. PHOTON PRODUCTION

From Eqs. (1) and (2), we see that in order to study
the production of prompt photons, it suffices to evaluate
the trace of the transverse photon spectral function. As the
latter is given by the imaginary part of the retarded
R-symmetry correlator �?, we can follow the standard
AdS/CFT prescription of Ref. [21] and write

�ð!̂Þ ¼ �4 Im�?ð!̂Þ ¼ N2
cT

2

2
Im

@uE
?
outsideð!̂; uÞ

E?
outsideð!̂; uÞ

��������u¼0
;

(14)

where we have used the shorthand �ð! ¼ 2�T!̂Þ �
�ð!̂Þ for the functions � and �?. This quantity is, fur-
thermore, conveniently expressed in terms of the
Wronskian of
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F?ð!̂; uÞ � E?
outsideð!̂; uÞ

E?
outsideð!̂; u ¼ 0Þ ; (15)

producing [19]

Im�?ð!̂Þ��N2
cT

2

8
Wð!̂;uÞ;

Wð!̂;uÞ��N2
cT

2

8
Im½fðuÞðF?ð!̂;uÞÞ�@uF?ð!̂;uÞ�:

(16)

The advantage of this formulation is that it can be easily
shown thatWð!̂; uÞ does not depend on the variable u, i.e.,
Wð!̂; uÞ ¼ Wð!̂Þ. Thus, we can determine its value in
the numerically more convenient limit, u ! 1, instead of
the boundary, u ¼ 0.

A lengthy but straightforward calculation employing the
formalism explained above leads us to the result

�ð!̂; usÞ ¼ N2
cT

2!̂

8

1� j c�cþ j2
Dð!̂Þ ; (17)

where we have reinstated the explicit us dependence of the
spectral function (originating from c�) as well as denoted

Dð!̂Þ � jF2j
�
1þ

��������
c�
cþ

��������
2
�
þ 2Re

�
F2

�
2i!̂

c�
cþ

���
;

F� 2F1

�
1� 1þ i

2
!̂;1þ 1� i

2
!̂; 1� i!̂;�1

�
:

(18)

From Eq. (13), we know that the ratio c�=cþ approaches 0
when us ! 1. In this limit, the spectral function thus
reduces to its known equilibrium limit,

�thermalð!̂Þ ¼ N2
cT

2!̂

8

1

jFj2 ; (19)

as required by consistency (cf. Eq. (3.18) of Ref. [19]).
The novel aspect of our result is that Eq. (17) gives the

photon spectral density both in and out of thermal equilib-
rium. As thermalization is parameterized by the shell loca-
tion, we use several different values of us when plotting this
function in Fig. 1. In Fig. 2, we also show the relative
deviation of the spectral density from its thermal limit,

Rð!̂; usÞ � �ð!̂; usÞ � �thermalð!̂Þ
�thermalð!̂Þ ; (20)

which exhibits an oscillatory pattern much like the one
already observed in the dilepton spectral function in
Ref. [17] (for a discussion of the physical origin of the
oscillations, see the same reference). As the shell ap-
proaches the horizon, rs ! rh, the amplitude of these os-
cillations is seen to decrease, as it of course should. The
amplitude is also seen to be dampened at large values of !̂,
which we interpret as a sign of the usual top/down-type
pattern of holographic thermalization. In the opposite
limit of small !̂, the out-of-equilibrium �=!̂ is, on the
other hand, seen to vanish; this is, however, merely a sign

of departing the range of validity of the quasistatic
approximation.
In Fig. 3 we finally show the photon emission rate per

unit volume as a function of !̂,

d��

dk0
¼ �k

�
nBðk0Þ�ðk0Þjk0¼k¼2�T!̂: (21)

We observe a slight enhancement of the photon production
rate, when the system is out of thermal equilibrium. Nearly
all traces of the oscillatory behavior have, however, been
suppressed by the Bose-Einstein distribution function, and
in particular the overall shape of the spectrum stays largely
unaltered when rs > rh. It is interesting to contrast this

behavior with that of the leading 1=	3=2 corrections to the
equilibrium photon emission rate studied in Ref. [29].
While the equilibrium emission spectrum of Ref. [19]
was seen to get a moderate enhancement also in this
case, it was found that the peak of the function moved
towards the IR with decreasing 	, while in our case it shifts
towards the UV.
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FIG. 1 (color online). The trace of the spectral function
�ð!̂; uÞ, normalized by !̂N2

cT
2. The curves in order of their

first peak from left to right are for rs=rh ¼ 1:001
(green), 1.01 (red), and 1.1 (blue). The dashed black line stands
for the thermal spectral density.

0 1 2 3 4 5 6
0.3

0.2

0.1

0.0

0.1

0.2

0.3

R

FIG. 2 (color online). The relative deviation of the photon
spectral function from its thermal limit, Rð!̂; usÞ, for rs=rh ¼
1:001, 1.01, 1.1 (from small to high amplitudes). The color
coding is as in Fig. 1.
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IV. LARGE !̂ LIMIT

In analogy with the dilepton case of Ref. [17], it would
clearly be of some value to get an analytic handle on the
behavior of the photon spectral density in the limit of large
!̂, where the quasistatic approximation is known to work.
To this end, we follow the discussion of Appendix A of

Ref. [19] and first note that for large !̂, the general solution
to the equation of motion (5) can be expressed in terms of
Airy functions,

E?
outsideð!̂; uÞ ¼ h�1=4ð�uÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi�fðuÞp fC1ð!̂ÞAið!̂2=3
ð�uÞÞ

þ C2ð!̂ÞBið!̂2=3
ð�uÞÞg; (22)

with Cið!̂Þ denoting unknown coefficient functions and


ðyÞ � e�i�=3

�
3gð�yÞ

4

�
2=3

; (23)

gðyÞ � i ln

ffiffiffiffiffiffiffi�y
p þ 1ffiffiffiffiffiffiffi�y
p � 1

� 2i arctanð ffiffiffiffiffiffiffi�y
p Þ � �; (24)

hðyÞ � y

ð1� y2Þ2
ðyÞ : (25)

One should note here that the quantity inside the curly
brackets in Eq. (23) is real and positive in the range
0 � y � 1.
It is a straightforward exercise to show that close to the

horizon, u 	 1, Eq. (22) reduces to

E?
outsideð!̂; uÞ ! e�i�=4

2
ffiffiffiffi
�

p
!̂1=6

fC1ð!̂Þ2i!̂e�i�!̂=4ð1� uÞ�i!̂=2 þ C2ð!̂Þð21�i!̂ei�!̂=4ð1� uÞi!̂=2 � i2i!̂e�i�!̂=4ð1� uÞ�i!̂=2Þg

¼ 2!̂=2e�i�=4

2
ffiffiffiffi
�

p
!̂1=6

f2i!̂e�i�!̂=4ðC1ð!̂Þ � iC2ð!̂ÞÞEinð!̂; uÞ þ 21�i!̂ei�!̂=4C2ð!̂ÞEoutð!̂; uÞg; (26)

where in the latter equality we have used the u ! 1 limit of
Eqs. (6) and (7). Denoting finally

� � 2!̂=2e�i�=4

2
ffiffiffiffi
�

p
!̂1=6

; � � 2i!̂e�i�!̂=4; (27)

we then obtain, upon comparison with Eq. (8), the coef-
ficients Cið!̂Þ,

C1ð!̂Þ ¼ ��1��1cþ þ i

2
��1�c�; (28)

C2ð!̂Þ ¼ 1

2
��1�c�: (29)

A very useful byproduct of the above calculation is that
we can now write the properly normalized infalling and
outgoing solutions to the equation of motion (5) in the
large-!̂ limit as

E?
inð!̂; uÞ ¼ h�1=4ð�uÞ

��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�fðuÞp Aið!̂2=3
ð�uÞÞ; (30)

E?
outð!̂;uÞ¼�h�1=4ð�uÞ

2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�fðuÞp ðiAið!̂2=3
ð�uÞÞ

þBið!̂2=3
ð�uÞÞÞ; (31)

from which we further obtain

E?
in
out

ð!̂; uÞ !!̂!1
2�!̂ð1�2iÞ=2e�i!̂ð�þ2gðuÞÞ=4u�1=4: (32)

This is helpful in determining the large-!̂ limit of the
retarded Green’s function of interest,
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d
dk

0

N
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T
3

FIG. 3 (color online). The photon emission spectrum d��=k0,
normalized by �N2

cT
3, for rs=rh ¼ 1:001, 1.01 and 1.1 (from top

to bottom at small frequencies). The color coding is as in Fig. 1.
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FIG. 4 (color online). The behavior of the full function
Rð!̂; usÞ (blue, approaching �1 at small !) together with its
large-!̂ limit Rasymð!̂; usÞ (red, approaching 1 at small !) for

rs=rh ¼ 1:1.
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�?
asymð!̂;usÞ¼�N2

cT
2

8

31=3�ð2=3Þ
�ð1=3Þ

1�22i!̂e�i�=2ð!̂þ1=3Þ c�
cþ

1þ22i!̂e�i�=2ð!̂�1=3Þ c�
cþ

ð�!̂Þ2=3; (33)

which clearly reduces to the correct equilibrium result of Ref. [19] when c�=cþ ! 0.
Inserting finally the straightforwardly obtainable large-!̂ limit of c�=cþ to Eq. (33), we obtain an analytic, though

somewhat cumbersome-looking, expression for the retarded correlator,

�?
asymð!̂;usÞ¼�N2

cT
2

8

�ð2=3Þ
�ð1=3Þ�ei2�=331=3!̂2=3 8u

3=2
s !̂� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1�u2s
p ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1�u2s
p Þðiþei�=3ei!̂gðusÞÞ

8u3=2s !̂� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�u2s

p ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�u2s

p Þði�ei2�=3ei!̂gðusÞÞ
: (34)

From here, we easily obtain the large-!̂ limit of corresponding spectral density,

�asymð!̂; usÞ ¼ N2
cT

2

4

35=6�ð2=3Þ
�ð1=3Þ

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2s

p ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2s

p Þ
8u3=2s

cosð!̂gðusÞÞ þ
ffiffiffi
3

p
sinð!̂gðusÞÞ

!̂
þOð1=!̂2Þ

�
; (35)

which is seen to reduce to the correct equilibrium limit as
us ! 1. In Fig. 4, where we plot the asymptotic form of R,
derived using Eq. (34), together with our full numerical
result, we observe excellent agreement of the two curves
already at moderately small frequencies.

V. CONCLUSIONS

In the paper at hand, we have investigated the production
of prompt photons in strongly coupled, out-of-equilibrium
N ¼ 4 SYM plasma. This work can be viewed as a
generalization of the equilibrium computation of Caron-
Huot et al. [19] to a specific model of holographic ther-
malization, involving the gravitational collapse of a thin
spherical shell in AdS5 spacetime [13].

Our main results are depicted in Figs. 1–3. They display
a distinctive pattern of fluctuations in the spectral density,
which, however, are significantly dampened in the photo-
emission spectrum. In these figures, the thermalization
process is parameterized by the radial location of the shell,
but as discussed in Sec. 4 of Ref. [17], explicit time

dependence can be introduced at any point by solving the
equation of motion of the shell (upon specifying its matter
content and initial condition).
The fashion in which the photon spectral density is seen

to approach its thermal limit is very similar to that com-
puted for dileptons at rest in Ref. [17]. It is indicative of a
top/down-type thermalization pattern and shows no appar-
ent dependence on the virtuality of the produced photons
(see cf. e.g., Ref. [30] for a different conclusion in the case
of jet quenching).
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