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We calculate the radiative corrections to the Dalitz plot of K�
l3 decays to order ð�=�Þðq=M1Þ, where q is

the momentum transfer andM1 is the mass of the kaon. We restrict the analysis to the so-called four-body

region, which arises when no discrimination of real photons is made either kinematically or experimen-

tally. We present our results in two ways: the first one with the triple integration over the photon

kinematical variables ready to be performed numerically and the second one in a fully analytical form.

Our results can be useful in experimental analyses of the Dalitz plot, by evaluating the model-independent

coefficients of the quadratic products of the form factors; we provide some numbers as a case example. We

find a small, albeit non-negligible, contribution from the four-body region to the radiative correction to the

total decay rate of K�
l3 decays.
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There are several inherent difficulties in the analysis
of radiative corrections (RC) in Kl3 decays. The absence
of first principles to evaluate them introduces a model
dependence so experimental analyses which use them
also become model dependent. RC depend on the process
characteristics, such as the charge assignment of the par-
ticipating mesons, the size of the momentum transfer, and
whether real photons can be experimentally discriminated
or not. RC also depend on the observable to be measured.
All this requires RC to be recalculated every time the
process characteristics and/or the observable are changed.
Finally, there are difficulties of a practical nature: It turns
out that the final expressions of RC calculations are rather
inefficient to use or are long and tedious to the point that
their use becomes unreliable.

In a recent paper [1] we overcome the above difficulties
rather satisfactorily. We obtained a model-independent
expression for the Dalitz plot of K�

l3 decays including RC

of order ð�=�Þðq=M1Þ, where q is the momentum transfer
and M1 is the mass of the kaon. We studied the so-called
three-body region (TBR) of the Dalitz plot. We thus as-
sumed that not only real photons are not detected but also
that events whose energies do not satisfy the three-body
energy-momentum conservation restrictions are rejected.

When real photons cannot be discriminated, however,
the TBR of the Dalitz plot should be extended to the four-
body region (FBR). The purpose of the present paper is to
extend, on the same footing, the calculations of Ref. [1] to
evaluate the four-body contribution of the RC to the Dalitz
plot. Although this problem keeps a close similarity with
the one discussed in Ref. [1], it is not possible to find a

single rule which allows us to adapt one calculation into the
other. Thus, we need to take a few steps backwards and
start the calculation at the bremsstrahlung transition am-
plitude level, namely, by squaring such amplitude and then
performing the integrals over the kinematical variables of
the photon restricted to the FBR. In order to save a sub-
stantial amount of effort we will follow the approach
implemented in the FBR analysis of RC in baryon semi-
leptonic decays [2–4].
For definiteness, let us consider the four-body decay

Kþðp1Þ ! �0ðp2Þ þ ‘þðlÞ þ �‘ðp�Þ þ �ðkÞ; (1)

where Kþ and �0 denote a positively charged kaon and a
neutral pion, respectively, ‘þ and �‘ denote a positively
charged lepton (‘þ ¼ eþ or �þ) and its neutrino, respec-
tively, and � represents a real photon. Here p1 ¼ ðE1;p1Þ,
p2 ¼ ðE2;p2Þ, l ¼ ðE; lÞ, p� ¼ ðE�;p�Þ, and k ¼ ð!;kÞ
are the four-momenta of Kþ, �0, ‘þ, �, and �, respec-
tively. M1, M2, and m are the nonzero masses of the first
three particles. In the center-of-mass frame of Kþ, M1 ¼
Eþ E2 þ E� þ! and 0 ¼ p2 þ lþ p� þ k, so E� ¼
E0
� �! and p� ¼ p0

� � k, where E0
� is the energy and

p0
� is the three-momentum of the neutrino in the nonradia-

tive process. In addition, p2, l, p�, and k will also denote
the magnitudes of the corresponding three-momenta when
the expressions involved are not manifestly covariant. All
other conventions and notation are given in Ref. [1].
The calculation of bremsstrahlung RC in the FBR

simplifies because the events in this region have the same
amplitude MB as in the TBR, given by Eq. (41) of Ref. [1].
The bremsstrahlung differential decay rate in the FBR is then
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spins;�

jMBj2: (2)

In order to perform the integrals over the kinematical varia-
bles in Eq. (2), we orient the coordinate axes in such a way
that ‘þ is emitted along theþz axis and�0 is emitted in the
first or fourth quadrant of the ðx; zÞ plane. Therefore, there
are five relevant variables of the final state. Two of them are
the energies E and E2, whose allowed values in the FBR are
given by Eq. (5) of Ref. [1]. The other three variables can
be grouped into either ðk; cos�k; ’kÞ or ðcos�2; cos�k; ’kÞ,
where k, �k, and ’k are the magnitude of the three-
momentum and the polar and azimuthal angles of the photon,

respectively, and �2 is the polar angle of�
0. If we define p̂2 �

l̂ ¼ cos�2 � y and l̂ � k̂ ¼ cos�k � x, the photon energy is
given by [1]

! ¼ F

2D
; (3)

where

F ¼ 2p2lðy0 � yÞ; (4a)

D ¼ E0
� þ lxþ p2 � k̂; (4b)

with

y0 ¼ E02
� � p2

2 � l2

2p2l
: (5)

By following a standard procedure, the differential
decay rate in the FBR can be written as

d�FBR
B ¼ �

�
d�

�
A0I0FðE; E2Þ

þ p2l

4�

Z 1

�1
dx

Z 1

�1
dy

Z 2�

0
d’kjM 0

Bj2
�
: (6)

The organization of Eq. (6) allows one to contrast it with
its counterpart in the TBR, constituted by Eqs. (68)–(73) of
Ref. [1], where the factors d� and A0 are defined. The
counterpart of the first summand on the right-hand side of
Eq. (6) is the product A0I0, where the function I0, defined
in Eq. (65) of this reference, contains the infrared diver-
gence. Now, I0 is replaced by the infrared-convergent
function I0F [2–4] defined as

I0F ¼ �0F
2

ln

�
y0 þ 1

y0 � 1

�
; (7)

where

�0F ¼ 4

�
1

	
arctanh	� 1

�
; (8)

and 	 ¼ l=E. All other contributions of jMBj2 can be cast
into a single term jM0

Bj2, whose form is not needed here.

Let us notice that the variable y falls within the intervals
½�1; y0� and ½�1; 1� in the TBR and FBR, respectively.
Performing the integrals in Eq. (6) yields

d�FBR
B ¼ �

�
d�

�
A0I0FðE;E2Þ þ

X5
i¼1

8

M2
1

½Cþ
i jfþj2

þ CiRe½fþf��� þ C�
i jf�j2�

�
; (9)

where, for simplicity, hereafter we will use the shorthand
notation f� � f�ðq2Þ unless explicitly noted otherwise.
Let us stress that there is a one-to-one correspondence
between the five terms involved in the second expression
on the right-hand side of Eq. (9) and Eqs. (69)–(73) of
Ref. [1], so we have kept the parallelism between both
calculations all along. The coefficients Ci read

Cþ
1 ¼ �1F þ�2F þ�3F; C1 ¼��2F � 2�3F;

C�
1 ¼ �3F; Cþ

2 ¼ �4F þ�5F þ�6F;

C2 ¼��5F � 2�6F; C�
2 ¼ �6F;

Cþ
3 ¼ �7F þ�8F; C3 ¼ �7F;

C�
3 ¼��8F; Cþ

4 ¼ �9F þ�10F;

C4 ¼ �9F; C�
4 ¼��10F;

Cþ
5 ¼ C�

5 ¼ C5=2¼ �11F: (10)

The functions �kF (k ¼ 1; . . . ; 11) are the result of
performing the triple integrals contained in Eq. (6).
They have the very same structure as their TBR counter-
parts listed in Appendix B of Ref. [1], except for the fact
the upper limit of integration over the variable y is replaced
by 1.
Equation (9) constitutes our first result: an expression for

the bremsstrahlung RC to the K�
l3 Dalitz plot to order

ð�=�Þðq=M1Þ, restricted to the FBR. At this stage of the
calculation, d�FBR

B contains triple integrals over the kine-
matical variables of the photon, which can be performed
numerically.
We can proceed further, however, and provide a fully

integrated expression that could be more useful in a
Monte Carlo simulation. For this task, we use previous
results obtained in the analysis of the FBR of the Dalitz
plot of baryon semileptonic decays [2–4]. Accordingly, the
analytical form of Eq. (9) can be expressed as

d�FBR
B ¼ �

�
d�½A1Fjfþj2 þ A2FReðfþf��Þ þ A3Fjf�j2�;

(11)

where

AiF ¼ Að0Þ
i I0F þ AðBÞ

iF ; i ¼ 1; 2; 3: (12)

The functions Að0Þ
i are defined in Eqs. (17)–(19) of Ref. [1],

whereas the functions AðBÞ
iF read
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AðBÞ
1F ¼ 8

M2
1

X11
i¼1

�iF; (13)

AðBÞ
2F ¼ 8

M2
1

ð��2F � 2�3F ��5F � 2�6F

þ�7F þ�9F þ 2�11FÞ; (14)

and

AðBÞ
3F ¼ 8

M2
1

ð�3F þ�6F ��8F ��10F þ�11FÞ; (15)

where the functions �kF (k ¼ 1; . . . ; 11) correspond to the
analytical versions of their counterparts �k of the TBR,
Eqs. (74)–(84) of Ref. [1]. After some rearrangements,
one finds in a close analogy with Eqs. (87)–(89) of this
reference

M2
1

4p2l
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�
�0F �m2

E2

�
2E0

� þ m2

M1

�
�2F

þ
�
E0
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M2
1

� 3

4
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M2

1

��
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M1
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�
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þ 4E

M1

��
�4F þ

�
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M1

þ 2p2ly0
M2

1

� m2

4M2
1

�
l�5F þm2

E2
�6F þ

�
�2þ E0

�

E
� m2

M1E

�
�7F

� 1

2E
�9F þ 4l2E0

�

M2
1

�10F þ 2p2l

M1

�12F � 2p2l

M1

�13F þ lðEþ E2Þ
M2

1

�14F � 2p2l
2

M2
1

�19F þ 2l3

M2
1

�20F; (16)

M3
1

m2

1

4p2l
AðBÞ
2F ¼ � 1

2M1

�0F þm2

E2
�2F

�
�
3

2
þ m2

M1E
þ E2 � p2	y0

2M1

�
�3F

þ
�
1

2
þ 2Eþ E2

2M1

�
�4F þ l

2M1

�5F; (17)

and

AðBÞ
3F ¼ p2lm

2

M4
1

½��0F þ ðM1 � E2 þ 	p2y0Þ�3F
� ðM1 � E2Þ�4F � l�5F�: (18)

Equation (11) constitutes our second result. It is an
analytical expression for the Dalitz plot of K�

l3 decays,

restricted to the FBR region. It includes RC to order
ð�=�Þðq=M1Þ and is model independent. The complete

RC to the Dalitz plot of K�
l3 decays without the restriction

of eliminating real photons are given by adding d�FBR
B to

d�TBR
B given by Eq. (93) of Ref. [1].
An application of our formulas in a Monte Carlo analy-

sis requires the numerical evaluation of the functions Ai

and AiF all over the Dalitz plot. This can be done by tracing
a lattice in the allowed kinematical region and constructing
arrays with these functions evaluated at given points
ðE; E2Þ. The arrays should feed the Monte Carlo simulation
as a matrix multiplication, with the form factors and the
energies ðE; E2Þ varied in each step of the simulation. In
Tables I and II we display the numerical values of ð�=�ÞA1

and ð�=�ÞA1F, the latter in boldface characters, for Kþ
e3

and Kþ
�3 decays, respectively, as a case example.

As a further application, we can evaluate the total decay
rate of K�

e3 including RC from both the TBR and FBR. It

can be written as

TABLE I. Radiative corrections ð�=�ÞA1 � 10 and ð�=�ÞA1F � 10 for Kþ ! �0 þ eþ þ �e decay. The entries corresponding to
the latter are marked in boldface characters. E and E2 are given in GeV.

E2nE 0.0123 0.0370 0.0617 0.0864 0.1111 0.1358 0.1604 0.1851 0.2098

0.2592 0.1533 0.1880 0.1462 0.0668 �0:0286 �0:1220 �0:1949 �0:2246 �0:1726
0.2468 0:1028 0.1810 0.1580 0.0902 0.0011 �0:0905 �0:1654 �0:1998 �0:1537
0.2345 0:0701 0.1578 0.1522 0.0962 0.0150 �0:0718 �0:1445 �0:1792 �0:1354
0.2222 0:0490 0:0948 0.1429 0.0989 0.0261 �0:0551 �0:1249 �0:1590 �0:1168
0.2098 0:0339 0:0599 0.1321 0.1004 0.0363 �0:0391 �0:1056 �0:1389 �0:0977
0.1975 0:0228 0:0383 0:0662 0.1014 0.0461 �0:0233 �0:0863 �0:1186 �0:0779
0.1851 0:0145 0:0236 0:0375 0:0743 0.0558 �0:0075 �0:0670 �0:0979 �0:0568
0.1728 0:0084 0:0134 0:0203 0:0343 0.0654 0.0083 �0:0474 �0:0769 �0:0333
0.1604 0:0042 0:0065 0:0095 0:0149 0:0281 0.0243 �0:0275 �0:0550 �0:0019
0.1481 0:0014 0:0021 0:0030 0:0045 0:0076 0:0170 �0:0070 �0:0316
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�ðK�
e3Þ � C2

K

G2
FjVusj2
128�3

M5
1jfKþ�0

þ ð0Þj2½Ið~�þÞ þ IFð~�þÞ�;
(19)

where Ið~�þÞ and IFð~�þÞ involve the double integration
over the energies E and E2 for the TBR and FBR, respec-
tively. Their expressions read

Ið~�þÞ ¼ 4

M2
1

Z Em

m
dE

Z Emax
2

Emin
2

dE2

�
Að0Þ
1 þ �

�
A1

�

�
�
1þ q2

M2
��

~�þ
�
2

¼ h0 þ h1 ~�þ þ h2 ~�
2þ; (20)

and

IFð~�þÞ ¼ 4

M2
1

Z Ec

m
dE

Z Emin
2

M2

dE2

�
�

�
A1F

�

�
�
1þ q2

M2
��

~�þ
�
2

¼ h0F þ h1F ~�þ þ h2F ~�
2þ; (21)

where fK
þ�0

þ ðq2Þ has been expanded linearly in q2, with the
slope parameter ~�þ ¼ 0:0328� 0:0033 [5].

By using more refined numerical integration routines
than in Ref. [1], we find that the uncorrected coefficients

are hð0Þ0 ¼ 0:0965, hð0Þ1 ¼ 0:3568, and hð0Þ2 ¼ 0:5279. The
inclusion of RC yields h0 ¼ 0:0958, h1 ¼ 0:3532, and
h2 ¼ 0:5209 from the TBR and h0F ¼ 0:0005, h1F ¼
0:0031, and h2F ¼ 0:0062 from the FBR. With the value

of ~�þ quoted above, we find that RC from the TBR induce
a decrease of 0.8% in the decay rate and the combined TBR
and FBR effect produces an overall decrease of 0.26%,
which is an important effect.
In summary, we have performed a detailed analysis of

the computation of RC from the FBR of the Dalitz plot
to order ð�=�Þðq=M1Þ, where q is the momentum transfer
and M1 is the mass of the kaon. At this order of approxi-
mation, the expression obtained is model independent;
it has been organized in such a way that its use in a
Monte Carlo simulation is straightforward. The effects of
the FBR are quite important when no discrimination of real
photons can be made either kinematically or by direct
detection; they produce a perceptible decrease in the total
decay rate. Our results may constitute an important theo-
retical input in the determination of Vus from Kl3 decays.
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