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Via Santa Sofia 64, I-95123 Catania, Italy

(Received 15 August 2012; published 31 October 2012)

The Higgs-top model is studied by a nonperturbative variational extension of the Gaussian effective

potential that incorporates fermions. In the limit of a very strong Yukawa coupling the one-loop result is

shown to follow a single-parameter scaling while the Gaussian fluctuations give rise to important

deviations from scaling and to a reduction of the vacuum expectation value and of the top mass.

A good general agreement is found with lattice data when a comparison can be made. The vacuum is

shown to be stable for any choice of the Yukawa coupling, at variance with renormalized perturbation

theory. Analytical results are provided for a few observables like the renormalized mass of the Higgs

boson and its wave function renormalization constant. Extensions to gauge theories like QCD are briefly

discussed.
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I. INTRODUCTION

Above the QCD scale, when all the couplings are small
enough, the Standard Model (SM) of the fundamental
interactions can be studied by perturbation theory.
However, there are energy ranges and sectors of the SM
where nonperturbative methods are welcome for compari-
son and control of the perturbative approximation, for
instance, when the QCD becomes strongly coupled, or in
the hypothesis of a large Higgs mass and a strong self-
coupling of the Higgs sector, that has been almost ruled out
by experiments. Another interesting system is the Higgs-
top sector, where nonperturbative effects could be found
because the Yukawa interaction y � 0:7 is not as small as
other fermions.

The most widely used nonperturbative approach is the
numerical simulation on a finite lattice, which allows for an
exact treatment of the Lagrangian but is plagued by many
shortcomings like the small size of the sample, border
effects, the lack of any analytical result, and some specific
problems about incorporating fermions [1–6]. For instance,
a duplication problem does not allow a simple description
of a model with an odd number of fermions or even only
one fermion [7]. Moreover, the finite lattice spacing is
equivalent to the existence of a finite energy cutoff that
cannot be removed.

This last point does not seem to be an important issue
any more, since our modern understanding is that the SM
must be considered an effective model holding up to a
finite energy scale. The triviality of the scalar theory
requires that a finite cutoff should be present in the model,
and even a large cutoff can be simulated on the lattice if the
sample size is large enough and allows for long correlation
lengths compared to the lattice spacing. On the other hand,
the existence of a finite cutoff has opened the way to a class
of variational approximations, since their typical UV prob-
lems are cured by the existence of a limited energy range.

The Gaussian effective potential (GEP) [8–11] is a varia-
tional tool that has been recently shown to provide a very
good agreement with lattice data whenever a finite cutoff is
used in the analytical derivation [12]. The GEP is not exact
but is based on a nonperturbative approximation, and its
predictions are expected to hold even when perturbation
theory breaks down. Moreover the GEP yields simple
analytical results and has been recently shown to shed
some light on the physics of several systems ranging
from superconductors [13,14] to magnetic systems [15]
to non-Abelian gauge theories [16] and the Higgs sector
of the SM [12,17–19].
It would be interesting to extend the GEP to the Higgs-

top sector of the SM, which would require the inclusion of
fermions in the derivation of the effective potential. The
problem is of some interest by itself because of the failure
of incorporating fermions, which was reported in the past.
In fact, a direct attempt to include fermions was shown to
give a result that is equivalent to the perturbative one-loop
fermionic term of the effective potential [20]. Thus for
fermions the GEP has always been regarded as useless.
Quite recently an hybrid method has been proposed for
incorporating fermions in the GEP [15]: the technique has
been tested in the framework of the well-studied two-
dimensional Hubbard Hamiltonian at half filling, describ-
ing a gas of interacting fermions in the antiferromagnetic
phase. The method predicts the exact magnetization in the
strong coupling limit, and for large couplings it improves
over other approximations like RPA, in close agreement
with lattice data. Instead of attempting to evaluate the GEP
directly, in this method the fermions are integrated exactly,
and the resulting effective Lagrangian is expanded in
powers of the scalar field. Then the GEP is evaluated by
the usual variational method. In the strong coupling limit
the second order term of the expansion has been shown to
be enough for an accurate description of the fermionic
fluctuations that are included at the Gaussian level [15].
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In this paper the same hybrid technique is used for
incorporating fermions in a self-consistent variational
approach to the Higgs-top model, a toy model containing
a self-interacting scalar particle interacting with a massless
fermion through a standard Yukawa interaction. In this
model, that mimics the mechanism of mass generation of
the SM, the symmetry breaking is driven by the Yuakawa
interaction, and even when the classical scalar potential
does not show any symmetry breaking, the effective
potential can have a minimumwith a nonvanishing vacuum
expectation value (vev) of the scalar field. Thus while the
fermions acquire a mass through the Yukawa interaction, it
is the fermion that drives the symmetry breaking determin-
ing the vev. A naive discussion of symmetry breaking,
based on the classical potential, does not work in the
present model where the vev must be determined by the
full self-consistent quantum effective potential.

In the next sections the GEP is evaluated for the Higgs-
top model, and the result is compared with available
lattice simulation data [21] and with the standard one-loop
approximation. A full agreement is found with the lattice
data when a comparison can be made. Moreover the
method is almost analytical, and explicit analytical results
can be obtained for the pole of the scalar propagator, the
wave function renormalization constant, and other relevant
observables. For instance, by inspection of the analytical
expression of the effective potential, the vacuum can be
shown to be stable for any choice of the bare parameters,
at variance with renormalized perturbation theory. The
method is nonperturbative, and deviations from the one-
loop approximation can be regarded as a measure of
nonperturbative effects that are shown to be large in the
strong coupling limit.

Besides the physical relevance of the present model, the
problem of incorporating fermions in a nonperturbative
method is by itself relevant because of the possible exten-
sion to non-Abelian strongly interacting theories like QCD.
For instance the GEP has been evaluated for the pure SU(2)
theory [16] but no previous attempts of incorporating
fermions have been reported. The present method could
be explored in that context.

The paper is organized as follows: in Sec. II the method
is described in detail; in Sec. III the GEP is compared with
lattice data; in Sec. IV the strong coupling limit is explored
and compared with the one-loop result; and some final
remarks and directions for future work are reported in
Sec. V.

II. GEP IN THE HIGGS-TOP MODEL

In the Euclidean formalism the Higgs-top model is
described by the Lagrangian

L ¼ L� þLt þLy; (1)

where L� is the Lagrangian of a self-interacting scalar

field �

L � ¼ 1

2
@��@��þ Vcð�Þ; (2)

with a classical potential

Vcð�Þ ¼ 1

2
m2

B�
2 þ 1

4!
�B�

4: (3)

Lt is the Lagrangian for a set of Nf massless free Fermi

fields c j

L t ¼ �i
XNf

j¼1

�c j�
�@�c j; (4)

and Ly contains a set of Yukawa couplings

L y ¼
XNf

j¼1

yj �c jc j�: (5)

Here we take yj ¼ y so that the set of Fermi fields c j can

be regarded as a gauge multiplet, and forNf ¼ 3 the model

describes a quark interacting with a scalar field. If the
symmetry is broken and the scalar field has a nonvanishing
vev, v ¼ h�i, then the Higgs field h is defined by the shift
h ¼ �� v and the fermion acquires the massm ¼ yv. We
refer to m as the top mass even if the present study applies
to any fermion with a Yukawa coupling to the scalar field.
Let us follow the method of Ref. [15] and integrate the

fermions exactly. The exact action can be written in terms
of a shifted Higgs field h ¼ �� ’ where ’ is a generic
constant shift. The field h becomes the standard Higgs field
when ’ ¼ v, but we leave the variable ’ unconstrained at
this stage. Integrating out the fermions, the bilinear fermi-
onic terms are replaced by an effective action

S ¼
Z

Ld4x !
Z

Lhd
4xþ Seff½h�; (6)

where

L h ¼ 1

2
@�h@�hþ Vcð’þ hÞ; (7)

and the effective action Seff is given by

Seff½h� ¼ �Nf logdet½G�1
m þ yh�m¼y’; (8)

with the fermionic inverse propagator G�1
m defined as

G�1
m ¼ �i��@� þm; (9)

and the mass set to the value m ¼ y’. These equations are
exact and hold for any choice of the variable ’ as a
consequence of the exact integration of the fermionic
fields.
It is obvious that the effective action in Eq. (8) is far too

complicated to be treated exactly. From a formal point of
view it can be expanded in powers of the field h
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Seff½h�¼�NfTrlogG
�1
m �Nf

X1
n¼1

ð�1Þnþ1ynTrfðGm �hÞng;

(10)

where the products Gm � h �Gm � h � � � are nonlocal prod-
ucts of operators with the internal space variables inte-
grated over.

The expansion is convergent if the norm kyhGmk< 1.
We will show that in the strong coupling limit y��B�1,
in units of the cutoff (or of the lattice spacing), the physical
range of parameters, where m � 1, is reached for 0:2<
mB=y < 0:25. In fact, in that limit, the one-loop approxi-
mation is entirely characterized by the single parameter

mB=y that takes its critical value whenmB=y ¼ ffiffiffiffiffiffi
Nf

p
=ð2�Þ,

that is � 0:28 for Nf ¼ 3. We will discuss this scaling

later, in Sec. IV. In that physical range, provided that we do
not reach the critical point, the average hhhi � Z=M2

R

where Z � 1, is a wave function renormalization factor
and MR is a renormalized mass of order MR � mB, while
in units of the cutoff hGmGmi � �1=ð4�2Þ, so that

kyhGmk2 � y2

4
TrhhGmhGmi �

�
yZ

4�MR

�
2
; (11)

and for Z ¼ 1,MR � mB we see that the expansion makes
sense provided that

kyhGmk � 0:08 � y

mB

< 1: (12)

In the physical range of parameters where mB=y � 0:25
this is never too large, even in the very strong coupling
limit.

In fact the expansion in Eq. (10) is not a perturbative
expansion in the parameter y but can be regarded as an
expansion in terms of the fluctuating field h. Provided that
hhhi is small, the Gaussian fluctuations are enough and the
quartic and higher-order terms can be dropped without
affecting the nonperturbative nature of the approximation.
This is the case for the Hubbard model of antiferromagne-
tism in the strong coupling limit [15]. The approximation
breaks down at the critical point where the fluctuations of
the field h are large and hhhi diverges. However the trivi-
ality of the scalar theory requires that a finite cutoff is
retained, that is to say that the critical point is never
reached. In the physical range of the parameters, before
the critical point is reached, even in the strong coupling
limit the fluctuations are small and we can neglect the
higher-order terms in the expansion. This approximation
spoils the variational character of the method, but the
nonperturbative nature of the approximation is maintained
as for RPA approximation that is very similar to the present
method from a formal point of view. In principle the
approximation can be improved by inclusion of higher-
order terms in the expansion, yielding a more complicated
set of coupled equations that can be solved by numerical
techniques. However the first nonvanishing contribution

comes from the quartic term hhhhhi that is much smaller
than the second-order term in the physical range of the
parameters. Its actual value can be evaluated for a more
accurate control of the approximation.
The truncated expansion for Seff reads

Sð2Þeff½h� ¼ �Nf Tr logG
�1
m � yNf TrðGm � hÞ

þ 1

2
y2Nf TrðGm � h � Gm � hÞ; (13)

and our starting point is the vacuum-to-vacuum amplitude

Z ¼
Z

Dhe
�½
R

Lhd
4xþSð2Þ

eff
½h��: (14)

Inserting a Gaussian trial functional, the amplitude Z is
written as

Z ¼
Z

Dhe
�½12

R
hðxÞg�1ðx;yÞhðyÞd4xd4yþSint½h��; (15)

where g�1ðx; yÞ is a trial inverse propagator, and

Sint½h� ¼ � 1

2

Z
hðxÞg�1ðx; yÞhðyÞd4xd4y

þ
Z

Lhd
4xþ Sð2Þeff½h� (16)

is regarded as an interaction term. We define the Gaussian
average of a generic operator O according to

hOi ¼ 1

Z0

Z
DhOe�

1
2

R
hðxÞg�1ðx;yÞhðyÞd4xd4y; (17)

where

Z0 ¼
Z

Dhe
�1

2

R
hðxÞg�1ðx;yÞhðyÞd4xd4y: (18)

It follows that hhi ¼ 0 and hhðxÞhðyÞi ¼ gðx; yÞ. Moreover
h�i ¼ ’ and the variable ’ is the expectation value of the
scalar field.
By Jensen inequality [16,22] the effective potential Vð’Þ

is bounded [11,23] by a Gaussian functional

Vð’Þ � VGEP½g�; (19)

where the Gaussian functional is defined as

VGEP½g� ¼ hSinti � log
Z

Dhe
�1

2

R
hðxÞg�1ðx;yÞhðyÞd4xd4y (20)

and is equivalent to the first-order effective potential in the
presence of the interaction term Sint. The bound in Eq. (19)
allows for a variational determination of the trial propaga-
tor gðx; yÞ, and the GEP is defined as the minimum of the
functional

VGEPð’Þ � VGEP½g0� (21)

with the optimal propagator g0 satisfying the gap equation�
�VGEP

�g

�
g0

¼ 0: (22)
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This stationary condition must hold at each point ’ and the
resulting propagator g0 depends on the value of ’.

A trivial calculation yields

VGEP½g� ¼ Vcð’Þ þ V1Lð’Þ þ V0½g� þ V2½g� þ VF½g�:
(23)

The first two terms are the classical potential and the one-
loop term and do not depend on the trial propagator since

V1Lð’Þ ¼ NfðTr logGmÞm¼y’: (24)

The third term has no explicit dependence on ’

V0½g� ¼ I1½g� þ �B

8
I20½g� þ

1

2

Z d4p

ð2�Þ4
�
gðpÞ
gBðpÞ � 1

�
:

(25)

Here gðpÞ is the Fourier transform of gðx; yÞ, the bare
propagator is g�1

B ¼ m2
B þ p2, and the integrals I0, I1 are

defined as

I1½g� ¼ � 1

2

Z d4p

ð2�Þ4 loggðpÞ; (26)

I0½g� ¼
Z d4p

ð2�Þ4 gðpÞ: (27)

All the integrals in the four-dimensional Euclidean
space are made finite by insertion of a cutoff �, and taking
p2 <�2. The fourth term V2½g� has a quadratic explicit
dependence on ’

V2½g� ¼ �B

4
’2I0½g�; (28)

and the last term VF½g� follows from the fermionic loop in
the average of the quadratic part of Eq. (13)

VF½g� ¼
y2Nf

2

Z d4p

ð2�Þ4 KðpÞgðpÞ; (29)

where the kernel KðpÞ is the one-loop fermion polarization
function

KðpÞ ¼
Z d4q

ð2�Þ4 TrfGmðpþ qÞGmðqÞgm¼y’; (30)

and GmðpÞ follows by Fourier transform of Eq. (9)

GmðpÞ ¼ ð���p
� þmÞ�1 ¼ ��p

� þm

p2 þm2
: (31)

Exact and approximate expressions for the kernel KðpÞ are
reported in Appendix A.

According to Eq. (22), the functional derivative of
Eq. (23) gives a gap equation that reads

g�1
0 ¼ p2 þ�2½g0� þ Nfy

2KðpÞ; (32)

where the mass functional �2½g� is defined as

�2½g� ¼ m2
B þ 1

2
�B’

2 þ 1

2
�BI0½g� (33)

and does not depend on p, while KðpÞ does not depend on
g. In the limit y ! 0 the optimal trial propagator takes
the simple form g�1

0 ¼ g�1
� ¼ p2 þ�2 where the mass

parameter �2 � �2½g0� is the self-consistent solution of
Eq. (33). In this limit there is no wave function renormal-
ization and we recover the GEP for a scalar theory

VGEPð’Þ ¼ Vcð’Þ þ V0½g�� þ V2½g��; (34)

where the last two terms have an implicit dependence on ’
through g�. This case has been studied in Ref. [12] in some
detail.
In general the propagator g0 has a more complicated

dependence on p as a consequence of the Yukawa interac-
tion that adds the last term in Eq. (32). We can study this
dependence in some detail in the limit p ! 0. In this limit
the kernel KðpÞ is an analytic function of p2 and can be
expanded in powers yielding

KðpÞ � a0ðmÞ þ a1ðmÞp2 þOðp4Þ; (35)

where the functions aiðmÞ are derived in Appendix A and
must be evaluated for m ¼ y’. The optimal propagator in
Eq. (32) can then be written in the same limit as

g0ðpÞ � Z

p2 þM2
R

; (36)

where the wave function renormalization constant reads

Z�1 ¼ 1þ y2Nfa1ðmÞ; (37)

and the renormalized mass is

M2
R ¼ Z½�2 þ y2Nfa0ðmÞ�: (38)

It is instructive to explore the content of the approxi-
mation in terms of graphs. The solution g0 of the gap
equation (32) can be regarded as the solution of the
Dyson equation

gðpÞ ¼ g�ðpÞ þ gðpÞ � ½�y2NfKðpÞ� � g�ðpÞ; (39)

which sums up the whole class of ring diagrams. From a
formal point of view this kind of approximation is
equivalent to RPA, but here the self-consistent parameter
�2 ¼ �2½g0� and the corresponding propagator g�1

� ¼
p2 þ�2 are functions of ’ while in RPA they are fixed
at their mean-field value. Thus the dependence of the
effective potential on ’ is different, as are the predic-
tions for the vev.
Inserting back Eq. (32) in Eq. (23) the effective potential

takes the simple form

VGEPð’Þ ¼ Vcð’Þ þ V1Lð’Þ þ
�
I1 � 1

8
�BI

2
0

�
; (40)

where we recognize the classic term, the one-loop correc-
tion, and the standard GEP term of a scalar theory [11,12]
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(in brackets). However, here the integrals I0, I1 are eval-
uated for g ¼ g0, which is a solution of the interacting gap
equation (32); thus, the last term does depend on the
coupling y and gives rise to large deviations from the
simple one-loop result in the strong coupling limit.

The numerical evaluation of the effective potential can
be obtained more easily by a simple integration of the first
derivative

dVGEP

d’
¼ @VGEP

@’
þ

Z �
�VGEP

�g

��
dg

d’

�
d4p

ð2�Þ4 ; (41)

which by insertion of Eq. (22) is equivalent to the partial
derivative

dVGEPð’Þ
d’

¼ @VGEPð’Þ
@’

(42)

yielding

dVGEP

d’
¼

�
m2

B’þ �B

3!
’3 þ dV1L

d’

�
þ �B

2
I0’

þ y2Nf

2

Z d4p

ð2�Þ4
dKðpÞ
d’

gðpÞ: (43)

Here the trial propagator must be set to its optimal value g0
for any ’ point, yielding an implicit dependence on that
variable. Explicit expressions for the derivatives of KðpÞ
and V1L are reported in Appendices B and C, respectively.

III. COMPARISON WITH LATTICE DATA

For any set of Lagrangian parameters the GEP can be
obtained by solving the gap equation (32) and integrating
the derivative in Eq. (43). In order to compare with lattice
data some care must be taken in the choice of the energy
units. While we would prefer units of the cutoff �, lattice
data are usually reported in units of the lattice spacing a.
Actually the cutoff can be thought of as defining an effec-
tive lattice spacing a ¼ c=�, with an unknown constant
scale factor c ¼ a� of order unity that depends on the
approximation scheme and can be determined by a direct
comparison with the lattice data. Once the constant scale
factor is fixed, the predictions of the GEP can be compared
with the lattice data [12]. Some lattice data on the Higgs-
top model are discussed in Ref. [21]. For a comparison we
use the same set of parameters: y ¼ 0:5, �B ¼ 0:1, and
m2

B ¼ 0:1. As in other lattice calculations, they take a
large even number of fermions because of a well-known
duplication problem. We use the same value Nf ¼ 8 in this

section. The scale factor has been determined as c ¼ 2:34
by a fit of the vev as shown in Fig. 1. Here the vev is defined
as the minimum point of the GEP and is reported in units of
�=c in order to fit the lattice data.

With the scale factor fixed, the derivative of the effective
potential is evaluated by Eq. (43) and reported in Fig. 2 for
the parameter set �B ¼ 0:1, y ¼ 0:5, m2

B ¼ 0:1, Nf ¼ 8 in

units of the effective lattice spacing a ¼ c=�. The lattice

data of Ref. [21] are shown in the same figure for com-
parison. We find a good general agreement, with no need
for any other tuning of the parameters. Unfortunately, we
only found detailed lattice data for comparison in this weak
coupling limit where the variational method does not add
too much to the usual perturbative treatment of the model.
Some recent lattice data have been reported in the strong
coupling limit but for the special limit cases �B ! 1 and
�B ¼ 0 [24]. Strong coupling deviations from the one-loop
predictions will be discussed in the next section.
However, even in this weak coupling limit, at variance

with the perturbative method that predicts an unstable

 0  0.2  0.4  0.6  0.8  1

ve
v

mB

 0

 0.5

 1

 1.5

 2

 2.5

 3

FIG. 1. The vev as a function of the bare mass mB in units of
�=c for �B ¼ 0:1, y ¼ 0:5, and for a scale factor c ¼ 2:34
(dashed line). With that choice of scale the GEP interpolates
the lattice data of Ref. [21] (circles).

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0  0.5  1  1.5  2

d
V

/d
ϕ

ϕ

FIG. 2. The derivative of the effective potential dV=d’ is
reported as a function of the variable ’ in units of �=c with
c ¼ 2:34, and for the parameter set �B ¼ 0:1, y ¼ 0:5,
m2

B ¼ 0:1, Nf ¼ 8. The GEP (solid line) is compared with the

lattice data points of Ref. [21] (error bars).
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vacuum for large values of’, the GEP is perfectly bounded
and predicts a stable vacuum as shown in Fig. 3 in agree-
ment with the lattice calculations, confirming that the
instability of the vacuum is not a consequence of the
interaction with the fermions but a misleading internal
problem of the standard perturbative approximation,
emerging when the field is much larger than the cutoff
[21]. Actually, vacuum instability emerges in the renor-
malized perturbation theory because the renormalized cou-
plings are allowed to assume any value, whereas in bare
theories, like the present variational method or lattice
calculations, only a limited range of renormalized cou-
plings are possible, which vanish logarithmically with the
cutoff. By inspection of Eq. (43) we observe that in the
unphysical limit of ’ � � the integrals become irrelevant
as they are cut at a relatively small value of�. The negative
unstabilizing one-loop term vanishes as	1=’ in that limit
according to Eq. (C3), and the leading term in Eq. (43) is
the positive classic ’3 term. Thus the effective potential
cannot be unbounded for large values of the field.

For the same set of parameters the GEP is reported in
Fig. 4 in units of the effective lattice spacing. The mini-
mum is at ’ ¼ v � 2:1 and in the same units the top mass
is m ¼ yv � 1. It is remarkable that the breaking of sym-
metry is entirely driven by the Yukawa interaction with the
fermions: herem2

B > 0, the classical potential is symmetric
and would predict a vanishing vev. Thus in the SM the
symmetry is broken because of the large Yukawa coupling
of the top quark y � 0:7 that gives rise to a finite vev and
gives back a mass to all the fermions. There is no need for
unphysical negative bare squared masses m2

B < 0 in the
Lagrangian, which are quite difficult to be explained for a

free field theory. Moreover, in several extensions of the
SM the Higgs sector can be quite simplified, because there
is no need to assume that the classical potential has a
minimum at a broken symmetry point ’ � 0. For instance,
the minimal left-right symmetric extension of the SM
[25,26] does not require the existence of scalar bidoublet
fields, and a model with only two doublets is perfectly
viable [27,28].

IV. STRONG COUPLING LIMIT

The GEP has already been studied for large values of the
self-coupling �B of the scalar field in the past [12]. The
method has been shown to be reliable for large couplings,
even if these are almost ruled out by the recent experimen-
tal evidence of a light Higgs mass. In this section we would
like to explore the limit of a strong Yukawa coupling, much
larger than �B. We take �B ¼ 0:1 and Nf ¼ 3 in order to

represent a QCD quark multiplet like the top quark.
Moreover, we use units of � in this section (c ¼ 1) and
explore the model for a large coupling y and generic values
of the bare mass. Thus, in these units we are left with two
free parameters, y and m2

B. However, the physical require-

ment of a nonvanishing small top mass, quite smaller than
the cutoff (m � 1 in our units), decreases our degree of
freedom and limits the ratio of the free parameters in the
range 0:2<mB=y < 0:25. In fact, the physical masses can
be regarded as the inverse of correlation lengths � ¼ 1=m,
and the condition m � 1 is equivalent to the requirement
that � is much larger than the effective lattice spacing.
Only in that limit does the model make sense. Actually, we
can show that the predictions of the one-loop approxima-
tion only depend on the single parameter y=mB in the strong
coupling limit y � �B � 1. When the physical top mass
m ¼ yv is displayed as a function of mB=y, the one-loop

 0  2  4  6  8  10  12

d
V

/d
ϕ

ϕ

 0

 5
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 15

 20

 25

FIG. 3. The derivative of the effective potential dV=d’
is reported as a function of the variable ’ in units of �=c with
c ¼ 2:34, and for the same parameter set as for Fig. 2, but for a
wide range of ’. The GEP (solid line) is compared with the
lattice data points of Ref. [21] (circles). The derivative is positive
for large values of ’, even when ’>�, and no vacuum
instability occurs in the GEP.
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FIG. 4. The GEP VGEPð’Þ is shown as a function of the
variable ’ in units of the effective lattice spacing a ¼ c=�
with c ¼ 2:34, and for the same parameter set as for Fig. 2.
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data collapse on a single curve in the strong coupling limit
and do not depend on y as displayed in Fig. 5.

Evidence for this strong coupling scaling can be found
by a simple analysis of the single terms contributing to the
effective potential. By taking the mass m ¼ y’ as an
independent variable, the derivative of the effective poten-
tial follows from Eq. (43)

1

m

dVGEP

dm
¼

�
2

�
dV1L

dm2

�
þ

�
mB

y

�
2 þ �B

3!y4
m3

�
þ �B

2y
I0

þ y2Nf

Z d4p

ð2�Þ4
dKðpÞ
dm2

gðpÞ: (44)

We recognize a first term in square brackets arising from
the classical plus one-loop potential, a second term of order
	�B=y arising from the standard GEP correction to the
scalar potential, and a third term of order	y2 arising from
our nonperturbative treatment of the Yukawa interaction.
We observe that V1L and K have no explicit dependence on
y andmB when written as functions of the variablem. Thus
at one-loop, in the strong coupling limit y � �B, the
derivative of the effective potential reads

dV

dm
¼ m

�
2

�
dV1L

dm2

�
þ

�
mB

y

�
2
�

(45)

and only depends on the ratio mB=y. The stationary
points of the potential are the solution of the equation
dV=dm ¼ 0. When the symmetry is broken we find a
maximum at m ¼ 0 and a minimum given by the solution
of the equation

�
dV1L

dm2

�
¼ � 1

2

�
mB

y

�
2
; (46)

thus a plot of the one-loop top massm at the minimum, as a
function of the single parameter (mB=y) must follow a
single curve for any strong coupling y.
This single curve predicts a universal critical point

ðmB=yÞc for the single parameter, when the maximum
and minimum coincide:

�
dV1L

dm2

�
m¼0

¼ � 1

2

�
mB

y

�
2
; (47)

and from the explicit expression in Eq. (C3) we obtain

�
mB

y

�
c
¼

ffiffiffiffiffiffi
Nf

p
2�

; (48)

which for Nf ¼ 3 is ðmB=yÞc � 0:276. In this strong cou-

pling regime, deviations from the single parameter scaling
can only arise from the nonperturbative last term in
Eq. (44). Thus deviations from scaling can be used as a
measure of the nonperturbative effects in the GEP. The top
massm, as emerging from the GEP calculation, is reported
in Fig. 5 as a function of the scaling parameter mB=y for
several values of the Yukawa coupling ranging from y ¼ 3
to y ¼ 20. All the one-loop data collapse on the dashed
line. Deviations from the scaling are present when the GEP
is considered, but they are small for the phenomenological
value y � 0:7. These deviations cannot be neglected in the
range of large couplings. In Fig. 6 the top mass is reported
as a function of the Yukawa coupling y for a typical value
of the parameter mB=y ¼ 0:21. We notice the different
behavior of one-loop and GEP approximations: the top
mass is reduced by fluctuations. Moreover, the fluctuations
give rise to a decreasing of the wave function renormal-
ization constant Z according to Eq. (37) as shown in Fig. 7.
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FIG. 5. The top mass as a function of the parameter (mB=y),
for a range of Yukawa couplings going from y ¼ 3 to y ¼ 20,
according to the GEP. Energies are in units of the cutoff �. The
one-loop data collapse on a single curve (dashed line).
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FIG. 6. The top mass as a function of the Yukawa coupling y,
for a typical value of the parameter ðmB=yÞ ¼ 0:21. The pre-
diction of the GEP (solid circles) is compared with the steady
one-loop data (open circles). Masses are in units of the cutoff.
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This effect is negligible for weak couplings but becomes
very large in the strong coupling limit.

More insights come from a closer study of the Higgs
propagator g0ðpÞ that solves Eq. (32). The renormalized
inverse propagator Zg�1

0 is reported as function of

p2 for a typical value of the parameter mB=y ¼ 0:21 in
Figs. 8 and 9. The approximate linear expression in
Eq. (36), derived for small values of p, is shown for
comparison. In Fig. 8, for a moderately large Yukawa
coupling y ¼ 3, deviations from linearity are small and
only occur for very large values of p2. Deviations are large
in the strong coupling limit, as shown in Fig. 9 for y ¼ 20.

A shortcoming of the approximation comes from the
breakdown of the convergence criterion when approaching
the critical point. Before reaching the critical point, the
fluctuations of the Higgs field become large enough to
make the expansion in Eq. (10) useless. In fact, in Fig. 5
the plots do not reach the critical point, but we checked that
the criterion of convergence is satisfied for the reported
data. From a technical point of view, the renormalized
mass in Eq. (38) becomes small when approaching the
critical point, and it vanishes before reaching the transition.
A real pole occurs in the Higgs propagator and the integrals
diverge. However, this is just a sign that the Higgs fluctua-
tions are too large and the expansion in Eq. (10) does not
hold any more. In our calculation we never let the renor-
malized mass be too small, in order to fulfill the conver-
gence criterion. Thus our data are still reliable even if they
cannot span the entire range of the free parameters.

V. CONCLUSIONS

We have studied the Higgs-top model by a nonperturba-
tive variational extension of the GEP that incorporates
fermions. While the pure GEP is known to give trivial
results for the fermions [20], some effects of their fluctua-
tions have been included in the GEP by an hybrid method:
fermions are integrated out exactly and the resulting effec-
tive action is expanded in powers of the fluctuating Higgs
field. Even in the strong coupling limit, a second-order
expansion provides reliable predictions for a large range of
the free parameters. By fixing an effective lattice spacing,
the GEP is found in good general agreement with the
available lattice data for the model.
In the strong coupling limit the Gaussian fluctuations

reduce the vev and the top mass, as displayed by a com-
parison with the one-loop approximation. In this limit the
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FIG. 7. The wave function renormalization constant Z is re-
ported according to Eq. (37) as a function of the Yukawa
coupling, for a typical value of the parameter ðmB=yÞ ¼ 0:21.
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FIG. 8. The renormalized inverse propagator Zg�1 is shown as
a function of p2, in units of the cutoff�, for a typical value of the
parameter ðmB=yÞ ¼ 0:21, and for a moderate coupling y ¼ 3
(solid line). Here g is the optimal propagator solving Eq. (32).
The linear approximate inverse propagator of Eq. (36) is shown
for comparison (dashed line).
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FIG. 9. The same as Fig. 8 but for a strong Yukawa coupling
y ¼ 20 (solid line). The linear approximate inverse propagator is
shown for comparison (dashed line).
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one-loop data are seen to follow a single-parameter scal-
ing, while the Gaussian fluctuations give rise to important
deviations from scaling.

At variance with renormalized perturbation theory, this
study confirms that the Higgs-top model has a perfectly
stable vacuum even in the strong coupling limit and that, in
the presence of Yukawa couplings with fermions, there is
no need for a finite vev in the classical potential. In fact, a
nonvanishing vev can be predicted even when m2

B > 0 and
the classical potential has no broken symmetry vacuum.
Thus fluctuations are very relevant for determining the
correct vev, and naive discussions based on the classical
potential cannot be used for the Higgs-top model.

On general grounds, inclusion of fermions in a non-
perturbative and almost analytical calculation is of interest
by itself. Moreover the same method could be used in the
framework of effective theories [29] or in a low-energy
study of gauge theories like QCD when the perturbative
approximation breaks down. While the GEP was derived
for the SU(2) gauge theory in the past [16], no previous
attempt has been reported for incorporating fermions. Thus
the present study could be extended in that direction.

APPENDIX A: POLARIZATION FUNCTION KðpÞ
The fermionic polarization function KðpÞ has been

calculated exactly, integrating inside the hypersphere
p2 <�2 in the four-dimensional Euclidean space.
Inserting Eq. (31) into Eq. (30) and evaluating the trace,

KðpÞ ¼ 4
Z
�

d4q

ð2�Þ4
m2 � q2 � q � p

ðm2 þ q2Þðm2 þ q2 þ p2 þ 2q � pÞ :
(A1)

Here the Feynman trick cannot be used because of the
finite cutoff. However, by a tedious but straightforward
calculation the exact polarization function can be
written as

KðpÞ ¼ K0 þ K1ðpÞ þ K2ðpÞ þ K3ðpÞ; (A2)

where K0 is the constant

K0 ¼ � 1

8�2

�
�2 �m2 log

�2 þm2

m2

�
; (A3)

and the three functions KiðpÞ follow

K1ðpÞ ¼ 4m2 þ p2

16�2
log

�2 þm2

m2
þ �2

32�2p2
ð6m2 ��2Þ;

(A4)

K2ðpÞ ¼ ��þ p4 �m4

32�2p2
þ m2

8�2
log

�þ �

2m2
; (A5)

K3ðpÞ ¼ � 4m2 þ p2

16�2p2
JðpÞ; (A6)

where � and � are the functions

�ðpÞ ¼ m2 þ�2 � p2; (A7)

�ðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 4m2p2

q
; (A8)

and J is the integral

JðpÞ ¼
Z m2þ�2

m2

dx

x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� p2Þ2 þ 4m2p2

q
: (A9)

The integral J has been evaluated in Ref. [12] and its
explicit expression is

JðpÞ ¼ �þ �� 2m2

2
� p2	; (A10)

where 	 is the function

	ðpÞ¼ log

��������t2t1
���������m

p

�
1

t2
� 1

t1

�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4m2

p2

s
log

��������ðt2� t�Þðt1� tþÞ
ðt2� tþÞðt1� t�Þ

��������; (A11)

and its arguments are

t
 ¼ � p

2m



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

4m2

s
; (A12)

t1 ¼ m

p
; t2 ¼ �þ �

2mp
: (A13)

It can be easily seen that the singular terms cancel in
Eq. (A2) and the resulting function KðpÞ is an analytic
function of p2. Its expansion in powers of p2 reads

KðpÞ ¼ X1
n¼0

anðmÞp2n; (A14)

where the coefficients anðmÞ are functions of m2. In
units of the cutoff � the first two coefficients of the
expansion are

a0ðmÞ ¼ � 1

4�2

�
1þ 2m2

1þm2
� 3m2 log

1þm2

m2

�
; (A15)

a1ðmÞ ¼ 1

8�2
log

1þm2

m2
� ð6m4 þ 21m2 þ 7Þ

48�2ð1þm2Þ3 : (A16)

APPENDIX B: DERIVATIVE OF KðpÞ
Explicit expressions for the exact and approximate

polarization function KðpÞ have been reported in
Appendix A. The derivative can be written as
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dKðpÞ
d’

¼ 2ym
dKðpÞ
dm2

; (B1)

where

dKðpÞ
dm2

¼ dK0

dm2
þ dK1ðpÞ

dm2
þ dK2ðpÞ

dm2
þ dK3ðpÞ

dm2
; (B2)

and the single terms Ki are given in Appendix A. By an
explicit calculation we obtain

dK0

dm2
¼ � 1

8�2

�
�2

�2 þm2
� log

�2 þm2

m2

�
; (B3)

dK1ðpÞ
dm2

¼ 1

4�2

�
log

�2 þm2

m2
� �2

�2 þm2

�

þ� �2p2

16�2m2ð�2 þm2Þ þ
3�2

16�2p2
; (B4)

dK2ðpÞ
dm2

¼ � 1

8�2
� m2

16�2p2
þ ð�2 þm2Þ2

16�2p2�
þm2 ��2

16�2�

þ 1

8�2
log

�þ �

2m2
þ m2

8�2�

�
1þ 2p2

�þ �

�
;

(B5)

dK3ðpÞ
dm2

¼ �ð4m2 þ p2Þ
16�2p2

dJðpÞ
dm2

� JðpÞ
4�2p2

; (B6)

where the functions �, �, and J are defined in Appendix A.
The derivative of J follows as

dJðpÞ
dm2

¼�þ2p2��

2�
�2p2ð�2þ2m2Þ

m2ð�2þm2Þ þp2�þ2m2þ�

�þ�

�
�
1

m2
��þ2p2þ�

�ð�þ�Þ
�
� 2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2þ4m2
p

� log

��������ðt2�t�Þðt1�tþÞ
ðt2�tþÞðt1�t�Þ

�
��������þp2½ð�þ2p2Þð4m2þp2Þþð4m2�p2Þ��

ðm2þ�2Þð�þ�Þ� ;

(B7)

where the functions t
, t1, t2 are defined in Appendix A.

APPENDIX C: ONE-LOOP POTENTIAL V1L

AND ITS DERIVATIVE

The one-loop term V1Lð’Þ is defined in Eq. (24) and its
explicit evaluation, in terms of m ¼ y’, yields the integral

V1LðmÞ ¼ �2Nf

Z �

0

2�2p3dp

ð2�Þ4 logðm2 þ p2Þ; (C1)

and in units of the cutoff �

V1LðmÞ ¼ Nf

32�2
½1� 2 logð1þm2Þ� � Nfm

2

16�2

þ Nfm
4

16�2
log

1þm2

m2
: (C2)

The derivative follows

dV1L

dm2
¼ Nfm

2

8�2
log

1þm2

m2
� Nf

8�2
; (C3)

so that �
dV1L

dm2

�
m¼0

¼ � Nf

8�2
: (C4)
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