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We study the conformal window of gauge theories containing fermionic matter fields, where the gauge

group is any of the exceptional groups with the fermions transforming according to the fundamental and

adjoint representations and the orthogonal groups where the fermions transform according to a spinorial

representation. We investigate the phase diagram using a purely perturbative four-loop analysis, the

all-orders beta function and the ladder approximation.
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I. INTRODUCTION

Over the past few decades, strongly interacting theo-
ries have continued to pose a considerable challenge for
theoretical physicists. In recent years a thorough and
comprehensive study of the phase diagram of nonsuper-
symmetric gauge theories has been undertaken; for a
review see Ref. [1]. In brief, the renewed interest is due
to the fact that a better knowledge of the nature of the
conformal window can lead to the correct theory behind
electroweak symmetry breaking. These investigations
can also be used for the construction of models of com-
posite dark matter, reviewed in Ref. [1], and inflation [2].
The first series of works were dedicated to the study of
SUðNÞ gauge theories with fermions transforming
according to higher dimensional representations of the
gauge group [3,4]. In Ref. [3] it was first realized that
only two Dirac fermions were needed in order to be
near, or within, the conformal window. Subsequently the
study was generalized to nonsupersymmetric SOðNÞ and
Spð2NÞ gauge theories [5] and to supersymmetric gauge
theories with superfields belonging to arbitrary represen-
tations of the gauge group [6]. The status for the confor-
mal window of chiral gauge theories was summarized
and further extended in Ref. [1]. Except for the super-
symmetric case, and the case of the chiral gauge theories,
all the investigations were done primarily using the lad-
der approximation [7–9].

However, it was clear that one cannot rely on just one
crude approximation and new techniques had to be devel-
oped in order to obtain a firmer grip on the phase diagram.
Inspired by the work of Seiberg [10] in supersymmetric
gauge theories and its use of the Novikov-Shifman-
Vainshtein-Zakharov beta function [11] to bound the con-
formal window an all-orders beta function for fermionic

gauge theories was conjectured [12]. Using additional
consistency checks, it was found that the original beta
function had to be slightly corrected in order to accom-
modate known analytical results [13]. It is worth emphasiz-
ing that the all-orders beta function is shape preserving
when approaching the supersymmetric limit and that the
beta function is written linearly in the anomalous dimen-
sion of the mass similarly to the supersymmetric case. Also
a related form of an all-orders beta function was conjec-
tured in Refs. [14,15].
One of the key outcomes using the all-orders beta

function is its prediction of the anomalous dimension
of the mass at a fixed point (FP). In general, it was found
that the anomalous dimension was somewhat smaller
than what was expected from the ladder approximation.
Therefore a third method using higher orders perturba-
tion theory was utilized [16,17]. Both the beta function
and the anomalous of the mass were computed to the

fourth loop order in the MS scheme in Refs. [18,19]
which made it possible to investigate the corrections of
higher loop orders in perturbation theory to the anoma-
lous dimension at a fixed point. In general, it was found
that the anomalous dimension decreases when one in-
cludes higher orders signaling the accuracy and potential
exactness of the all-orders beta function. The study of
higher loop orders in supersymmetric theories has also
been done to the three-loop level in the DR scheme [20].
Here the same tendency as in the nonsupersymmetric
case with a decreasing anomalous dimension at the fixed
point is found.
Finally, we note that also the conformal house of non-

supersymmetric gauge theories with fermions transform-
ing according to multiple representations of the gauge
group has been of interest [21,22] while the nontrivial
consistency checks of the conformal window using dual-
ities have been considered in Refs. [23–25].
A quick search through the literature reveals that a

considerable amount of the work done so far has been
focused primarily on SUðNÞ gauge theories with fermions
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transforming according to higher dimensional representa-
tions while using a variety of different techniques. Only a
few scattered departures away from this direction of
research has been carried out. This is certainly an incom-
plete survey of all possible nonsupersymmetric gauge
theories. We therefore take the analysis one step further
and exhaust the investigations by studying also theories
with exceptional gauge groups and theories with fermions
transforming according to spinorial representations. This
is done using a number of different techniques that have
all gained their respect in the case of an SUðNÞ gauge
group. They are

(i) The four-loop beta function and anomalous dimen-
sion of the mass.

(ii) The all-orders beta function.
(iii) The ladder approximation.
In the past the use of the exceptional groups and the

spinorial representations has found applications in many
fields of particle physics including the famous examples
of grand unified theories (GUT’s) and string theory.
Following the famous work on the SUð5Þ GUT [26]
where the standard model (SM) fermions are assigned to
the conjugate fundamental and the two-indexed antisym-
metric representation, other unifying gauge groups were
proposed. Specifically, the orthogonal group SOð10Þ was
considered where a single generation of SM fermions filled
out a complete 16 dimensional spinorial representation
[27,28]. As opposed to the original SUð5Þ theory the
SOð10Þ theory also allowed the inclusion of a right-handed
neutrino. Similarly the exceptional group E6—which has
SOð10Þ as a subgroup—can be used as a unifying gauge
group to which all the SM interactions and matter particles
can be neatly incorporated [29]. For an early review see
Ref. [30]. Also in string theory the use of exceptional groups
has found its way. Consistency requires that one of the
heterotic string theories has E8 � E8 as gauge group [31].

From the discussion above it is clear that our analysis
might not only provide useful insight into the construction
of viable theories able to dynamically break the electro-
weak theory but it might also shed light on how an eventual
grand unified theory should materialize, as well as dark
matter and composite inflation.

Furthermore, lattice investigations of exceptional groups
[32,33] with the aim to elucidate the relation between
chiral symmetry and confinement are already present in
the literature granting further support to the present study.

The paper is organized as follows: In Sec. II, we
introduce the various methods and techniques used in
our analysis. In Secs. III and IV, we provide the results
respectively for the exceptional groups and the spinorial
representations.

II. METHODS AND TECHNIQUES

We start by giving a brief description of all the methods
that we shall employ to estimate the critical number of

flavors above which an IR fixed point is reached. We
denote the generators in the representation r of an arbitrary
group by Ta

r , a ¼ 1 . . .dðGÞ. Here dðrÞ is the dimension of
the representation r and the adjoint representation is
denoted by G. The generators are normalized according
to Tr½Ta

r T
b
r � ¼ TðrÞ�ab while the quadratic Casimir C2ðrÞ

is given by Ta
r T

a
r ¼ C2ðrÞI. The trace normalization

factor TðrÞ and the quadratic Casimir are connected via
C2ðrÞdðrÞ ¼ TðrÞdðGÞ.
Consider a non-Abelian gauge group and a set of fermi-

ons transforming according to a specific representation
of the gauge group. The loss of asymptotic freedom is
signaled by the change of sign in the first coefficient of
the beta function. The number of flavors for which this
occurs is

�n f ¼ 11

4

C2ðGÞ
TðrÞ : (1)

Just below this number of flavors the two-loop beta func-
tion has an infrared fixed point away from the origin. This
is the Banks-Zaks perturbative fixed point. As one de-
creases the number of flavors, one expects the fixed point
to disappear.

A. Four-loop analysis

We first extend the Banks-Zaks perturbative analysis to
the maximum known order, to date, in perturbation theory.
This will allow one to extract relevant information on the
perturbative infrared fixed point analysis for the theories
investigated here.
The beta function of a gauge theory with a set of

fermions transforming according to an arbitrary represen-
tation of the gauge group has been computed to four-loop

order in the MS scheme [18]. Also the anomalous dimen-
sion of the mass is known to this order in the same scheme
[19]. They are given by
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The various coefficients are given in Appendix A and m is
the fermion mass. We use the beta function above to
determine the location and type of zeros for the theories
investigated here and determine for the infrared fixed point
the associated anomalous dimension. We provide also the
results for the lower boundary of the conformal window
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within the four-loop analysis with the caveat that, of
course, higher orders as well as nonperturbative correc-
tions are expected to contribute.

It is worth mentioning that the four-loop analysis has
been useful for the determination of the anomalous dimen-
sions of SUðNÞ gauge theories with fermions in various
representations of the gauge group. In fact, recent first
principle lattice simulations have provided results in rea-
sonable agreement with the theoretical predictions. See
Ref. [1] and references therein.

The results from this method will be shown together
with the other methods in the next section.

B. All-orders beta function

Recently an all-orders beta function for nonsuper-
symmetric fermonic gauge theories has been proposed
[12,13]. It is given in terms of the anomalous dimension
and reads

�ð�Þ ¼ �
�
�

4�

�
2 �0 þ �1ð �nfÞ

2 �nf�0
nf�

1� �
4�

�YM
1

�YM
0

: (4)

This beta function is written in terms of the first two
universal coefficients as well as the first universal coeffi-
cient of the anomalous dimension. These are the only
scheme independent quantities. �nf is the number of flavors

above which asymptotic freedom is lost. At the infrared
zero of the beta function we have

�� ¼ C2ðrÞ
2TðrÞnf

121C2ðGÞ � 44TðrÞnf
7C2ðGÞ þ 11C2ðrÞ : (5)

At the infrared fixed point the anomalous dimension is
scheme independent and therefore this estimate can be
used for any nonsupersymmetric vectorlike gauge theory
with fermions in a given matter representation.

C. Ladder approximation

By studying a truncated version of the Dyson-Schwinger
equation for the fermion propagator, one obtains an esti-
mate for the value of the coupling constant for which the
formation of a chiral condensate is triggered and chiral
symmetry breaks:

�c ¼ �

3C2ðrÞ : (6)

To determine when the theory loses conformality tradition-
ally one compares the two-loop infrared fixed point value
of � with the estimate above. The two-loop value is

�IR ¼ �4�
�0

�1

: (7)

Here the number of flavors is chosen such that the first
coefficient of the beta function is larger than zero while
the second coefficient is less than zero. Equating the
critical value of the coupling above with the value at the
IR fixed point yields what one believes to be the number
of flavors marking the phase boundary of the conformal
window:

nf ¼ C2ðGÞ
TðrÞ

17C2ðGÞ þ 66C2ðrÞ
10C2ðGÞ þ 30C2ðrÞ : (8)

In this approach, at this point the anomalous dimension of
the mass is expected to be of the order unity.

D. Comparison of the different methods

The above three different methods for estimating the
conformal window differs in a number of ways. In order to
be able to compare them in a reliable manner we must
therefore do the following. The four-loop analysis and the
all-orders beta function provide an estimate of the anoma-
lous dimension at the zero of the beta function. The critical
number of flavors is then extracted by equating the anoma-
lous dimension to a specific number. On general grounds it
is only bounded by a unitarity constraint to be between
zero and two. On the other hand, the breaking down of the
ladder approximation at �� ¼ 1 suggests the onset of chiral
symmetry breaking to occur around this value. Therefore
in order to compare the critical number of flavors within
the various approaches we also assume �� ¼ 1 in the four-
loop and all-orders beta function analysis. As will be seen
below, all the tables with the critical number of flavors are
given using this particular choice.

III. CONFORMALWINDOW FOR THE
EXCEPTIONAL GROUPS

Besides the classical Lie groups there are also five
exceptional ones. These are denoted by G2, F4, E6, E7

and E8. In Table I, we summarize the various group invar-
iants for the fundamental and adjoint representations.

TABLE I. Relevant group factors for the exceptional groups. b
is the normalization factor of the Killing form (or equivalently
the quadratic Casimir of the adjoint representation) as discussed
in Refs. [18,34]. The canonical choice for the normalization is
b ¼ 1.

G2 F4 E6 E7 E8

C2ðGÞ 4b 9b 12b 18b 30b
TðFÞ b 3b 3b 6b � � �
C2ðFÞ 2b 6b 26

3 b
57
4 b � � �

NF 7 26 27 56 � � �
NG 14 52 78 133 248
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One should note that forG2, F4, E6 and E7 the fundamental
and the adjoint representation are distinct while for E8 they
coincide. The tensor dabcd, which appears at four loops,
vanishes for all the exceptional groups, see Appendix A.
Therefore we do not need to compute the fourth order
index I4. All we need is the trace normalization factors,
TðrÞ, and the quadratic Casimir, C2ðrÞ, for the fundamental
and adjoint representations.

In Tables II and III are provided the various critical
number of fermion flavors, as described in the previous
section. The upshot of the result is illustrated in Fig. 1.

In Figs. 6 and 7 in Appendix B is provided the four-loop
zerology, i.e., the full structure of zeros in the four-loop
beta functions, for the exceptional groups.

The anomalous dimension at the perturbative fixed
point as a function of the number of flavors is given in
Appendix C.

IV. SPINORIAL REPRESENTATIONS

Below we summarize the group invariants for the spi-
norial (for short, spin) representations of SOðNÞ. For oddN

the spin representation is real while for even N the spin
representation is complex (chiral).
Using the expressions in Table IV, it is straightforward to

compute the critical number of flavors where asymptotic
freedom is lost:

�n f ¼ 11

4
ðN � 2Þ2�N

2�ðSÞ; (9)

where �ðSÞ is the spinor representation dependent factor.
For the real spinor representation of SOðNÞ, with N odd it
reads

�ðSrealÞ ¼ 27=2 ¼ 8
ffiffiffi
2

p
: (10)

For the chiral spinor representation with N even it instead
reads

�ðSchiralÞ ¼ 24 ¼ 16: (11)

TABLE III. Table of various critical number of flavors, as
described in Table II, for fermions in the adjoint representation.

Adjoint G2 F4 E6 E7 E8

Asymptotic freedom 2.75 2.75 2.75 2.75 2.75

Four loops �� ¼ 1 1.70 1.72 1.73 1.73 1.73

All orders �� ¼ 1 1.51 1.51 1.51 1.51 1.51

Ladder 2.08 2.08 2.08 2.08 2.08

Loss of four-loop FP 0.75 0.80 0.80 0.81 0.82

G2 F4 E6 E7 E8 Ad

2

4

6

8

10

12
nf

All Orders 1

Four Loops 1

Ladder

FIG. 1 (color online). For the exceptional groups we cannot
change the number of colors and therefore the lines refer only to
the number of flavors per given group. Therefore, we can only
construct conformal lines in the flavor space. Nevertheless, we
keep referring to them as conformal windows. We plot these
lines as bars for the exceptional gauge theories with fermion
matter transforming under the fundamental representation. The
upper bound on the window is the asymptotic freedom limit,
while the lower border is where the four-loop fixed point is lost.
The legend indicates the estimates from the methods described
on the critical number of flavors where large distance confor-
mality is lost. For E8 the fundamental and adjoint are identical
representations. The results for the theories with fermions in the
adjoint representation are almost identical to the one of E8, as
can be inspected from Table III.

TABLE IV. Relevant group factors for the spinorial representa-
tions of the SOðNÞ group. As described in Table I, the canonical
choice is b ¼ 1.

SOðNÞ representation TðrÞ=b C2ðrÞ=b d

Sreal (odd N) 2
N�7
2

NðN�1Þ
16 2

N�1
2

Schiral (even N) 2
N�8
2

NðN�1Þ
16 2

N�2
2

G N � 2 N � 2 NðN�1Þ
2

TABLE II. Table of various critical number of flavors when the
fermions are in the fundamental representation. The first list
yields the value for which asymptotic freedom is lost. The next
three correspond to the critical number of flavors above which an
IR fixed point is reached according to the (i) four-loop beta
function and anomalous dimension, (ii) the all-orders beta func-
tion and (iii) the ladder approximation. For all three methods the
critical number of flavors has been determined by, or corre-
sponds to, the value of the anomalous dimension at the fixed
point being one, �� ¼ 1. The last list of critical number of
flavors marks the loss of the IR fixed point in the four-loop
beta function. NA implies that for that specific theory the four-
loop anomalous dimension at the fixed point never reaches the
value one [see Fig. 4(b)].

Fundamental G2 F4 E6 E7 E8

Asymptotic freedom 11 8.25 11 8.25 � � �
Four loops �� ¼ 1 NA 4.39 6.16 4.83 � � �
All orders �� ¼ 1 5.15 4.17 5.67 4.33 � � �
Ladder 8 6.1 8.17 6.16 � � �
Loss of four-loop FP 4.50 2.97 3.83 2.75 � � �
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We provide also the explicit expression for the index I4
of the spin representations as defined in Ref. [18]. This also
appeared in the Appendix of Ref. [34]. For the real spin
representation of SOðNÞ, with N � 5 odd we find

I4ðSrealÞ ¼ �2
N�9
2 b2; (12)

while, for the chiral spin representation of SOðNÞ, with N
even and � 6,

I4ðSchiralÞ ¼ �2
N�10

2 b2; (13)

where in both cases b is the normalization factor of the
Killing form (or equivalently the quadratic Casimir of
the adjoint representation) as discussed in Refs. [18,34].
The canonical choice is b ¼ 1. In the case of SOð3Þ and
SOð4Þ the index I4 simply vanishes.

In Fig. 2 is plotted the conformal window of SOðNÞ
gauge theories with fermion matter transforming under
the spinorial representation. In the same figures are also
shown the various critical values of the number of flavors.

The precise numerical values of these are provided in
Table V.
The zerology of the spinorial representations can

be classified into four distinct topological structures.
In Fig. 3 four representative plots are shown for each
topological structure with classification given for all
SOðNÞ groups.
In Fig. 8 in Appendix C is shown the anomalous dimen-

sion at the perturbative fixed point order by order in
perturbation theory for some of the SOðNÞ groups.

V. CONCLUSIONS AND OUTLOOK

This work completes the analytic investigation of the
conformal window for any asymptotically free gauge
group featuring fermionic matter. We discovered using
different analytical approaches that every gauge group
has a nontrivial phase diagram relevant when considering
various extensions of the standard model.
We argue therefore for the presence of an underlying

universal structure associated to the phase diagram of any

2 3 4 5 6 7 8

2
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8
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12

14

16

18

n

n
f

SO 2n 1

All Orders 1

Four Loops 1

Ladder

2 3 4 5 6 7 8

2

4

6

8

10

12

14

16

18

20

22

n

n
f

SO 2n 2

All Orders 1

Four Loops 1

Ladder

FIG. 2 (color online). Conformal window of SOðNÞ gauge theories with fermion matter transforming under the spinorial
representation of the gauge group. The upper bound is the asymptotic freedom limit, while the lower border of the window
is where the four-loop fixed point is lost. The various estimates of the critical number of flavors where long distance conformality
is lost are shown as given by the legend. All estimates on the critical number of flavors has been determined by, or corresponds
to, the value of the anomalous dimension being one, �� ¼ 1. Note that the four loops �� ¼ 1 estimate is not applicable
for SOðN < 8Þ.

TABLE V. Table of various critical number of flavors, as described in Table II, for fermions in the spinorial representation
of SOðNÞ.
N 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Asymptotic freedom 16.5 22. 13.75 16.5 9.62 11. 6.19 6.88 3.78 4.12 2.23 2.41 1.29 1.38 0.73

Four loops �� ¼ 1 NA NA NA 7.7 4.91 6.01 3.55 4.08 2.31 2.56 1.41 1.54 0.83 0.9 0.48

All orders �� ¼ 1 7.29 10.1 6.53 8.07 4.82 5.63 3.23 3.65 2.03 2.25 1.23 1.34 0.72 0.78 0.42

Ladder 11.87 15.94 10.03 12.11 7.1 8.16 4.61 5.14 2.84 3.1 1.69 1.82 0.98 1.05 0.56

Loss of four-loop FP 7.35 9.04 5.44 6.35 3.61 4.03 2.19 2.38 1.25 1.34 0.7 0.76 0.38 0.41 0.2
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nonsupersymmetric gauge theory featuring fermionic mat-
ter. The universal structure embodies the existence of a
conformal window for a finite number of flavors. The
window, however, for the exceptional groups shrinks to a
conformal line in the number of flavors.

What remains to be understood is whether the transition
from the conformal to nonconformal phase is of walking
[35–38] or jumping type [39]. The Dyson-Schwinger
analysis, in its most rudimentary incarnation, is unable to
address this issue.

One potentially interesting avenue to explore is the
extension of these theories to include other kinds of matter
fields, even bosonic in nature [40–43]. These extensions
may lead to new interesting examples of calculable con-
formal and walking windows [43] or could be used to
elucidate the spectral dynamics when conformality is
lost [41,42]. Furthermore these extensions could be of
more immediate use for grand unified extensions of the
standard model.

APPENDIX A: COEFFICIENTS OF THE BETA
FUNCTION AND THE ANOMALOUS

DIMENSION

The four-loop beta function coefficients are [18]

�0 ¼ 11

3
C2ðGÞ � 4

3
TðrÞnf; (A1)

�1 ¼ 34

3
C2ðGÞ2 � 4C2ðrÞTðrÞnf � 20

3
C2ðGÞTðrÞnf;

(A2)

�2 ¼ 2857

54
C2ðGÞ3 þ 2C2ðrÞ2TðrÞnf

� 205

9
C2ðrÞC2ðGÞTðrÞnf � 1415

27
C2ðGÞ2TðrÞnf

þ 44

9
C2ðrÞTðrÞ2n2f þ

158

27
C2ðGÞTðrÞ2n2f; (A3)

FIG. 3 (color online). The four distinct zerologies of SOðNÞ gauge theories, as found from the four-loop beta functions. The
particular groups shown are SOð5Þ, SOð10Þ, SOð13Þ and SOð23Þ. Red (light) curves correspond to IR fixed point solutions for the given
number of flavors, while blue (dark) curves correspond to UV fixed point solutions.
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�3 ¼C2ðGÞ4
�
150653

486
� 44

9
�3

�
þC2ðGÞ3TðrÞnf

�
�39143

81
þ 136

3
�3

�
þC2ðGÞ2C2ðrÞTðrÞnf

�
7073

243
� 656

9
�3

�

þC2ðGÞC2ðrÞ2TðrÞnf
�
�4204

27
þ 352

9
�3

�
þ 46C2ðrÞ3TðrÞnf þC2ðGÞ2TðrÞ2n2f

�
7930

81
þ 224

9
�3

�

þC2ðrÞ2TðrÞ2n2f
�
1352

27
� 704

9
�3

�
þC2ðGÞC2ðrÞTðrÞ2n2f

�
17152

243
þ 448

9
�3

�
þ 424

243
C2ðGÞTðrÞ3n3f þ

1232

243
C2ðrÞTðrÞ3n3f

þdabcdG dabcdG

NG

�
�80

9
þ 704

3
�3

�
þnf

dabcdG dabcdr

NG

�
512

9
� 1664

3
�3

�
þn2f

dabcdr dabcdr

NG

�
�704

9
þ 512

3
�3

�
: (A4)

The coefficients of the anomalous dimension to four loops are [19]

�0 ¼ 3C2ðrÞ; (A5)

�1 ¼ 3

2
C2ðrÞ2 þ 97

6
C2ðrÞC2ðGÞ � 10

3
C2ðrÞTðrÞnf; (A6)

�2 ¼ 129

2
C2ðrÞ3 � 129

4
C2ðrÞ2C2ðGÞ þ 11413

108
C2ðrÞC2ðGÞ2 þ C2ðrÞ2TðrÞnfð�46þ 48�3Þ

þ C2ðrÞC2ðGÞTðrÞnf
�
� 556

27
� 48�3

�
� 140

27
C2ðrÞTðrÞ2n2f; (A7)

�3 ¼ C2ðrÞ4
�
� 1261

8
� 336�3

�
þ C2ðrÞ3C2ðGÞ

�
15349

12
þ 316�3

�
þ C2ðrÞ2C2ðGÞ2

�
� 34045

36
� 152�3 þ 440�5

�

þ C2ðrÞC2ðGÞ3
�
70055

72
þ 1418

9
�3 � 440�5

�
þ C2ðrÞ3TðrÞnf

�
� 280

3
þ 552�3 � 480�5

�

þ C2ðrÞ2C2ðGÞTðrÞnf
�
� 8819

27
þ 368�3 � 264�4 þ 80�5

�
þ C2ðrÞC2ðGÞ2TðrÞnf

�
� 65459

162
� 2684

3
�3

þ 264�4 þ 400�5

�
þ C2ðrÞ2TðrÞ2n2f

�
304

27
� 160�3 þ 96�4

�
þ C2ðrÞC2ðGÞTðrÞ2n2f

�
1342

81
þ 160�3 � 96�4

�

þ C2ðrÞTðrÞ3n3f
�
� 664

81
þ 128

9
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Nr

ð�32þ 240�3Þ þ nf
dabcdr dabcdr

Nr

ð64� 480�3Þ: (A8)
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FIG. 4 (color online). Anomalous dimension at the perturbative fixed point as a function of number of flavors nf. The curve
corresponding to (i) two loops is yellow (upper solid), (ii) three loops is red (middle solid), (iii) four loops is blue (lower solid), and
(iv) all-orders is dashed.
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FIG. 5 (color online). Anomalous dimension at the perturbative fixed point as a function of number of flavors nf. Legend as in Fig. 4.
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In the above expressions �x is the Riemann zeta func-
tion evaluated at x, Ta

r with a ¼ 1; . . . ; Nr are the gen-
erators for a generic representation r with dimension
Nr. The generators are normalized via trðTa

r T
b
r Þ ¼

TðrÞ�ab and the quadratic Casimirs are ½Ta
r T

a
r �ij ¼

C2ðrÞ�ij. The representation r ¼ G refers to the adjoint
representation. The number of fermions is indicated
by nf.

The symbol dabcdr is the following fully symmetrical
tensors:

dabcdr ¼ 1

6
Tr½Ta

r T
b
r T

c
rT

d
r þ Ta

r T
b
r T

d
r T

c
r þ Ta

r T
c
rT

b
r T

d
r

þ Ta
r T

c
rT

d
r T

b
r þ Ta

r T
d
r T

b
r T

c
r þ Ta

r T
d
r T

c
rT

b
r �: (A9)

The contractions can be written purely in terms of group
invariants:

FIG. 6 (color online). Zerology to four loops for the given gauge groups and representations.
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FIG. 7 (color online). Zerology to four loops for the given gauge groups and representations.
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FIG. 8 (color online). Anomalous dimension at the perturbative fixed point as a function of number of flavors nf for some SOðNÞ
gauge group, illustrating the trend as N increases. The curve corresponding to (i) two-loops is yellow (upper solid), (ii) three-loops is
red (middle solid), (iii) four-loops is blue (lower solid), and (iv) all-orders is dashed.
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dabcdr dabcd
r0 ¼ I4ðrÞI4ðr0Þdabcddabcd þ 3NG

NG þ 2
TðrÞTðr0Þ

�
�
C2ðrÞ � 1

6
C2ðGÞ

��
C2ðr0Þ � 1

6
C2ðGÞ

�
:

(A10)

The expressions for the relevant group invariants are given
in the main text. As mentioned there, I4ðrÞ vanished for all
exceptional groups and for SOð3Þ and SOð4Þ. The tensor
dabcd is representation independent, but not group inde-
pendent, and the value of its contraction for the groups

SUðNÞ, SOðNÞ and SpðNÞwas given in Ref. [18]. Here it is
only relevant to quote the SOðNÞ case:

dabcddabcd ¼ NGðNG � 1ÞðNG � 3Þ
12ðNG þ 2Þ : (A11)

APPENDIX B: ZEROLOGY OF THE
EXCEPTIONAL GROUPS

In this Appendix is shown the zerology for the excep-
tional groups with fermions either in the adjoint or funda-
mental representation.

TABLE VI. Comparison between different determinations of the anomalous dimension of the mass for exceptional gauge theories
with nf fermions in the fundamental representation. The anomalous dimensions ��

2, �
�
3 and �

�
4 are the perturbative result at two-, three-

and four-loop respectively, while ��
AO corresponds to the all-orders result. We also report the corresponding value of the zero of the �

function (a� ¼ ��=4�), at two-, three- and four-loops respectively and indicated with a�2, a�3 and a�4.

G2 fundamental

nf a�2 a�3 a�4 ��
2 ��

3 ��
4 ��

AO

5.0 �1:0 0.102 0.098 192.0 3.821 �0:488 1.056

6.0 0.25 0.058 0.059 14.917 1.165 0.193 0.733

7.0 0.087 0.038 0.041 2.384 0.582 0.31 0.503

8.0 0.042 0.025 0.027 0.785 0.341 0.291 0.33

9.0 0.02 0.015 0.016 0.308 0.197 0.196 0.196

10.0 0.008 0.007 0.007 0.106 0.089 0.09 0.088

11.0 0 0 0 0 0 0 0

F4 fundamental

nf a�2 a�3 a�4 ��
2 ��

3 ��
4 ��

AO

4.0 0.189 0.031 0.029 55.823 2.763 1.623 1.087

5.0 0.038 0.017 0.018 3.18 0.897 0.645 0.665

6.0 0.015 0.01 0.011 0.806 0.42 0.396 0.384

7.0 0.006 0.005 0.005 0.248 0.189 0.192 0.183

8.0 0.001 0.001 0.001 0.034 0.032 0.032 0.032

E6 fundamental

nf a�2 a�3 a�4 ��
2 ��

3 ��
4 ��

AO

5.0 0.273 0.027 0.024 216.595 4.393 3.153 1.276

6.0 0.046 0.016 0.016 7.869 1.536 1.11 0.886

7.0 0.021 0.011 0.011 2.082 0.775 0.65 0.608

8.0 0.011 0.007 0.008 0.81 0.444 0.427 0.399

9.0 0.005 0.004 0.004 0.345 0.249 0.252 0.236

10.0 0.002 0.002 0.002 0.124 0.109 0.11 0.106

11.0 0 0 0 0 0 0 0

E7 fundamental

nf a�2 a�3 a�4 ��
2 ��

3 ��
4 ��

AO

4.0 0.059 0.014 0.013 28.122 3.049 2.483 1.178

5.0 0.016 0.008 0.008 2.882 1.019 0.881 0.721

6.0 0.007 0.005 0.005 0.814 0.471 0.463 0.416

7.0 0.003 0.002 0.002 0.262 0.208 0.212 0.198

8.0 0.0004 0.0004 0.0004 0.0362 0.0350 0.0351 0.0346
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APPENDIX C: ANOMALOUS DIMENSION
FOR THE EXCEPTIONAL GROUPS

AND SPINORIAL REPRESENTATIONS

We provide a plot of the anomalous dimension at the IR
fixed point stemming from the two-, three- and four-loop
beta function as well as the all-order beta function. For the
exceptional groups these are reported in Figs. 4 and 5.

Similarly we provide below a plot for the anomalous
dimension for some representatives of the spinorial repre-
sentations as clearly labeled in the associated figures.
We finally summarize the numerical values of the fixed

point and anomalous dimension for various gauge theories
with different number of flavors to two-, three- and four-loops
as well as the all-orders result in Tables VI, VII, and VIII.

TABLE VII. As in Table VI but for fermions in the adjoint representation.

G2 adjoint

nf a�2 a�3 a�4 ��
2 ��

3 ��
4 ��

AO

1.5 0.089 0.041 0.038 5.374 1.924 1.633 1.019

1.75 0.045 0.028 0.027 1.873 0.972 0.895 0.698

2.0 0.025 0.018 0.019 0.82 0.543 0.532 0.458

2.25 0.013 0.011 0.011 0.372 0.296 0.298 0.272

2.5 0.005 0.005 0.005 0.139 0.127 0.128 0.122

2.75 0 0 0 0 0 0 0

F4 adjoint

nf a�2 a�3 a�4 ��
2 ��

3 ��
4 ��

AO

1.5 0.04 0.018 0.018 5.374 1.924 1.802 1.019

1.75 0.02 0.012 0.013 1.873 0.972 0.942 0.698

2.0 0.011 0.008 0.008 0.82 0.543 0.545 0.458

2.25 0.006 0.005 0.005 0.372 0.296 0.3 0.272

2.5 0.002 0.002 0.002 0.139 0.127 0.128 0.122

2.75 0 0 0 0 0 0 0

E6 adjoint

nf a�2 a�3 a�4 ��
2 ��

3 ��
4 ��

AO

1.5 0.03 0.014 0.013 5.374 1.924 1.83 1.019

1.75 0.015 0.009 0.009 1.873 0.972 0.95 0.698

2.0 0.008 0.006 0.006 0.82 0.543 0.547 0.458

2.25 0.004 0.004 0.004 0.372 0.296 0.301 0.272

2.5 0.002 0.002 0.002 0.139 0.127 0.128 0.122

2.75 0 0 0 0 0 0 0

E7 adjoint

nf a�2 a�3 a�4 ��
2 ��

3 ��
4 ��

AO

1.5 0.02 0.009 0.009 5.374 1.924 1.854 1.019

1.75 0.01 0.006 0.006 1.873 0.972 0.956 0.698

2.0 0.006 0.004 0.004 0.82 0.543 0.548 0.458

2.25 0.003 0.002 0.003 0.372 0.296 0.301 0.272

2.5 0.001 0.001 0.001 0.139 0.127 0.128 0.122

2.75 0 0 0 0 0 0 0

E8 adjoint/fundamental

nf a�2 a�3 a�4 ��
2 ��

3 ��
4 ��

AO

1.5 0.012 0.006 0.005 5.374 1.924 1.87 1.019

1.75 0.006 0.004 0.004 1.873 0.972 0.96 0.698

2.0 0.003 0.002 0.003 0.82 0.543 0.549 0.458

2.25 0.002 0.001 0.002 0.372 0.296 0.301 0.272

2.5 0.001 0.001 0.001 0.139 0.127 0.128 0.122

2.75 0 0 0 0 0 0 0
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