PHYSICAL REVIEW D 86, 076010 (2012)
Coulomb gauge Yang-Mills theory at finite temperatures: Glueballs versus quasi-gluons
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We consider a variational approach to the finite-temperature Yang-Mills theory in the Coulomb gauge.
The partition function is computed in the ensemble of glueballs and quasigluons which emerge as
eigenstates of the Coulomb gauge Hamiltonian. We compute the energy density and pressure and compare
with results of lattice computations for both SU(2) and SU(3). The emergence of a phase transition is

discussed.
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I. INTRODUCTION

In recent years there has been an expansion in studies
aimed at the determination of the patterns of the QCD
phase transitions [1,2]. These are crucial for an under-
standing of the mechanism of confinement and dynamical
chiral symmetry breaking. At high temperature and/or
density, due to the asymptotic freedom, it is expected that
the weak interaction between quarks and gluons determine
the properties of the quark-gluon plasma [3-7]. Lattice
simulations at finite temperature are a good tool to inves-
tigate these phase transitions [8—12], while phenomeno-
logical models also enable studies of the high density
regime where the restoration of chiral symmetry is ex-
pected [13-17].

The present paper investigates the thermal properties of
a phenomenological model motivated by the canonical
approach to QCD in the physical, Coulomb gauge quanti-
zation. We compute the partition function in the ensemble
of glueballs and quasigluons. There are numerous studies
of QCD thermal properties in covariant gauges that include
for example Dyson-Schwinger based models [18-21] or
approaches based on the renormalization group flow [22],
or direct models of the equation of state [23-27]. The few
approaches that exist in physical gauges are rather loosely
related to the underlying QCD interactions [28-32].
Recently, there has been also an attempt to explore the
dynamical breaking of chiral symmetry in a self-consistent
calculation at finite density [33].

The advantages of physical gauges for phenomenology
and for developing physical intuition are clear, and we
summarize them here. The degrees of freedom of the
pure Yang-Mills (YM) theory are transverse gluons, and
thermal excitations connect color-singlet states of an arbi-
trary number of gluons. Transverse gluons are expected to
be effective only at high temperatures, while at low tem-
peratures it is more effective to compute the partition
function in terms of the ground state glueballs [34,35].
The underlying interactions in Coulomb gauge are domi-
nated by the instantaneous Coulomb potential acting
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between color charges. In the non-Abelian theory, the
potential not only couples charges but it also depends on
the gluon distribution of the state in which it is calculated.
At zero temperature, in the vacuum state this distribution is
such that the Coulomb potential becomes confining, i.e.,
proportional to the distance R between the external color
charges, V(R) = o R [36,37]. Using various approximate,
variational models for the ground state YM wave func-
tional, it has been possible to obtain a potential that is
confining [38] or almost confining, i.e., V(R) — R'~€ with
€ = 0(10%) [39-41]. The Coulomb string tension o, is
larger than the string tension computed from the temporal
Wilson loop. This is because the Coulomb potential repre-
sents the energy of a static quark-antiquark pair submersed
in the QCD vacuum, while the Wilson loop measures the
energy of the exact quark-antiquark state in which the
gluon distribution is squeezed by closed vortex lines.
Since the Coulomb potential is an instantaneous observ-
able, one might expect that it remains confining even
in the high-temperature limit [37]: At high temperatures
the integration over transverse fields becomes even
less restricted than in the vacuum, and, according to the
Gribov-Zwanziger confinement scenario [42,43], Coulomb
confinement originates from large field configurations near
the Gribov horizon.

Recently the variational approaches to Yang-Mills the-
ory in Coulomb gauge [38,40,41] have been extended to
full QCD [44] and to finite temperatures [1,2], assuming a
quasiparticle picture for the gluons. In the present paper we
study the thermodynamic properties not only of a system of
quasigluons but also include glueballs, which are the
physical constituents of the Yang-Mills ensemble in the
confining phase. In the following, we investigate the finite-
temperature properties of Coulomb gauge Yang-Mills
theory with a focus on the aspects of thermodynamical
properties and their behavior around the critical tempera-
ture of the phase transition. In particular, we compute the
energy density and pressure in the ensembles of glueballs
and quasigluons and compare with SU(2) and SU(3) lattice
results. In Sec. II we present the general setting for the
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finite-temperature, canonical Coulomb gauge problem as
well as general properties of the thermal average when the
glueballs basis is used. In Sec. III we present the numerical
results. The summary and outlook are given in Sec. IV.
Finally, details of the important expressions are presented
in the Appendixes.

II. HAMILTONIAN APPROACH AT FINITE
TEMPERATURES

The Coulomb gauge Yang-Mills Hamiltonian is ob-
tained after gauge fixing and elimination of the Gauss’s
law constraint on the longitudinal component of the elec-
tric field:

Hyy = % f dx(J 7 [ANIAIN + B) + H

= Hx + Hp + Hg, (H

2
=% f ExdyI (Al ITAJFL (6, 1)p (). ()

Here I1%(x) = —i16/8A%(x) is the canonical momentum
(electric field) operator, and

J[A] = Det(—DV) 3)
is the Faddeev-Popov determinant with

D=V+ gA’ Aab — chc’ (fwc)ab — f‘wb, 4)
being the covariant derivative in the adjoint representation.

Furthermore,
pi(x) = —fabeAb - 1 (5)
is the color charge density of the gluons and
FiP(x,y) = (x, al(=DV) 1 (=V*)(=DV)!ly, b) (6)

is the gluon field dependent Coulomb kernel. The vacuum
expectation value of this kernel plays the role of an instan-
taneous potential between color charges. At zero tempera-
ture and at large distances (F4?(x, y)) is well approximated
by a linear rising potential. The gauge fixed Hamiltonian in
Eq. (1) is highly nonlocal due to Coulomb kernel F4(x, y),
Eq. (6), and the Faddeev-Popov determinant J[A], Eq. (3).
In addition, the latter also occurs in the functional integra-
tion measure of the scalar product of the Coulomb gauge
wave functionals

W10l y) = j DAIIAIWAIOW[AL ()

In Ref. [40] the Yang-Mills Schrodinger equation was
solved by the variational principle using the following
ansatz for the vacuum wave functional:
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A(—k)w(k)A(k)).

The preexponential factor removes the Faddeev-Popov
determinant from the scalar product Eq. (7). The kernel
w(k) was determined by minimizing the vacuum energy
(Hym), which yields an w(k) that can be well fitted by

Gribov’s formula
M4
w(k) = ﬂkz + E 9)

and which is in satisfactory agreement with the lattice data
[45], for M = 880 MeV.

The present paper is devoted to study Yang-Mills theory
at finite temperatures, which is defined by the density
operator

D = Z ' exp(—BHyw), (10)
where 8 = 1/T is the inverse temperature and
Z = Tre BHw (11)

is the partition function. Exact calculation of the trace in
the thermal averages

(0) = Tr(0D) (12)

is not possible for the YM theory and the way we proceed
is, following Ref. [1], to replace D by a variational ansatz.
This is achieved by first defining a suitable basis in the
gluonic Fock space. It is chosen as follows. In the standard
fashion we Fourier decompose the gauge field in terms of
creation and annihilation operators

A%(x) = d3q 1 [a%(q) + aaT(_ )]eﬂ'q.x
i (27T)3 '_2(1)(51) iq i q ’
3
o == (;7:;3 #[“?(q) — aff(—q)le",

(13)

where a?(q) = 3, €;(q, Aa(g, A, b) (A and b are the helic-
ity and color indices, respectively). Choosing here w(g) to
be the kernel of the vacuum wave functional (8) the opera-
tors af(g) annihilate this state, i.e.,

a?(k)|0y = 0. (14)
Then a complete basis in the gluonic Fock space is given by
{li)} = {10}, aT (0)10), af (k)a} (g)0), ..} (1)

As shown in Ref. [1], however, this quasigluon basis, even
when restricted to color singlet states, is not ideal for
studies of thermal properties of the YM plasma. Because
of confinement, energies of isolated gluons are large
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(infinite) and subtle cancellation of infrared divergencies
has to occur in color singlet states containing multiple
gluons with low relative momenta. For the same reason
gluons in these low momentum states are expected to
strongly bind into color singlet, also known as glueball,
states. Thus instead of working directly with the basis of
Eq. (15) we choose to work with a basis of glueballs, which
are constructed using creation operators defined by

% Y we(l,2at(Dat@),  (16)
()

where V = (27)38(0) is the volume factor. Here the
summation extends over single gluon helicities (A;,) and
color (cy,,) and it also includes integration over individual
gluon momenta (p; ,). Strong interactions lead to effective,
quasigluon mass in the range of 600-800 MeV. Thus bound
states with a minimal number of gluons are expected to
dominate the low energy spectrum. The basis of two-gluon
glueballs in Eq. (16) is therefore expected to describe the
lowest glueball spectrum and dominate thermodynamical
properties at low temperatures. When acting on a vacuum
state G1 creates a glueball state with quantum numbers
a = (P, JFC), where P and JXC are the total momentum,
and the total spin, parity and charge conjugation of the
glueball, respectively. The cutoff on relative momentum is
implicit in the glueball wave function W*. The latter can be
written explicitly as

e(1,2) = V§ ) oo (P1 p2)
= 27?8 (P — p1 — p)
sae We, (p2— p1)
-1 V2

GT(a) =

17)

and it is normalized by

> f[dpldpz]P‘I’ﬁ’,Az(pp PP =1, (18)
Ay

with the measure defined as

d3P1 d3P2
@2m)? 2m)}

[dpidp,lp = Q2m)*6(P — py — p). (19)
Bose symmetry implies that the wave function is symmet-
ric under exchange of the quantum numbers of the
two gluons,: V¢, (p1, p2) = V4 ) (p2, p1). In terms of
this single glueball operator, multiple glueball states
|ng,ng, ...) are given by

Ty, )) e
Mgy R, ) = ]'[M |0). (20)

; ng !

i

In the following we will ignore the Faddeev-Popov deter-
minant. As will be shown below, the expression we obtain
from variational principle is closely related to that for the
spectrum of Hyy; and at the end given by the eigenvalues of
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the Hamiltonian. Thus the Faddeev-Popov contributions to
the formulas for the free energy can in principle be restored
by comparing with those for Hyy;.

We introduce a variational ansatz for the thermal density
operator by replacing Hyy in Eq. (10) by the following
single particle operator:

Th WS wa®. e

h=
2m)? =

The optimal value of free energy is obtained by taking a
variation with respect to (), which obviously has the mean-
ing of the gluon energy.

A. The partition function

Computation of the partition function (11) with Hyy
replaced by 4 (21) in the glueball basis (20)

—BZQia;ruj
Z= Z (g ng,...le

ayMay -

[ng ng,...) (22)

is straightforward and yields

d’P
z= exp[V j S+ na(P))], 23)

JPC

where

eilgEa
ne(P) = I (24)

— e_BEa
is the glueball thermal occupation number. Here the effec-
tive glueball energy E, is given by

e PEP) = ZI[dpldpz]PN’ﬁMz(Pl, po)lPe Atz (25)
/\],2

where
Q= Qpy) + Q(py). (26)

Since the density operator is defined in the gluon basis but
the thermal average is evaluated in the basis of glueballs
the effective Boltzmann factor exp(— BE,) is determined
by averaging gluon thermal distribution over the glueball
wave function.

B. The internal energy

Using the Fourier decomposition (13) we can calculate
thermal expectation values of the Yang-Mills Hamiltonian
Eq. (1). After normal ordering, the Hamiltonian contains
the vacuum contribution and one- and two-body gluon
operators. Those are given explicitly in Appendix A. Since
vacuum contribution is temperature independent it can be
removed by defining the free energy with respect to that of
the vacuum. The final expression for the thermal average of
the Hamiltonian is then given by
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<HYM>

,m[@ —EL(P) + Bo(P) + C,(P)]

X [1 + ny(P)] (27)

where the three terms represent contributions from the one-
body operators describing single gluon energies averaged
over the glueball state (£), the two-body magnetic contri-
bution from the four-gluon vertex (B), and the two-body
Coulomb interaction (C), respectively. The explicit formu-
las for the three terms are given in Appendix B.

C. The free energy

The glueball wave function is the solution of the
Hamiltonian bound state problem and as discussed previ-
ously defines the basis over which thermal averages are
computed. The variational estimate for the free energy F,

an dlnZ
,3 B

is in turn obtained by minimization with respect to the
single gluon energy ()(k). Before proceeding, however,
we note that boost invariance requires the density matrix
to depend only on the total momentum of the two-gluon
state. Thus the factor exp(—B(Q(p;) + Q(p,))) which
appears in matrix elements should be replaced by
exp(—BvP% + M2), where M, is a Lorentz scalar. From
Eq. (25) it then follows immediately that

E,(P) = P} + Mg, (29)

and the internal energy given by Eq. (27) becomes
(H YM> f
JPC 2 )’;
(30)

where the subscript O indicates that the corresponding
quantities are to be evaluated at 8 = 0 [cf. Egs. (BYS),
(B7), and (B8)]. Finally the entropy reduces to [1]

= (Hym) — TS = (Hym) — (28)

na(PIEL(P) + BY(P) + Co(P)],

/ A a1 + ng(P) + BEL(Pna(P). G1)
2]

Minimization of F is now performed with respect to M,
and yields the following relation:

E%(P) + BY(P) + Co(P) = Eo(P), (32)

which is immediately recognized as the zero-temperature
eigenvalue equation for the Hamiltonian Hvy; projected
onto the glueball sector. If the Faddeev-Popov contribu-
tions were retained, the structure of Eq. (32) would remain
unchanged but the individual terms would be modified. It
thus follows that M, is the glueball mass obtained from
diagonalizing the Hamiltonian. With Eq. (32) we find from
Egs. (30) and (31) for the minimum of the free energy (28)
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F _Lg (&P afmom
5 JZ f G )g n(l —e ). (33)

D. Scattering states

If the Coulomb interaction F$’(x,y) [cf. Eq. (1)] is
replaced by its vacuum expectation value, which is ex-
pected to be strictly confining [36], quasigluon bound
states saturate the spectrum of Hy),;. However, since the
Coulomb kernel couples gluon Fock sectors with an arbi-
trary large number of gluons, reduction of the full
Hamiltonian to the two-gluon subspace must break down
above energies where excitations of multiple quasigluon
states becomes relevant. At this point we qualitatively
describe the spectrum in terms of single quasigluons,
which are no longer confined but screened. Calculation
of the expectation value of Hyy in the basis (15) of quasi-
free gluons was done in Ref. [1] and gives

(Hym) _ B d’q dq d&p
VoA [ [
X [b(p, q) + c(p, @In(p)[1 + n(g)] (34)

Here the three terms, given explicitly in Appendix B,
represent contributions from the single gluon energy, the
four-gluon magnetic term and the Coulomb interaction,
respectively. The free energy is obtained from Eq. (28)
with gluon entropy given by [1]

3
S5 =20 =) [ Sl + ni)] + B
(35)

Minimizing the free energy with respect to the density
matrix 8 F/8Q (k) = 0 results in the following expression
for the effective gluon energy Q(k):

3
Q) = elq) + j (;’T”)S[b(q, p) + clg. P + 2n(q)]
(36)

which, when substituted into the expression for free en-
ergy, yields

F 2(NC—1) 2(N:2-1)
5= [+ g+ 2D

4n(p)n(q)lb(p,q) +c(p.q)). (37

d qg d°p
Q2m)* (2m)

Here the first term represents the contribution from the free
gas of quasigluons and the second one is the one-loop
correction due to residual interactions. We emphasize
that in order for the two-component glueball plus gluon
model to be valid, the interaction in the Coulomb term in
Eq. (37) (implicit in the term proportional to ¢) has to be
screened. That is, ¢(p, p) is assumed to be free from the
infrared singularity at p = g normally associated with
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confinement. Scattering corrections, i.e., the one-loop
term, are then expected to be weak and we ignore them
in the numerical studies.

III. NUMERICAL RESULTS

We present a thermodynamical study for the energy
density and pressure of the SU(2) and SU(3) gauge theories
separately for the quasigluon and glueball ensembles. In
the glueball ensemble the degeneracy factor determines the
high-temperature limiting value of the energy density but
the behavior of the transition is not well known as well as
the location of the critical temperature. In the thermody-
namical quasigluon study, the phase transition, the critical
temperature 7, the behavior below and above the transi-
tion and the high-temperature limit are compared with
SU(2) and SU(3)-lattice results [23—26], when two disper-
sion relations ) (k) are used.

A. Glueball energy density and pressure

Energy density and pressure are computed from the free
energy differentiating InZ with respect to T and V:

T?> 9InZ
== 38
vV oor (38)
dInZ
=T ——, 39
p PRY (39
with Z = exp(—BF). The energy density in the

pure gauge theory has been found to rise rapidly at T¢
and approach the high-temperature ideal gas (Stefan-
Boltzmann) limit from below [24]. In the high-temperature
limit one finds in leading order perturbation theory for
SUN) [12]

=N - 1)—[1 1 adle O(ag)]. (40)
T T

In the following we denote energy density and pressure
for the ensemble of glueballs by €; and p; and for the
ensemble of gluons by €, and p,, respectively. In particu-
lar, glueball energy density and pressure, respectively, are

given by
1+ )
,Pcf G nf NCETA

B3P, P2 + Mg,
6 e
: JZ[ Q) P _

In the case of glueballs we need to know the expected
degeneracy. Since explicit digitalization of the Coulomb
gauge YM Hamiltonian [34,35] reproduces lattice glueball
spectrum [46] we use the latter to determine the number of
states. In particular we will consider glueballs up to
2.5 GeV [46-50], i.e., with JP€ =07~, 0~ ", 2*". The

(4D)
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numerical results for energy density and pressure are
shown in Figs. 1 and 2. At high temperatures 7 > M

1 € 1 o0 xde m?
N T oy / dxi— = =3y
T lrsm; 27 Jo I—e (42)
1 p, 1 joo [ 1 ] m?
— 1 = | dxx?1 =,
N T* | r>m, % Jo e 1—e* 90

where N =Y, is the degeneracy factor. Inspecting the
numerical results it is evident that because of the high
degeneracy, glueballs contribute too much to thermody-
namical quantities as compared with QCD expectations
from lattice simulations. It implies that glueballs must
evaporate below the critical temperature (see below), and
a Hamiltonian model based on confined potential without
mixing with open channels becomes inadequate at fairly
low temperatures.

: T T T T T 5 O 5 0 O O I.l_.]

20+ poo® N .
[ got
L %0 o * *

*

i I*** Fa * *x G x *

LS| o .

* O
m}
v &
10+ * u] §
* O

05l o J
ot O Mg < 2.5GeV
r * g % SU(2) Lattice

00F ot ]

) TS TN S S TSN TN SN S S SN SN SN SN SN TN S SN SN SO SN TN S [N SN SN S S |
0.0 0.5 1.0 L5 2.0 25 3.0
T
FIG. 1. Energy density versus temperature [GeV] in the case

of glueballs for JP¢ = 0*—, 0~ F, 2+,

T *T' T T T T T
0.8} * O Mg<25GeV T
*
N * SU(2) Lattice
*
0.6F 1
S <
TI% 04f * 0000 ]
n & Un
x O * DDDDD
[m]
02k :D ** DDDDDDDD
o e
* %
0_0»DDD** *x B
0.0 0.5 1.0 1.5 2.0 2.5 3.0
T

FIG. 2. The same as in Fig. 1 for the combination of energy
density and pressure (e — 3p)/T*.
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B. Gluon energy density and pressure

The gluon energy density and pressure, respectively, are
given by
d*q 1
- 2 _ -
pr = 2IN2 — 1T f oo 1n<1 + 1),

dq Qg
_ 2 _ 9
€ = 2N2 — 1] f S T

which, assuming ()(g) — ¢ for large moments, in the high-
temperature limit reduce to

(43)

1 €y . 2

2N2— 1) T* | 7m0 30°
C T- (44)
1 P2 _ 77'2

2IN2—1) T* | 1m0 90’

which, of course, yields the correct Stefan-Boltzmann limit
given by Eq. (40) with a, = 0.

For the gluon dispersion relation we use the Gribov
formula

HEBEbbbE R ERE6000600006000060000
L N |
[ A oO x * * *
L I**b& x Xy * * *
L *x
15+ o 4
H *
[ A O
@"L 1,0: * 4
* O my =0.00GeV
0.5F q A mg = 0.60 GeV 4
O mg=0.88GeV
A *x
00l @ o * SU(2) Lattice 1
) S T T S TN IS T SO TN SO NSO TN SN SN I SN SO SR S S S IR IS T T S |
0.0 0.5 1.0 1.5 2.0 25 3.0
T

FIG. 3. Energy density versus temperature [GeV] for the
N¢ = 2 gluon ensemble with a Gribov dispersion relation.

—T T T T T T T T T T T T T T T T T T

[ * ]
08} % O mg=000GeV A
| N |
A m, =0.60GeV
L * % ° ]
06| O mg=088GeV |
L * ]
. *x * * SU(2) Lattice
N 0
“lTogal 4R oF A
') A 6
*
L O * O
02k N AA*OO ]
L * A* OO
i* A*AAAOOOOO ]
| N |
00la8d®oooo EEDDS%@Q%%%%@@@@@@@@@@—
| S Y S S SN SN SN ST S NN ST S S [T SR SR S S NN S S S S St v 14
0.0 0.5 1.0 1.5 2.0 25 3.0
T

FIG. 4. The same as in Fig. 3 for the combination of energy
density and pressure (e — 3p)/T*.
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4
m
Q(k) = \,kz + kzg,

and choose the Gribov mass m, in the range from zero
(perturbative gluons) to 880 MeV. The latter value is found
on the lattice [45]. In Figs. 3-5 we summarize the results
for Nc = 2 and N = 3, respectively. Of course, in this
calculation the transition temperature is set by the Gribov
mass m,. To calculate the transition temperature 7c we can
calculate the derivative of the energy density and look for
the location of the peak in the specific heat. For m, =
0.880 GeV we find T, = 220 MeV, which is in a reason-
able agreement with lattice results [23,24]. For the lattice

(45)

value m, = 830 MeV the quasigluon ensemble reproduces
EEEEEEEEEEEEE AT R R
: AAAAégggg@@@@@@@@@ ]
15k L @*9*9"* ]
[ o
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I e
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SRS o
¥
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FIG. 5. The same as in Figs. 3 and 4 for N0 = 3.
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the lattice energy density reasonably well up to the tran-
sition temperature but substantial deviations occur above
the phase transition. This should come as no surprise. In a
self-consistent treatment of the finite-temperature quasi-
gluon ensemble in the variational approach in Coulomb
gauge [2] one finds that at the deconfinement phase tran-
sition the gluon dispersion relation switches from the
Gribov formula (45) in the confining phase to the massive
dispersion relation

Qk) = VK2 + m?, (46)

where the gluon mass m is temperature dependent and
growths linearly in 7 for large 7. Its minimal value can
be as low as 200 MeV. We have also computed energy and
pressure for the massive dispersion relation (46), with m in
a range from zero (perturbative) to 880 MeV. As expected,
the Gribov formula reproduces the critical temperature and
the overall shape more accurately than the massive disper-
sion relation.

IV. SUMMARY AND OUTLOOK

We studied the Coulomb gauge Yang-Mills theory at
finite temperatures using a variational approach. The par-
tition function has been computed in the ensemble of
glueballs and quasigluons. Working with both ensembles
we present the possibility of a phase transition since gluons
with low relative momenta are expected to strongly bind
into color singlet, glueball states. The thermodynamical
limits for the energy density and pressure are different in
each ensemble. This is expected since the partition func-
tion of the glueballs depends on the states J©¢ included and
their degeneracy, while the partition function of the (quasi)
gluons depends on the number of colors N. In the present
work we have considered the glueball states up to M; =
2.5GeV,ie.,JPC=0"",0"",2"", and showed that the
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thermodynamical limit is rapidly overshot, indicating the
possibility that the glueballs may evaporate at some finite
temperature. Furthermore, the more glueballs one adds, the
higher the degeneracy factor and the thermodynamical
limit will be overshot faster, indicating that the glueballs
evaporate at quite low (below T) temperatures. A more
realistic description of the deconfinement phase transition
would assume a two-component picture, in which glueballs
coexist with gluons. Well below the deconfinement phase
transition the finite-temperature Yang-Mills ensemble
would dominantly consist of glueballs, which dissociate
at the deconfinement phase transition into pairs of gluons.
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APPENDIX A: YM HAMILTONIAN
CONTRIBUTIONS

The Hamiltonian thermal average is computed in the
ensemble of glueballs and quasigluons which immediately
rules out contributions from an odd number of particle
creation and annihilation operators. The relevant terms of
the YM Hamiltonian are

1 dS d3 I
He=y ﬁ #Z Vol@olg)2m)? s(g + ¢

a,i
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DY etcerd(2m)3s(q + qx + g3 + q)F(—q5 — q4)

[ g o)t g (—an) — gt (g2t (g0
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+ ab(gnast (~g)at (~gs)as(qy) + at(—g)as(@)atgy)at (g0 — a?t (~qp)as(g)at (~gs)as(q.)

+ a (—q))aT (—g2)ad(q3)a$(q4)]

(A3)
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To compute the thermal averages we need to write products of particle operators in normal ordered form. Computation

of thermal averages in the gluon basis (15) was given in Ref. [1] while in the case of the glueball ensemble the relevant
matrix elements to compute are

olg) , 5 0lg)
a1 = ([ s (Vive - 1452+ 3 20 ko)) (ad)

H) — (5 f B3 € s (VINE = 1ol + Slal! (@ifa) + = m)

ijkim
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dq dq
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+Bec4)+(1e2)—(12;34)]), (A6)

with further details given below.

APPENDIX B: HAMILTONIAN THERMAL AVERAGE
1. (Hyyy) in a basis of glueballs

Computation of thermal averages of the Hamiltonian in the glueball ensemble involves expectation values of one-body
and two-body operators. These are given below:

d’q bt &P, dq she o= BOPN+APS)
f@a; (q)ac-(q)> =V / [dpidp,]pldpidps] =
U @)’ ! ,Z“ZA @) Qap TR N, 11— PR
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X \Ifﬁz A,(Pll’ Pz) + (P1 - Pz)]
o~ BOPD+O(pL)

6bc
- VZ Z /(2 )3[ pl pZ]PN2 _1 l—eiﬁEﬂ

JPC AL A A

X [F(P)WS (Pl PYHE , (P PDYS , (L ph) + (ph < ph)]. (B1)
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where Hf\j])‘z(q, q) = Hf\j])\z(q) = €/(q, A1)€;(g, Ay) is the one-body vertex factor and 1/1 — e PE =[1 + n,(P)]. In a
similar way the two-body operator thermal average is given by

dsQl d3Q2 d3Q3 d3Q4 at ot ¢ cy
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a’p, I,
= V/W[dpldpz]P[dmdpz]Pz Z
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XA (p1 P2 Ph POV (P PDHI S 0 (1 P2 P PSP PY) + (P = Py}, (B2)
where the vertex factor for the two-body operator is given by

ijrs

HY 5, (P1 Po PY PY) = €(p1 A€ (pa A€ (P, A3)es(ph, Ay). (B3)

Calculation of the thermal average of the Hamiltonian is further simplified by the following relations involving vertex
factors:

1+(§-4) i 1+(g-4) 1+ 52
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This finally leads to the expression in Eq. (27) with
E,P) = f[dpldpz]pl‘l' FHI2N p)Ple(py) + e(py)]e AP+ RP), (BS)
AL Ay

with the single gluon energies e(p) given by a sum of kinetic and self-energy terms, e(p) = w(p)/2 + p?/2w(p) +
3p(p) + 2clp):

gNe [ dq 3-2 _ &*N¢ L wlp)
8 J (27} o(polg)’ 2elp) == o )3(1 )F(p — q)— . (B6)

25(p) = o(q)

The explicit form of the two-body magnetic (B) contribution from the four-gluon vertex and the two-body Coulomb
interaction (C), respectively, are
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2. (Hvyyy) in a basis of quasigluons

The calculation of the thermal average (Hyy;) in the
basis (15) of quasigluons was carried out in Ref. [1] with

the result
(Hym) _ 3 d’q dq &p
2% = Z(N% 1)]@”(4)6’@) + WW
X [b(p, ) + c(p, @ ln(p)[1 + n(q)], (B9)
with
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