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The hadronization structure of �� ! ����0�� decays is analyzed using chiral perturbation theory

with resonances, considering only the contribution of the lightest meson resonances at leading order in the

1=NC expansion. After imposing the asymptotic behavior of vector spectral functions ruled by QCD,

unknown effective couplings are determined by fitting the �� ! ����0�� branching ratio and decay

spectrum to recent data. Predictions for the partner decay �� ! �0���0�� and the low-energy behavior

of the cross section �ðeþe� ! ��þ��Þ are also discussed.
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I. INTRODUCTION

Tau decays represent an ideal benchmark where one can
analyze diverse topics in elementary particle physics [1]. In
particular, semileptonic decay channels �� ! H���, where
H is some hadronic state, allow a rather clean theoretical
analysis of the hadronization of the V � A currents in the
presence of QCD interactions, since there is no hadron
pollution to the leptonic current. Thus, these processes
provide a suitable tool to find out intrinsic properties of
the involved hadron resonances [2–6]. In this work, we

concentrate on the analysis of ��!�ð0Þ���0�� decays.
For these channels, the contributions of scalar and pseudo-
scalar resonances are expected to be negligible, since they
turn out to be forbidden at tree level by symmetry argu-
ments, such as G-parity conservation. In the limit of isospin
symmetry, the corresponding amplitudes are driven by the
vector current, allowing a precise study of the couplings in
the odd-intrinsic parity sector.

Concerning the theoretical description, it is well-known
that in the very low-energy domain [E � M�, whereM� is

the mass of the �ð770Þ meson], chiral perturbation theory
(�PT) [7] is the adequate tool to describe hadronic �
decays [8]. However, this approach fails when the invariant
mass of the hadronic state becomes comparable with the
mass of the lightest vector and/or axial-vector resonances;
therefore, a new strategy is needed in order to enlarge the
domain of applicability of �PT to higher energies. One
way out in this sense is to abandon the Lagrangian ap-
proach: one can model � decay amplitudes by taking the
lowest-order �PT results to fix the normalization of the
form factors at low energies, incorporating the dominant
vector and axial–vector meson resonance exchanges by
modulating the amplitudes with ad hoc Breit-Wigner func-
tions [2–5,9]. However, it can be seen that in the low-
energy limit, this approach is, in general, not consistent
with next-to-leading-order �PT [7]; hence, the usage of
this procedure to reproduce QCD-ruled amplitudes is ques-
tionable [10,11]. An alternative approach is to include the

lightest resonances as active degrees of freedom in the
theory. This can be done by adding resonance fields to
the �PT Lagrangian, without any dynamical assumption
[12–15]. The inclusion of these fields can be carried out
together with an expansion in the inverse of the number of
colors (NC) [16–19]: at the lowest order in the 1=NC

expansion, one gets from QCD an effective theory which
includes a spectrum of infinite zero-width states. However,
we know from phenomenology that resonance widths are
relevant, and that the underlying dynamics is dominated by
the lightest resonances. Hence, we consider here a model in
which resonance widths are incorporated, taking into
account—in a way consistent with QCD symmetry
requirements—only the lightest resonant states which
dominate the processes under study.1

A basic assumption of our approach is that the lightest
resonant states are the dominant ones in low-energy phe-
nomenology. In this way, for a given process, it should be
sufficient to introduce only the lightest resonance multiplet
carrying the appropriate quantum numbers, while the in-
clusion of higher states can be carried out as a correction
[21,22]. On the other hand, the Lagrangian is built upon
some fundamental QCD-based features: the effective in-
teractions have to satisfy QCD symmetries, the low-energy
behavior has to be consistent with �PT, and the asymptotic
behavior of Green functions and associated form factors
has to satisfy QCD constraints. These requirements imply
several relations among the effective couplings which ren-
der the theory predictive. The aim of this work is to study
within this framework the decays �� ! ����0��, �

� !
�0���0��, and the low-energy limit of the cross section
�ðeþe� ! ��þ��Þ.

1The idea of considering a minimal number of hadronic states,
which, for a given Green function, satisfy QCD short and long
distance constraints within the large NC limit, has been also
considered in the context of the so-called minimal hadronic
approximation to large-NC QCD [20].
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The article is organized as follows: In Sec. II, we recall
how the �PT Lagrangian with resonances is built (see, e.g.,
Ref. [23]). The relevant hadronic form factors for the
decays under study are given in Sec. III. In Sec. IV, we
derive the QCD-ruled high-energy constraints on the cou-
plings, which reduce the number of unknowns to only four.
In Sec. V, we show that two of these unknowns can be
bounded from other phenomenological studies performed
within the same framework. In this way, we end up with
two unknown couplings, which appear to be highly corre-
lated [24,25]. The possible values of these couplings are
analyzed by fitting experimental data on the differential
decay distribution of �� ! ����0�� and taking into
account the present upper limit on the branching ratio
(BR) for �� ! �0���0��. The low-energy behavior of
the cross section �ðeþe� ! ��þ��Þ is also discussed.
Our conclusions are presented in Sec. VI. Finally, in
Appendices A and B, we analyze other possible contribu-
tions to the decay amplitudes and quote some useful iso-
spin relations.

II. THEORETICAL FRAMEWORK

Our effective Lagrangian is basically ruled by the ap-
proximate chiral symmetry of light-flavored QCD—which
drives the interaction of light pseudoscalar mesons—and
the SUð3ÞV assignments of resonance multiplets [12,14].
As we will see, for the processes under consideration, it is
possible to achieve a good agreement with present experi-
mental data without the inclusion of excited multiplets.
Moreover, it is seen that vector meson dominance turns out
to be a good approximation [12], since spin-zero resonance
contributions vanish at tree level in the very accurate
isospin symmetry limit (see Appendix A). In the case of
� decays, owing to the relatively large �mass, it occurs that
several resonances reach their on-shell condition when the
amplitudes are integrated over the full phase space. The
corresponding pole singularities can be regularized by
including finite (energy-dependent) resonance widths,
thus departing from the lowest order in the 1=NC expan-
sion. Here, we adopt the prescription in Ref. [26], where
energy-dependent resonance widths have been calculated
in a well-defined way using our Lagrangian formalism.

We will work out �� ! �ð0Þ���0�� decays considering
exact isospin symmetry. In this limit, the processes are
driven only by the vector current (see Sec. III) and appear
to be dominated by the contributions of the �ð770Þ reso-
nance. The relevant effective Lagrangian reads

LR�T¼: LWZWþLV
kinþ

F2

4
hu�u�þ�þi

þ FV

2
ffiffiffi
2

p hV��f
��
þ iþ i

GVffiffiffi
2

p hV��u
�u�i

þX7
i¼1

ci
MV

Oi
VJPþ

X4
i¼1

diOi
VVPþ

X5
i¼1

gi
MV

Oi
VPPP; (1)

where all coupling constants are real, F and MV being the
pion decay constant and the mass of the lightest vector
meson resonances, respectively. We follow here the nota-
tion in Refs. [11,12,27].2 Accordingly, hi stands for trace in
flavor space, and u�, �þ and f��

þ are defined by

u� ¼ iuyD�Uuy; �� ¼ uy�uy � u�yu;

f
��
� ¼ uyF��

L uy � uF
��
R u; (2)

where u (U ¼ u2), � and F
��
L;R are 3� 3 matrices which

contain light pseudoscalar fields, current quark masses, and
external left and right currents, respectively. The matrix
V�� includes the lightest vector meson multiplet, and LV

kin

stands for the resonance kinetic term. The first term in
Eq. (1) is the Wess-Zumino-Witten interaction Lagrangian
[28,29], which governs the decay amplitudes studied
here in the limit of low hadron momenta. The part of this
interaction which contributes to the processes considered
here reads

LWZW ¼: � iNC

48�2
	��
�h��

LU
y@�r
Ul� þ ��

L l
�@
l�

þ �
�
L@

�l
l� � ðL $ RÞi; (3)

where �L;R are given by �
�
L ¼ Uy@�U, �

�
R ¼ U@�Uy,

and l
 and r
 are left and right external currents. Finally,
the operatorsOi

VJP,O
i
VVP andO

i
VPPP in Eq. (1) are given by

VJP terms

O1
VJP ¼ 	����hfV��; f

�

þ gr
u

�i;
O2

VJP ¼ 	����hfV�
; f
��
þ gr
u

�i;
O3

VJP ¼ i	����hfV��; f
��
þ g��i;

O4
VJP ¼ i	����hV��½f��� ; �þ�i;

O5
VJP ¼ 	����hfr
V

��; f�
þ gu�i;
O6

VJP ¼ 	����hfr
V
�
; f��þ gu�i;

O7
VJP ¼ 	����hfr�V��; f�
þ gu
i;

(4)

VVP terms

O1
VVP ¼ 	����hfV��; V�
gr
u

�i;
O2

VVP ¼ i	����hfV��; V��g��i;
O3

VVP ¼ 	����hfr
V
��; V�
gu�i;

O4
VVP ¼ 	����hfr�V��; V�
gu
i;

(5)

2In Ref. [25], two additional operators ( ~O8
VJP and ~O5

VVP) have
been found when the singlet hVVPi Green function is considered
in addition to the octet one in the p2 �mq � 1=NC counting. In
Appendix A, we show that they do not contribute to the hadronic
tau decays studied here.
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VPPP terms

O1
VPPP ¼ i"��
�hV��ðh
�u�u� � u�u�h


�Þi;
O2

VPPP ¼ i"��
�hV��ðh
�u�u� � u�u
�h
�Þi;

O3
VPPP ¼ i"��
�hV��ðu�h
�u� � u�h
�u�Þi;

O4
VPPP ¼ "��
�hfV��; u
u�g��i;

O5
VPPP ¼ "��
�hu
V��u���i;

(6)

where h�� ¼ r�u� þr�u�. The covariant derivative r�

involves pseudoscalar meson fields and l
, r
 external
currents. Its explicit expression can be found in Ref. [12].

The nonet of vector resonances V is described here using
the antisymmetric tensor formulation. In the context of
vector meson dominance [14], this is shown to be consistent
with the usage of the �PT Lagrangian for light pseudoscalar
mesons up to Oðp2Þ in the even-intrinsic parity sector and
up to Oðp4Þ in the odd-intrinsic parity sector [15].

III. FORM FACTORS IN �� ! �ð0Þ���0��

In the Standard Model, �� ! �ð0Þ���0�� decay ampli-
tudes can be written as

M ¼ �GFffiffiffi
2

p Vud �u��
��ð1� �5Þu�H �; (7)

where Vud ’ cos
C is the relevant Cabibbo-Kobayashi-
Maskawa mixing and H � is the hadron matrix element

of the left-handed QCD current ðV � AÞ�. In general, for a
decay of a � lepton into three pseudoscalar mesons, the
hadronic tensor H � can be written as [6]

hh1ðp1Þh2ðp2Þh3ðp3ÞjðV � AÞ�j0i
¼ FA

1 ðQ2; s1; s2ÞV�
1 þ FA

2 ðQ2; s1; s2ÞV�
2

þ iFV
3 ðQ2; s1; s2ÞV�

3 þ FA
4 ðQ2; s1; s2ÞQ�; (8)

where

V
�
1 ¼

�
g�� �Q�Q�

Q2

�
ðp1 � p3Þ�;

V
�
2 ¼

�
g�� �Q�Q�

Q2

�
ðp2 � p3Þ�;

V�
3 ¼ "�
��p1
p2�p3�;

Q� ¼ ðp1 þ p2 þ p3Þ�;
si ¼ ðQ� piÞ2:

(9)

The upper indices in the form factors indicate the partic-
ipating currents, either the axial vector (A), or the vector
one (V). The form factors FA

1 and FA
2 drive a transition to

hadronic states with quantum numbers JP ¼ 1þ, while FV
3

and FA
4 correspond to outgoing states with JP ¼ 1� and

JP ¼ 0�, respectively. Let us focus on the amplitude for
the transition �� ! �8ðp1Þ��ðp2Þ�0ðp3Þ��, considering
the limit of exact isospin symmetry. First of all, it is easy to
see that for this process, the axial-vector form factors

vanish from G-parity conservation; therefore, the dynam-
ics will be essentially determined by the form factor FV

3 .

From the effective Lagrangian in Eq. (1), the diagrams
which contribute to FV

3 are those represented in Fig. 1,

where single solid lines correspond to � and �mesons and
double lines to the �ð770Þ resonance. The corresponding
contributions to the vector form factor read

FVðaÞ
3 ð�8��Þ ¼

NC

6
ffiffiffi
6

p
�2F3

; (10)

FVðbÞ
3 ð�8��Þ ¼

8GVffiffiffi
3

p
F3MV

1

M2
� � s1

½c125Q2 � c1256s1

þ c1235m
2
� þ 8c3ðm2

� �m2
�Þ�; (11)

FVðcÞ
3 ð�8��Þ ¼ � 16FVffiffiffi

3
p

MVF
3

1

M2
� �Q2

� ½g123s1 � g2ðQ2 þ 2m2
� �m2

�Þ
� ðg1 � g3Þ2m2

� þ g45m
2
��; (12)

FVðdÞ
3 ð�8��Þ ¼ � 8

ffiffiffi
2

p
ffiffiffi
3

p FVGV

F3

1

M2
� �Q2

1

M2
� � s1

� ½d3ðQ2 þ s1Þ þ ðd12 � d3Þm2
�

þ 8d2ðm2
� �m2

�Þ�; (13)

where we have defined

c125¼c1�c2þc5; c1256¼c1�c2�c5þ2c6;

c1235¼c1þc2þ8c3�c5; g123¼g1þ2g2�g3;

g45¼2g4þg5; d12¼d1þ8d2:

(14)

The amplitude for the � decay into the �0�
��0

hadronic state can be read from Eqs. (10) to (13) by sim-

ply multiplying FVða;b;c;dÞ
3 ð�8��Þ by

ffiffiffi
2

p
. Then, the matrix

elements for the decays into the physical hadronic states
����0 and �0���0 can be obtained by considering
�8��0 mixing. Here, we will consider a double angle
mixing scheme [30], which is consistent with the
large-NC expansion [31]. Using a notation similar to that
in Ref. [32], the SU(3) octet and singlet fields are collected
in a doublet �T

B � ð�8; �0Þ, while the physical fields are
included in �T

P � ð�;�0Þ. These doublets are related by the
transformation �B ¼ ðMÞT�P, where [32]

FIG. 1. Topologies contributing to the final hadron state in
�� ! �ð0Þ���0�� decays in the NC ! 1 limit. Crossed circles
indicate QCD vector current insertions. Single lines represent
pseudoscalar mesons (�, �) while double lines stand for
�-resonance intermediate states.
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M ¼ cos
Pð1� �8=2Þ þ sin
P�80=2 � sin
Pð1� �0=2Þ � cos
P�80=2

sin
Pð1� �8=2Þ � cos
P�80=2 cos
Pð1� �0=2Þ � sin
P�80=2

 !
: (15)

In the framework of R�T, the parameters �8, �0, and �80

can be in fact derived from an effective Lagrangian which
involves scalar resonances [12]. If the latter are organized
in a U(3) matrix S, from the lowest order Lagrangian

L S ¼ cdhSu�u�i þ cmhS�þi; (16)

one gets

�8¼8cdcm
M2

S

M2
8

F2
; �0¼8cdcm

M2
S

M2
0

F2
; �80¼8cdcm

M2
S

M2
80

F2
;

(17)

where3

M2
8 ¼

1

3
ð4M2

K �M2
�Þ; M2

0 ¼
1

3
ð2M2

K þM2
�Þ;

M2
80 ¼ � 2

ffiffiffi
2

p
3

ðM2
K �M2

�Þ: (18)

Here, we take for M� and MK the isospin averaged values
of the pion and kaon masses, neglecting higher-order cor-
rections in the combined chiral and 1=NC expansion. In
addition, we assume cdcm ¼ F2=4 [34,35], which is re-
quired by high-energy QCD in the NC ! 1 limit. Finally,
from �� �0 phenomenology we take MS ’ 0:980 GeV
and 
P ¼ ð�13:3� 0:5Þ� [36].

Given the form factors, FV
3 ðQ2; s1; s2Þ, the spectral func-

tions for the decays �� ! �ð0Þ���0�� are finally given by

d�

dQ2
¼ G2

FjVudj2
128ð2�Þ5M�

�
M2

�

Q2
� 1

�
2 1

3

�
1þ 2

Q2

M2
�

�

�
Z ð

ffiffiffiffiffi
Q2

p
�m�Þ2

ðm�þm�Þ2
ds2

Z tþðQ2;s2Þ

t�ðQ2;s2Þ
ds1WBðQ2; s1; s2Þ;

(19)

where the relevant structure function WB [6] is defined by
WBðQ2; s1; s2Þ ¼ V2

3 jFV
3 ðQ2; s1; s2Þj2 and the limits of the

integral over s1 are

t�ðQ2; s2Þ ¼ 1

4s2
fðQ2 þm2

� � 2m2
�Þ2

� ½�1=2ðQ2; s2; m
2
�Þ 	 �1=2ðm2

�;m
2
�; s2Þ�2g;

(20)

with �ða; b; cÞ ¼ ðaþ b� cÞ2 � 4ab. We have neglected
here the neutrino mass.

IV. SHORT-DISTANCE CONSTRAINTS
ON THE COUPLINGS

The above form factors depend on several combinations
of coupling constants, besides the�mass and the pion decay
constant. The values of these parameters are not provided by
the effective theory, and their determination from the under-
lying QCD theory is still an open problem. However, one
can get information on the effective couplings by assuming
that the resonance region provides a bridge between the
chiral and perturbative regimes, even when one does not
include the full resonance spectrum [14]. This is imple-
mented by matching the high-energy behavior of Green
functions (or related form factors) evaluated within the
resonance Lagrangian with asymptotic results obtained in
perturbative QCD [11,14,15,20,22,25,27,37]. In particular,
it has been shown that the analysis of the two-point Green
functions �A;V [14] and the three-point Green function

VVP of QCD currents (with the inclusion of only one
multiplet of vector resonances) [27] leads to the following
constraints in the NC ! 1 limit:
(i) By demanding that the two-pion vector form factor

vanishes at high momentum transfer, one obtains the
condition FVGV ¼ F2 [14].

(ii) The analysis of the VVP Green function [27]
leads to the following results for the couplings in
Eqs. (11)–(13):

c125 ¼ 0; c1235 ¼ 0;

c1256 ¼ � NC

32�2

MVffiffiffi
2

p
FV

;

d12 ¼ � NC

64�2

M2
V

F2
V

þ F2

4F2
V

;

d3 ¼ � NC

64�2

M2
V

F2
V

þ F2

8F2
V

:

(21)

On the other hand, it is possible to find additional con-
straints by requiring that the contributions of any inter-
mediate hadronic state to the spectral function Im�VðQ2Þ
vanish in the limit Q2 ! 1. This is a reasonable assump-
tion, since from perturbative QCD, Im�VðQ2Þ has to go to
a constant value for Q2 ! 1 [38], and the imaginary part
of the two-point Green function can be understood as the
sum of infinite intermediate hadronic states. Considering

the intermediate �ð0Þ�� hadronic states, one gets the fol-
lowing constraints on the coupling constants:

3The fully dominant contribution to the �0 mass is not due to
current quark masses but to the Uð1ÞA anomaly [33], through the
topological susceptibility of gluondynamics. Hence, we keep 
P
as a free parameter, to be fitted from phenomenology.
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c125¼0; c1256¼� NC

96�2

MVFVffiffiffi
2

p
F2

; d3¼� NC

192�2

M2
V

F2
;

g123¼0; g2¼ NC

192�2

MVffiffiffi
2

p
FV

: (22)

It is worth noticing that relations (22) are in agreement
with those found in a similar analysis carried out for �
decays into 2K��� [39,40] and P���� (P ¼ �, K) states
[41]. Comparing with Eq. (21), we agree in the vanishing
of c125, while the constraints for c1256 and d3 cannot be
simultaneously satisfied keeping agreement with their val-
ues in Eq. (22). Moreover, as stated in Ref. [39], it is seen
that the expected vanishing of the ��?� form factor at
high q2 is obtained from Eq. (22) but not from Eq. (21). In
any case, numerically, the differences are small, and the
impact of these couplings on the observables is rather
mild.4 Thus, we choose to stick to our set of relations
(22), using Eqs. (21) to fix the combinations c1235 and
d12, not obtained within our study. In this way, the analysis
of short-distance constraints allows us to reduce signifi-
cantly the number of unknown coupling constants in the

form factors FVð
Þ
3 quoted in Eqs. (10)–(13). To calculate

the decay amplitudes for the processes �� ! �ð0Þ���0��,
we end up with just four unknown parameters, namely, FV ,
c3, g45, and d2. As in the above-mentioned analysis, we
will take MV ¼ M�.

V. PHENOMENOLOGICAL ANALYSIS

In order to carry out a phenomenological analysis of ��!
�ð0Þ���0�� decays, we take into account the available ex-
perimental information. In the case of ��!����0��,
this includes the measured branching fraction BRð�� !
����0��Þ ¼ ð1:39� 0:10Þ � 10�3 [42], as well as the
data on the corresponding spectral function obtained by
Belle [43]. The process �� ! �0���0�� has not been
observed yet; hence, we consider only the upper bound
given by the PDG [42], namely, BRð�� ! �0���0��Þ<
8:0� 10�5 at 90% confidence level.

As stated, the number of unknown parameters entering
the vector form factor FV

3 in R�T can be reduced to four by

means of the short-distance constraints obtained in Sec. IV.
In addition, the values of FV and g45 can be estimated
within R�T from the phenomenological analysis of
�� ! ð���Þ��� and ! ! �þ���0, respectively: the

best fit to the �� ! ð���Þ��� spectral function measured
by ALEPH [44] corresponds to FV ¼ 0:180 GeV [22]
with an estimated error of �15%,5 while from the ! !
�þ���0 branching ratio, one gets g45 ¼ �0:60� 0:02
[39]. In this way, we are left with only two unknowns,
namely, the coupling constants c3 and d2. Our goal is to be
able to describe the available experimental information just
by fitting these two parameters.
In Fig. 2, we show the c3 � d2 parameter region com-

patible with the PDG branching ratio for the mode �� !
����0�� at the level of one sigma. A large correlation
between both couplings can be appreciated, in agreement
with Refs. [24,25].6 Then, taking into account this allowed
region for c3 and d2, we have carried out a fit to Belle data
[43] for the �� ! ����0�� spectral function. We find
two �2 minima, located at ðc3; d2Þ ¼ ð�0:018; 0:45Þ and
ðc3; d2Þ ¼ ð0:035;�0:70Þ, with �2=dof ¼ 3:80 and 4.34,
respectively, where the statistical error is about 10%. These
values are indicated in Fig. 2, where black strips corre-
spond to the c3 � d2 regions which keep �2=dof within
one unit far from the minima. The corresponding theoreti-
cal curves for the spectral function, together with experi-
mental data, are shown in Fig. 3. We have also carried out a
fit to the normalized spectral function, obtaining that the
preferred values for ðc3; d2Þ remain almost unchanged,

-0.10 -0.05 0.00 0.05 0.10
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

d 2

c
3

FIG. 2. Contour in the c3 � d2 plane compatible with the
branching ratio of the decay �� ! ����0�� at the level of
one standard deviation. The black strips highlight the two
regions which yield lowest values of �2=dof (within one unit)
from a fit to Belle data [43] on the corresponding spectral
function.

4The introduction of additional resonances has a different
effect on the short-distance relations obtained from the VVP
Green function and from the imaginary part of the vector–vector
correlator. While all new contributions to the correlator are
positive definite, this is not true for the VVP Green function,
where cancellations are allowed. Thus, the outcome of both
procedures may be different when the spectrum is restricted to
the lowest–lying resonances. A convergence of both results
should be recovered if the full tower of excited resonances is
taken into account.

5Some theoretical analyses lead to the value FV ¼ ffiffiffi
3

p
F�

0:160 GeV [41,45–50]. We have checked that a change of FV

within the range ½0:160; 0:180� GeV does not affect significantly
the results presented in this section.

6In particular, as noticed in Ref. [25], there is an anticorrela-
tion between c3 � d2 in �� ! �0���0�� and in associated
radiative decays. Therefore, the combined study could improve
the determination of these couplings.
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while �2=dof values get reduced to 3.0 for both minima.
Finally, in order to account for the theoretical error of the
high-energy predictions for the couplings c1256, d3, g2 and
d12, we have also fitted the data allowing these coupling
combinations to vary within �1=3 of the values obtained
from Eqs. (21) and (22).7 It is noteworthy that the �2 value
does not get reduced, which can be taken as an indication
that our short-distance relations (obtained at leading order

in 1=NC) lead to an appropriate effective Lagrangian to
reproduce the experimental observations.
Considering the fitted values for c3 and d2, we can

calculate the corresponding predictions for the �� !
�0���0�� branching ratio. The results are shown in
Fig. 4, where we have taken c3 as the independent parame-
ter. It is seen that the predictions are somewhat above the
90% confidence level upper bound quoted by the PDG,
which is indicated by the shadowed region in the figure.
However, the result corresponding to c3 ¼ �0:018 turns
out to be rather close to the upper bound; in fact, compati-
bility is achieved if the width of the c3 � d2 band is
enlarged considering two standard deviations in the mea-
sured value of BRð�� ! ����0��Þ. Future, more precise
measurements of the �� ! �0���0�� process should
indicate whether our slight discrepancy arises from a
weakness in the theoretical assumptions (e.g., treatment of
�8 � �0 mixing, effect of excited resonances, SU(3)
breaking terms in the Lagrangian [52]) or it just reflects
an issue in the detection of this � decay mode. In this
regard, we emphasize the importance of making global
fits with unified and consistent treatments of all hadronic
currents, in order to avoid cross-contamination between
different hadronic tau decay channels from misunderstood
backgrounds. The improvement in the most relevant had-
ronic matrix elements in TAUOLA [53,54] may be a key
tool in this sense.
Finally, our analysis can be used to predict �ðeþe� !

��þ��Þ in the low-energy region (conversely, one could,
in general, use data on eþe� annihilation into hadronic
states to get predictions for the corresponding semileptonic
tau decays [55,56]8). The relation between this cross sec-
tion and the �� ! ����0�� spectral function is detailed
in Appendix B. One gets

d�ð�� ! ����0��Þ
dQ2

¼ 2fðQ2Þ�ðeþe� ! ��þ��Þ;
(23)

where fðQ2Þ is given by

fðQ2Þ ¼ G2
FjVudj2

384ð2�Þ5M�

�
M2

�

Q2
� 1

�
2
�
1þ 2

Q2

M2
�

��

2

48�

��1
Q6:

(24)

In Fig. 5, we quote our predictions for the cross section, in
comparison with low-energy eþe� data obtained in various
experiments.9 We notice that although the�0 meson decays
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FIG. 3 (color online). Theoretical curves fitting the spectral
function for �� ! ����0�� decay, compared to experimental
data [43].
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FIG. 4. Prediction for the branching ratio of the decay �� !
�0���0�� consistent (within one sigma) with the �� !
����0�� branching ratio quoted by the PDG. The horizontal
line, corresponding to BRð�� ! �0���0��Þ ¼ 0:8� 10�4,
represents the current PDG bound. The notation for the black
strip is the same as in Fig. 2.

7We have also considered nonvanishing values for the cou-
pling c1235, which should be zero according to Eq. (21).
Notwithstanding, have kept c125 and g123 equal to zero.
Indeed, if c125 � 0 the Brodsky-Lepage behavior [51] of the
form factor is violated, and Im�V goes, asymptotically, as Q6

logðQ2=M2
VÞ; if g123 � 0, the asymptotic growth goes as OðQ6Þ.

Varying c1235 in the range ½�0:05; 0:05� does not improve the fit.

8A more elaborated dedicated approach, also based in R�T,
has been developed for �ðeþe� ! �=�0�þ��Þ [57].

9We note that in this neutral current process there are addi-
tional contributions from new operators O8

VJP and O5
VVP, see

Ref. [25], which implies the introduction of two additional
unknown couplings. However, these terms are suppressed in
the large-NC limit in the standard counting (see discussion in
Appendix A).
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to ��þ�� with a fraction of about 45%, there is no
significant contamination from the chain �ðeþe� !
�0�? ! ��þ��Þ since, due to C parity, this occurs at
next-to-leading order in powers of the electromagnetic cou-
pling 
. From the figure, it is seen that our results are
consistent with experimental data up to a center-of-mass
energy of about 1.4 GeV. In fact, one should not expect our
treatment to be valid beyond this energy region, where
effects of excited states should be sizeable and there is no
phase space suppression as in � decay spectral functions.

VI. CONCLUSIONS

We have worked out the decays �� ! ����0�� and
�� ! �0���0�� within the framework of chiral perturba-
tion theory with resonances. The theoretical analysis has
been based on the large-NC expansion of QCD, the low-
energy limit given by �PT and the appropriate asymptotic
behavior of the form factors, which helps to fix most of the
initially unknown effective couplings. Indeed, after taking
into account information acquired in the previous related

studies, �� ! �ð0Þ���0�� amplitudes can be written in
terms of only two unknown parameters.

We have carried out a phenomenological analysis taking
into account the experimental data for the branching ratio
and the spectrum of the decay �� ! ����0��, as well
as the present upper bound for the �� ! �0���0��

branching fraction. A fit to the data allows us to determine
two preferred sets of values for the unknown parameters, c3
and d2, in the effective Lagrangian, namely, ðc3; d2Þ ¼
ð�0:018; 0:45Þ and (0.035,�0:88), which lead to a reason-
able overall description of the spectrum. The former set
seems to be favored by the predictions for the branching
ratio BRð�� ! �0���0��Þ, although in both cases, the
theoretical values appear to be somewhat above the present

experimental upper bound. Finally, using isospin symme-
try, these results can be used to get a prediction for the low-
energy behavior of the cross section �ðeþe� ! ��þ��Þ.
The results are in good agreement with the available
experimental information, and the approach can be useful
[57] for the implementation of the related hadronic current
in the PHOKHARA [58] Monte Carlo generator.
Our present results should be regarded as a first step in

the study of the �� ! �ð0Þ���0�� decays in our frame-
work. In light of higher statistics for the ����0�� mode,
or the observation of the decay �� ! �0���0��, this
description could be improved by considering, e.g., the
exchange of excited vector resonances, SU(3)-breaking
terms in the Lagrangian or revising the �8 � �0 mixing
scheme.
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APPENDIX A: CONTRIBUTION OF SPIN-ZERO
RESONANCES AND SINGLET TERMS

In this appendix, we analyze both the contribution of
spin-zero (scalar and pseudoscalar) resonances and SU(3)

singlet couplings to �� ! �ð0Þ���0�� decays.

1. Scalar and pseudoscalar resonance exchange

Discrete symmetries of QCD constrain the possible
couplings in the effective Lagrangian. One of these sym-
metries is G parity, which is exact in the SU(2) symmetry
limit. With our conventions, the corresponding quantum
numbers are GA�

¼ �1, GV�
¼ þ1, G� ¼ þ1, G�ð?Þ ¼

�1, Gf0=� ¼ þ1, Ga0 ¼ �1; thus, the final state ����0

has G ¼ þ. As stated in Sec. III, since the axial-vector
weak current has G ¼ �, only the vector current can
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FIG. 5 (color online). Prediction for �ðeþe� ! ��þ��Þ low-
energy behavior from our analysis of �� ! ����0�� decays, in
comparison with DM1 [59], ND [60], DM2 [61], CMD-2 [62],
and BABAR [63] data.
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contribute to the �� ! �ð0Þ���0�� decay amplitudes in
this limit. The intermediate states f0�

�, ��� are also
forbidden by G-parity conservation, which only leaves
the channels a�0 �

0 ! ����0 and a00�
� ! ��0��.

However, the vector current is JP ¼ 1�, while the inter-
mediate states a0� have parity P ¼ ð�1ÞJþ1. Therefore,
one can conclude that both scalar and pseudoscalar reso-
nance contributions are strongly suppressed at tree level
and can be safely neglected.

2. Contribution of double-trace terms

In Ref. [25], two additional operators have been found
with respect to those in Ref. [27]. Although these operators
involve two traces, hence they are suppressed in the stan-
dard counting (in powers of p2 �m2

q and 1=NC), it is seen

that they become leading when a simultaneous counting in
all three expansion parameters is carried out [31]. The
operators read

~O8
VJP ¼ �i~c8MV

ffiffiffi
2

3

s
"����hV�� ~f��þ i logðdet ~uÞ

~O5
VVP ¼ �i~d5M

2
V

ffiffiffi
2

3

s
"����hV��V��i logðdet ~uÞ;

(A1)

where the tildes stand for u and f matrices which include
the singlet term (and would contribute to the processes
considered here through the� and�0 components of the�0

meson). Once again, the contribution of these operators
vanishes, since the second operator only contributes to
neutral current processes, while the first one leads to the
contraction of symmetric and antisymmetric tensors in the
� decay amplitudes.

APPENDIX B: ISOSPIN RELATIONS

In this appendix, we provide a derivation of Eq. (23),
which allows us to relate the �� ! ����0�� differential
decay rate and the �ðeþe� ! ��þ��Þ cross section.

We work in the limit of SU(2) isospin symmetry, and we
neglect Z-exchange contributions to the hadronic eþe�
cross section, which is a safe approximation in the consid-
ered energy range. Thus, this process will be driven by the
vector current, via photon exchange. One expects to get a
relation between this cross section and the vector current
contribution to the decay of a tau lepton into the corre-
sponding hadronic state.

Since both �8 and �0 states are SU(2) singlets, we can
compute isospin relations between �0;8�� channels just

by taking into account the isospin of �� states. Let
us denote by T�0, T0� the amplitudes h���j �d��

wuj0i
and by Tþ�; T�þ; T00 the amplitudes 1ffiffi

2
p h���jð �u��

wu�
�d�

�
wdÞj0i, where the subscripts correspond to pion electric

charges, and � can be either �0 or �8. We obtain the
relations

1ffiffiffi
2

p ðT�0 þ T0�Þ ¼ � 1ffiffiffi
6

p ðTþ� þ T�þ � 2T00Þ ¼ 0;

1ffiffiffi
2

p ðT0� � T�0Þ ¼ � 1ffiffiffi
2

p ðT�þ � Tþ�Þ;ffiffiffi
3

p ðTþ� þ T�þ � T00Þ ¼ 0;

(B1)

which lead to

T00 ¼ 0; Tþ� ¼ �T�þ ¼ T0� ¼ �T�0: (B2)

Now, let us consider the electromagnetic current. One can
decompose it into I ¼ 0 and I ¼ 1 pieces:

�
�
em ¼ 1

3
ð2 �u��u� �d��d� �s��sÞ ¼ �

�
ð0Þ þ �

�
ð1Þ; (B3)

where

��
ð0Þ ¼

1

6
ð �u��uþ �d��d� 2�s��sÞ;

��
ð1Þ ¼

1

2
ð �u��u� �d��dÞ:

(B4)

One can relate the amplitudes h���j��j0i for charge and
isospin (AI) j���i states by

Aþ� ¼ 1ffiffiffi
2

p A1 þ 1ffiffiffi
3

p A0; A�þ ¼ � 1ffiffiffi
2

p A1 þ 1ffiffiffi
3

p A0;

A00 ¼ � 1ffiffiffi
3

p A0: (B5)

Moreover, the vanishing of the amplitude A2 implies

2A00 þ Aþ� þ A�þ ¼ 0: (B6)

In this way, one obtains the following relations:

Aþ�þA00¼ 1ffiffiffi
2

p A1; A�þþA00¼� 1ffiffiffi
2

p A1;

A1¼Aþ��A�þffiffiffi
2

p ;

A0¼Aþ�þA�þ�A00ffiffiffi
3

p ¼� ffiffiffi
3

p
A00¼

ffiffiffi
3

p
2
ðAþ�þA�þÞ;

(B7)

which lead to

jAþ�þA�þj2þjAþ��A�þj2¼2ðjAþ�j2þjA�þj2Þ
¼4jA00j2þ2jA1j2; (B8)

jA1j2 ¼ jAþ�j2 þ jA�þj2 � 2jA00j2: (B9)

Thus corresponding cross sections are related by

�ðeþe� ! ���ÞjI¼1 ¼ �ðeþe� ! ��þ��Þ
þ �ðeþe� ! ����þÞ � 2� 2�ðeþe� ! ��0�0Þ

’ 2�ðeþe� ! ��þ��Þ; (B10)
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where the additional factor 2 in the first equation
arises from the presence of identical particles in the final
state. In the last line, we have neglected the cross section to
the ��0�0 state, since it turns that it vanishes at the
lowest order in the electromagnetic coupling 
 owing to
C-parity conservation. For the isoscalar part, fromEq. (B7),
we find

�ðeþe� ! ���ÞjI¼0 ¼ 6�ðeþe� ! ��0�0Þ: (B11)

Finally, one has

1ffiffiffi
2

p ðT0� � T�0Þ ¼ ffiffiffi
2

p
T0� ¼ �h1; 0j �uu� �ddffiffiffi

2
p j0i

¼ � ffiffiffi
2

p
A1: (B12)

Taking into account that the eþe� cross section into three
hadrons is given by

�eþe�!h1h2h3
ðQ2Þ ¼ e4

768�3

1

Q6

Z
dsdtjF3j2ð�V3�V

�

3 Þ;
(B13)

the cross sections for the different modes read (jAþ�j2 ¼
jA1j2=2 ¼ jA�0j2=2)

�ðeþe� ! ��þ��Þ ¼ 
2

96�

1

Q6

Z
dsdtjT�0j2ðV3�V

3�
Þ;

�ðeþe� ! ��0�0Þ ¼ 
2

48�

1

Q6

Z
dsdt

1

2
jT00j2ðV3�V

3�
Þ;
(B14)

where the additional factor 1=2 in the second equation
arises from the presence of identical particles in the final
state. Thus, one finally obtains

d�ð��!����0��Þ
dQ2

¼fðQ2Þ�ðeþe�!���ÞjI¼1

¼2fðQ2Þ½�ðeþe�!��þ��Þ
�2�ðeþe�!��0�0Þ�

’2fðQ2Þ�ðeþe�!��þ��Þ; (B15)

where fðQ2Þ is the kinematical factor given in Eq. (24).
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