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(Received 14 July 2012; published 4 October 2012)

We discuss the compatibility between the quark-shell picture and the meson-nucleon scattering picture

in large Nc QCD for mixed symmetric ‘ ¼ 1 states previously analyzed by using a simple Hamiltonian

including operators up to order OðN0
c Þ defined in the standard ground state symmetric coreþ

excited quark procedure. Here we introduce a Hamiltonian of order OðN0
c Þ defined in a new approach

where the separation of the system into two parts is not required. Three degenerate sets of states (towers)

with the same quantum numbers as in the scattering picture and in the standard procedure are obtained.

Thus the compatibility is equally achieved. The eigenvalues of the presently chosen Hamiltonian also have

simple analytic expressions, depending linearly on the three dynamical coefficients entering the

Hamiltonian. This reinforces the validity of the new approach which had already successfully described

excited negative parity baryons in a large energy range.
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I. INTRODUCTION

Many of the qualitative and quantitative predictions of
the 1=Nc expansion method [1–4], where Nc is the number
of colors, have been proved successful when compared to
experimental results of ground state baryons [5–8]. The
method is based on the observation that, for Nf flavors, the

ground state baryons display an exact contracted SUð2NfÞ
symmetry when Nc ! 1. At large, but finite Nc, this
symmetry is broken by contributions of order of 1=Nc,
leading to mass splittings.

Subsequently, efforts have been made to extend the
method to excited states. There are two complementary
pictures of large Nc for baryon resonances. One is the
so-called quark-shell picture where the symmetry is
extended to SUð2NfÞ � Oð3Þ, which allows us to classify

baryons in excitation bands N [9], like in the quark
model where Nc ¼ 3 [10]. The other is the resonance
or scattering picture derived from symmetry features of
chiral soliton models. The role of large Nc QCD is to
relate the scattering amplitudes in various channels with

K-amplitudes, where K is the grand spin ~K ¼ ~I þ ~J.
These are linear relations in the meson-nucleon scattering
amplitudes from which one can infer some patterns of
degeneracy among resonances.

Naturally, there has been concern about the compati-
bility of the two pictures. Simultaneously Cohen and
Lebed [11] and Pirjol and Schat [12] studied the N ¼ 1
band which represents the lowest ½70; 1�� multiplet and
found the same three sets of degenerate states as in the
resonance or scattering picture. In both studies there

were three leading order operators in the mass formula,

c11 of order OðNcÞ together with ‘ � s and 1
Nc
‘ð2Þ � g �Gc

having matrix elements of order OðN0
cÞ. In particular,

Pirjol and Schat showed that the three sets of degenerate
states correspond to irreducible representations of the
contracted SUð4Þc symmetry, the three sets being called
three towers of states. Moreover, to the three leading
order operators in the mass formula they added 1=Nc

corrections and reanalyzed the mass spectrum of the
lowest negative parity nonstrange baryons. They found
ambiguities in the identification of physical states where
Nc ¼ 3 with the degenerate large Nc tower states.
Actually, in the SU(4) case the degeneracy of sets of
states corresponding to irreducible representations of the
contracted SUð4Þc symmetry was first discussed by Pirjol
and Yan in Ref. [13].
Later on, the compatibility between the two pictures

was discussed on a general basis again by Cohen and
Lebed [14]. The compatibility was claimed for com-
pletely symmetric (S), mixed symmetric (MS) and com-
pletely antisymmetric (A) states of Nc quarks having
angular momentum up to ‘ ¼ 3. In Ref. [15] we gave
an explicit proof of the degeneracy of mass eigenvalues
in the quark-shell picture for ‘ ¼ 3. We thus supported
the idea of full compatibility of Ref. [14] for higher parts
of the spectrum. This compatibility means that any com-
plete spin-flavor multiplet within one picture fills the
quantum numbers of the other picture. In addition, we
could prove that the quark-shell picture is richer in
information, by making a clear distinction between de-
generate sets of states of different values of the angular
momentum but associated to the same grand spin K.
For example, one can associate a common K ¼ 2 to
both ‘ ¼ 1 and ‘ ¼ 3. A similar situation appears for
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every K value associated to two distinct values of ‘
satisfying the �ðK‘1Þ rule [14].

It is important to mention that the above studies were
based on the procedure to consider an excited state as a
single quark excitation about a ground state symmetric
core [16,17]. In fact the operators mentioned above follow
the notation of Refs. [16,17], namely lower case indicates
operators acting on the excited quark and the subscript c is
attached to those acting on the symmetric core.

The symmetric coreþ excited quark was originally
proposed [16] as an extension of the ground state treatment
to excited states and was inspired by the Hartree picture. In
this way, in the flavor-spin space, the problem was reduced
to the knowledge of matrix elements of the SUð2NfÞ gen-
erators between symmetric states, already known from the
ground state studies. Accordingly, the wave function was
approximately given by the coupling of an excited quark to
a ground state core of Nc � 1 quarks, without performing
antisymmetrisation. Subsequently the symmetric coreþ
an excited quark approach was supported by Pirjol and
Schat [18] within a general large Nc constituent quark
model Hamiltonian starting from an exact wave function.
A practical problem is that the number of operators enter-
ing the mass formula is exceedingly large. For example, for
the ½70; 1�� multiplet in SU(4) there are 12 linearly inde-
pendent operators in powers of 1=Nc included, while in the
N ¼ 1 band there are seven experimentally known
resonancesþ two mixing angles. It is therefore difficult,
if not impossible, to find out the most dominant operators.
In addition, the symmetric core always has equal spin and
isospin, therefore some information is lost regarding the
baryons structure.

As an alternative, in Ref. [19] we have proposed a
method where all identical quarks are treated on the
same footing and we have an exact wave function in the
orbital-flavor-spin space. The procedure has been success-
fully applied to theN ¼ 1 band [19–21] and recently to the
N ¼ 3 band [22], where data are very scarce. We found out
that the most dominant operators of order 1=Nc were both
the spin and flavor, the latter being neglected in all studies
based on the symmetric coreþ an excited quark ap-
proach. They are 1

Nc
SiSi and 1

Nc
½TaTa� 1

12NcðNcþ6Þ�, re-
spectively, where the latter is compatible both with SU(4)
and SU(6) [20]. The generators Si and Ta act on the whole
system.

It is precisely in our approach that we wish to analyze
the compatibility of the quark-shell picture and of the
resonance or scattering picture. It will be shown that
the present results are as simple as those of the
symmetric coreþ an excited quark approach. It is re-
markable that in the quark-shell picture described below
the Hamiltonian eigenvalues are linear analytic functions
of the dynamical coefficients ci entering the Hamiltonian,
like in Refs. [11,12]. In this way one can easily identify the
three sets of degenerate states which are identical in the

quantum numbers with those of the resonance or scatter-
ing picture and those of Refs. [11,12]. The compatibility is
therefore confirmed and this gives strong support to our
procedure.

II. A SIMPLIFIED MASS OPERATOR

In the quark-shell picture the leading-order Hamiltonian
corresponding to the procedure of Refs. [19–21] has the
following form

H ¼ c1O1 þ c2O2 þ c6O6; (1)

where the operators presently under consideration are

O1¼Nc1; O2¼‘ �s; O6¼ 15

Nc

Lð2ÞijGiaGja; (2)

in the notation of Ref. [21] for the operators Oi. The first
two terms are identical to those of Refs. [11] or [12]. The
matrix elements of the first term are Nc on all baryons and
the second term is a one-body operator defined in the spirit
of the Hartree picture [2] and its matrix elements are of
orderOðN0

cÞ. The third term is new and consistent with our
procedure described in the introduction. It is a two-body
operator but has matrix elements of order OðN0

cÞ. It con-
tains the tensor Lð2Þij of SO(3) defined as

Lð2Þij ¼ 1

2
fLi; Ljg � 1

3
�i;�j

~L � ~L; (3)

which acts on the orbital wave function of the whole
system of Nc quarks and is normalized as in Ref. [9].
Note that when the angular momentum acts on the whole
system we use capital Li to distinguish it from ‘i, in the
spin-orbit operator, which acts on a single quark. In our
approachO2 andO6 are the only operators of orderOðN0

cÞ.
The neglect of 1=Nc corrections in the 1=Nc expansion
makes sense for the comparison with the scattering picture
in the large Nc limit, as already discussed in Ref. [11].

III. THE BASIS STATES

The Hamiltonian (1) is diagonalized in the bases de-
scribed below. We remind the reader that each orbital-
spin-flavor state must be symmetric, to be combined with
an antisymmetric color state in order to satisfy the Pauli
principle. For an excited statewith ‘ ¼ 1, the partitionmust
be ½Nc � 1; 1� both in the orbital and spin-flavor spaces. By
using inner products of the permutation group SNc

we can

construct spin-flavor states with the desired symmetry from
spin S and flavor F states. In this section we describe the
spin and flavor spaces by their permutation symmetry, i.e.,
by a partition ½f� ¼ ½f1; f2� where f1 and f2 represent the
number of boxes in the first and second row of a Young
tableau, respectively. The relation to SU(3) flavor space
notation is f1 ¼ �þ� and f2 ¼ � (see Appendix A).
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A. The nucleon case

We have the following ½Nc � 1; 1� spin-flavor states
which form a symmetric state with the orbital ‘ ¼ 1 state
of the same partition. These are

½Nc � 1; 1�SF ¼
�
Nc þ 1

2
;
Nc � 1

2

�
S

�
�
Nc þ 1

2
;
Nc � 1

2

�
F
; (4)

where Nc � 3 and S ¼ 1=2, J ¼ 3=2,

½Nc � 1; 1�SF ¼
�
Nc þ 3

2
;
Nc � 3

2

�
S

�
�
Nc þ 1

2
;
Nc � 1

2

�
F
; (5)

where Nc � 3 and S ¼ 3=2, J ¼ 1=2, 3=2, 5=2. As one
can easily see, they give rise to matrices associated to a
given J which are either 2� 2 or 1� 1. For Nc ¼ 3 the
states (4) and (5) correspond to 28 and 48 multiplets,
respectively. The case Nc ¼ 7 is illustrated with Young
diagrams in Appendix A.

B. The � case

In a similar way we use inner product of spin and flavor
states to obtain basis states in the spin-flavor space com-
patible with the orbital state ½Nc � 1; 1�with ‘ ¼ 1. For the
� case we have

½Nc � 1; 1�SF ¼
�
Nc þ 1

2
;
Nc � 1

2

�
S

�
�
Nc þ 3

2
;
Nc � 3

2

�
F
; (6)

where Nc � 3 and S ¼ 1=2, J ¼ 3=2, denoted in the fol-
lowing as 210J,

½Nc � 1; 1�SF ¼
�
Nc þ 3

2
;
Nc � 3

2

�
S

�
�
Nc þ 3

2
;
Nc � 3

2

�
F
; (7)

where Nc � 5 and S ¼ 3=2, J ¼ 1=2, 3=2, 5=2, denoted in
the following as 410J,

½Nc � 1; 1�SF ¼
�
Nc þ 5

2
;
Nc � 5

2

�
S

�
�
Nc þ 3

2
;
Nc � 3

2

�
F
; (8)

where Nc � 7 and S ¼ 5=2 and J ¼ 1=2, 3=2, 5=2, 7=2,
denoted in the following as 610J.

For Nc ¼ 3 the first state belongs to the 210 multiplet.
The other two types of states do not appear in the real

world with Nc ¼ 3. As above, it is easy to find out the size
of the matrix of a fixed J. For example, for J ¼ 3=2 we
have a 3� 3 matrix defined in the space of all � states.

IV. RESULTS AND DISCUSSION

The analytic expressions of the resulting matrix ele-
ments of the operators contained in the Hamiltonian (1)
are given in Tables I and II, as a function of Nc. Details of
the calculation of the matrix elements are given in
Appendix A.
To obtain the matrices to be diagonalized we have to

take the limitNc ! 1 in the matrix elements ofO2 andO6

given in Tables I and II. As an example we present the
largest possible matrix, corresponding to �3=2 states,

which is

TABLE II. Off-diagonal matrix elements of O1, O2 and O6 for
all states belonging to the ½70; 1�� multiplet.

O1 O2 O6

281
2

� 481
2

0 � 1
3

ffiffiffiffiffiffiffiffiffi
Ncþ3
2Nc

q
� 25

4

ffiffiffiffiffiffiffiffiffi
Ncþ3
2Nc

q
283

2

� 483
2

0 � 1
6

ffiffiffiffiffiffiffiffiffiffiffiffiffi
5ðNcþ3Þ

Nc

q
5
8

ffiffiffiffiffiffiffiffiffiffiffiffiffi
5ðNcþ3Þ

Nc

q
2101

2
� 4101

2
0 1

6

ffiffiffiffiffiffiffiffiffiffiffiffiffi
5ðNc�3Þ

Nc

q
� 5

8

ffiffiffiffiffiffiffiffiffiffiffiffiffi
5ðNc�3Þ

Nc

q
2103

2
� 4103

2
0 5

6

ffiffiffiffiffiffiffiffiffi
Nc�3
2Nc

q
5
8

ffiffiffiffiffiffiffiffiffiffiffiffiðNc�3Þ
2Nc

q
2103

2
� 6103

2
0 0 5

8Nc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðNc � 3ÞðNc þ 5Þp

4103
2
� 6103

2
0 � 3

ffiffi
6

p
20 � 21

16

ffiffiffiffiffiffiffiffiffiffiffiffiffi
6ðNcþ5Þ

Nc

q
4105

2
� 6105

2
0 �

ffiffiffiffi
21

p
10

3
8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21ðNcþ5Þ

Nc

q

TABLE I. Diagonal matrix elements of O1, O2 and O6 for all
states belonging to the ½70; 1�� multiplet.

O1 O2 O6

281
2

Nc � 2Nc�3
3Nc

0

481
2

Nc � 5
6 � 25ðNc�1Þ

8Nc

283
2

Nc
2Nc�3
6Nc

0

483
2

Nc � 1
3

5ðNc�1Þ
2Nc

485
2

Nc
1
2 � 5ðNc�1Þ

8Nc

2101
2

Nc
1
3 0

2103
2

Nc � 1
6 0

4101
2

Nc � 1
6

5ðNcþ5Þ
2Nc

4103
2

Nc � 2
15 � 2ðNcþ5Þ

Nc

4105
2

Nc
1
5

Ncþ5
2Nc

6103
2

Nc � 7
10 � 7ð3Nc�25Þ

12Nc

6105
2

Nc � 1
5

2ð3Nc�25Þ
3Nc

6107
2

Nc
1
2 � 5ð3Nc�25Þ

24Nc
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M‘¼1
�3=2

¼

c1Nc � 1
6 c2

5ffiffi
2

p
�
c2
6 þ c6

8

�
15
ffiffi
3

p
8 c6

5ffiffi
2

p
�
c2
6 þ c6

8

�
c1Nc � 2

15 c2 � 2c6 � 3
ffiffi
6

p
20 c2 � 21

ffiffi
6

p
16 c6

15
ffiffi
3

p
8 c6 � 3

ffiffi
6

p
20 c2 � 21

ffiffi
6

p
16 c6 c1Nc � 7

10 c2 � 7
4 c6

0
BBBBBBB@

1
CCCCCCCA
; (9)

The eigenvalues of this matrix are

m0
0 ¼ c1Nc � c2 � 25

4
c6; (10)

m0
1 ¼ c1Nc � 1

2
c2 þ 25

8
c6; (11)

m0
2 ¼ c1Nc þ 1

2
c2 � 5

8
c6: (12)

Another useful example is the matrix corresponding to
N3=2 states. This is

M‘¼1
N3=2

¼ c1Nc þ 1
3 c2 �

ffiffi
5

p
6 c2 þ 5

ffiffi
5

p
8 c6

�
ffiffi
5

p
6 c2 þ 5

ffiffi
5

p
8 c1Nc � 1

3 c2 þ 5
2 c6

 !
; (13)

having as eigenvalues m0
1 and m0

2 from above. The matrix
corresponding to N1=2 states is shown in the Appendix B.

The other matrices follow straightforwardly from
Tables I and II. By diagonalizing all matrices we found
that the eigenvalues (10)–(12) are the only possible ones
for allNJ and�J presented above. Accordingly the follow-
ing sets of degenerate negative parity multiplets were
found for ‘ ¼ 1 orbital excitations

N1=2;�3=2; ðm0
0Þ; (14)

N1=2;�1=2; N3=2;�3=2;�5=2; ðm0
1Þ; (15)

�1=2; N3=2;�3=2; N5=2;�5=2;�7=2; ðm0
2Þ; (16)

where, on the right side we indicate the mass of each
degenerate set. These degenerate multiplets are identical
to those found in Refs. [11,12]. Themassesm0

i of Eqs. (10)–
(12) are naturally different frommi of the above references
because the Hamiltonian is different in structure, it contains
different dynamical coefficients but has similar large Nc

properties. Simple forms as those of Eqs. (10)–(12) hold
only for a Hamiltonian of order OðN0

cÞ. Other choices
within the procedure of Refs. [19–21] would lead to the
inclusion of 1=Nc corrections which will necessarily imply
numerical calculations.

Another remarkable aspect of the present study concerns
the mixing angles. For those sectors for which largeNc and
Nc ¼ 3 have the same number of quarkmodel states, which,
in particular is the nucleon casewith J ¼ 1=2 and J ¼ 3=2,
see Eqs. (4) and (5), the mixing angles are identical to those
obtained by Cohen and Lebed [11] or Pirjol and Schat [12].

This means tan�N1=2
¼ ffiffiffi

2
p

and tan�N3=2
¼� 1ffiffi

5
p and amounts

to �N1=2
¼ 0:96 rad and �N3=2

¼ 2:72 rad, respectively (for

details see Appendix B). The mixing angles determined
from fits to N� strong decays and photoproduction data
are �N1=2

¼ 0:39� 0:11 rad and �N3=2
¼ 2:82� 0:11 rad,

respectively [23,24]. This suggests that for N3=2 states the

agreement with the phenomenological value is nearly
achieved at order OðN0

cÞ but for N1=2 states corrections of

order OðN�1
c Þ are necessary. In Ref. [11] the comparison

has been made with the decay data of Ref. [25], fromwhere
it has been extracted �N1=2

¼ 0:56 rad.

For the other mixing angles resulting from 2� 2 matri-

ces we find tan��1=2
¼ ffiffiffiffiffiffiffiffi

1=5
p

and tan��5=2
¼� ffiffiffiffiffiffiffiffi

3=7
p

. These

give the same absolute values for the mixing angle as those
of Cohen and Lebed [11] but of opposite signs. It may be a
matter of phase convention.
We also have to compare these results with those of the

meson-nucleon scattering picture, where linear relations
between matrix elements S�LL0RR0IJ and S

�
LRJ of � and �

scattering off a ground state baryon in terms of
K-amplitudes were derived. They are given by the follow-
ing equations

S�LL0RR0IJ ¼
X
K

ð�1ÞR0�R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Rþ 1Þð2R0 þ 1Þ

p
ð2K þ 1Þ

�
�
K I J

R0 L0 1

��
K I J

R L 1

�
s�KLL0 (17)

and

S�LRJ ¼
X
K

�KL�ðLRJÞs�K; (18)

in terms of the reduced amplitudes s�KL0L and s
�
K respec-

tively. These equations were first derived in the context of
the chiral soliton model [26–29] where the mean-field
breaks the rotational and isospin symmetries, so that J
and I are not conserved but the grand spin K is conserved
and excitations can be labeled by K. These relations are
exact in large Nc QCD and are independent of any model
assumption.
The explicit form of these equations can be found in

Table I of Ref. [11]. That table infers a pattern of degen-
eracy identical to that presented in Eqs. (14)–(16). The
contributing amplitudes are s�0 for the resonances listed in

Eq. (14), ðs�100; s�122Þ for those of Eq. (15) and ðs�222; s�2 Þ for
those of Eq. (16) (for details see Ref. [11]). In the reso-
nance picture the degenerate towers of states (14)–(16)
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correspond to the grand spin K ¼ 0, 1 and 2, respectively.
Therefore the triangular rule proposed in Ref. [14] is
satisfied.

V. CONCLUSIONS

The compatibility between the quark-shell picture of the
1=Nc expansion method and the meson-nucleon resonance
picture has been previously analyzed [11,12,14] by starting
from a Hamiltonian containing operators of order OðN0

cÞ
defined in the symmetric coreþ an excited quark method
[16,17] and full compatibility has been found. Here we
have used an alternative description of the mixed symmet-
ric states where the separation of SU(6) generators into
two terms, one acting on the core and the other on the
excited quark, is avoided and the orbital-flavor-spin wave
function is exactly symmetric under the permutation group
[19,21], as it should be for identical quarks. Interestingly
we found an identical pattern of degeneracy in the quantum
numbers with that obtained from the symmetric coreþ
an excited quark method, thus have proven that the full
compatibility holds in this procedure as well. This supports
once more the method we have proposed in Refs. [19,21]

where a good fit to the experiment has been found for the
N ¼ 1 band, and more recently for mixed symmetric mul-
tiplets in the N ¼ 3 band [22].
The importance of the compatibility of the two pictures

has been clearly pointed out in Ref. [11] where it was also
stressed that it does not justify all aspects of the quark-shell
picture, in particular the dynamical details, but it justifies
those aspects of the model that essentially follow from the
contracted SUð2NfÞ symmetry.

APPENDIX A

For the calculation of the matrix elements of the spin-
orbit operator O2 ¼ ‘ � s one should refer to the Appendix
of Ref. [15] where the notations of Ref. [30] were used for
the isoscalar factors of the permutation group. In Ref. [15]
the matrix elements of O2 for orbital excitation with ‘ ¼ 3
have been calculated.
For the reader’s benefit here we give some useful

details for the calculation of the matrix elements of the
operator O6 ¼ 15=NcL

2 � G �G. The expression of the
matrix elements of the operator L2 � G � G as obtained in
Ref. [21] is

hð�0�0ÞY0I0I03; ‘
0S0JJ3jð�1ÞiþjþaLð2ÞijG�iaG�j;�ajð��ÞYII3; ‘SJJ3i

¼ �‘0‘���0���0�Y0Y�I0I�I03I3ð�1ÞJþ‘�S 1

2
CSUð6Þ
½f�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5‘ð‘þ 1Þð2‘� 1Þð2‘þ 1Þð2‘þ 3Þ

6

s

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2Sþ 1Þð2S0 þ 1Þp �
‘ ‘ 2

S S0 J

�X
S00
ð�1ÞðS�S00Þ

�
1 1 2

S S0 S00

�

� X
�;�00;�00

½f� ½214� ½f�
ð�00�00ÞS00 ð11Þ1 ð��ÞS

 !
�

½f� ½214� ½f�
ð�00�00ÞS00 ð11Þ1 ð��ÞS0

 !
�

; (A1)

where the partition of mixed symmetric states under con-
sideration is ½f� ¼ ½Nc � 1; 1� and

CSUð6Þ
½f� ¼ Ncð5Nc þ 18Þ

12
; (A2)

is the Casimir operator of SU(6) for the partition ½f�. The
two factors appearing in the sum over �, �00 and �00 are
isoscalar factors of SU(6) to be found inRef. [21] aswell. As

an example we consider the case of �3=2 states defined by
Eqs. (6)–(8). For states of type (6)–(8) the isoscalar factors
should be taken from Table VII, V and VI, respectively of
Ref. [21]. These tables arevery general and themeaning is as
follows. Table VII corresponds to spin-flavor (FS) states
where theYoung diagramassociated to spin has�� 2 boxes
in the first row if the Young diagram associated to flavor has
� boxes, as shown below for Nc ¼ 7, ð�;�Þ ¼ ð3; 2Þ

The multiplet 210 from the real world (Nc ¼ 3) is a particular case. The number of extra boxes in the first row as
compared to the second row of the Young diagram corresponding to spin is equal to one, which gives S ¼ 1=2, and three
boxes in the Young diagram corresponding to flavor, which gives ð�;�Þ ¼ ð3; 0Þ, describing a � state.

Table VI corresponds to FS states where the number of extra boxes in the first row, both in the spin and flavor diagrams is
the same, namely three, as shown below for Nc ¼ 7
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That is why we denoted these spurious states (Nc � 5) by 410J. In the real world, Nc ¼ 3, this case is realized for 28 states
with one extra box in both spin and flavor spaces, which means S ¼ 1=2 and ð�;�Þ ¼ ð1; 1Þ.

Table VI corresponds to FS states where the number of extra boxes is two units larger in the spin space than in the flavor
space, see below for Nc ¼ 7

Then for � states one must have S ¼ 5=2 which implies
the notation 610J for these states. The real case, Nc ¼ 3, is
the 48 multiplet.

All real cases are indicated in the headings of Tables VII,
V and VI, respectively of Ref. [21].

APPENDIX B

The mixing angles extracted from electromagnetic and
strong decays are defined as

jNJðupperÞi ¼ cos�Jj4NJi þ sin�Jj2NJi;
jNJðlowerÞi ¼ � sin�Jj4NJi þ cos�Jj2NJi;

(B1)

where j4NJi and j2NJi are the initial states in the quark
model basis and upper and lower are the physical states
with upper and lower energies. Here the mixing is due
to the spin-orbit and to the O6 operator because they
both have off-diagonal matrix elements. To obtain the
appropriate matrix, we remind the reader that in Tables I
and II we have to take Nc ! 1 in the matrix elements of

O2 and O6. As an example we show here the matrix of the
N1=2 states

M‘¼1
N1=2

¼
c1Nc� 2

3c2 � 1
3
ffiffi
2

p c2� 25
4
ffiffi
2

p c6

� 1
3
ffiffi
2

p c2� 25
4
ffiffi
2

p c6 c1Nc� 5
6c2� 25

8 c6

0
@

1
A: (B2)

This suggests that the general form of a 2� 2 matrix to be
diagonalized is

M‘
NJ

¼ A B
B C

� �
; (B3)

so the mixing angle turns out to be

tan2� ¼ � 2B

C� A
: (B4)

Replacing A, B and C by their values from Eq. (B2), we

obtain tan2�N1=2
¼ �2

ffiffiffi
2

p
. It then follows that tan�N1=2

¼ffiffiffi
2

p
. In all cases it happens that the factor in B and C� A

containing the combination of c2 and c6 simplifies so that
one gets simple values for tan� as indicated in Sec. IV.
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