
Magnetic catalysis of a charged Bose-Einstein condensate

Alejandro Ayala,1 M. Loewe,2,3 Juan Cristobal Rojas,4 and C. Villavicencio5,6

1Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México,
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We study the condensation phenomenon for a system of charged bosons in the presence of an external

magnetic field. We show that condensation happens for a definite critical temperature instead of through a

diffuse phase transition. The essential ingredient, overlooked in previous analyses and accounted for in

this work, is the treatment of the plasma screening effects by means of resummation. We compute the

critical temperature, for the case in which the condensate is made of charged pions and for typical

densities found in compact astrophysical objects, for small and large values of the magnetic field. We

show that the magnetic field catalyzes the onset of condensation at very small and at large values of the

magnetic field, and that for intermediate values the critical temperature for condensation is lower than for

the zero magnetic field case.
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I. INTRODUCTION

The possibility that a charged pion condensate may
occur in the interior of neutron stars has been repeatedly
examined in the past. This possibility is raised by the large
isospin imbalance between neutrons and protons which
favors reactions that make neutrons decay into negative
pions under appropriate conditions. The equilibrium ther-
modynamic conditions obeyed by a pion condensed state in
dense neutron matter and in neutron stars have been dis-
cussed long ago. In particular, Ref. [1] studies the criteria
for the appearance of pion condensation in neutron matter
in terms of the pion Green’s function (for a general review
on the physics of neutron stars see Ref. [2]). The occur-
rence of a charged boson condensed phase without mag-
netic fields has also been extensively discussed in the
literature. References [3–6] study in-medium processes
introducing an isospin chemical potential �I at zero tem-
perature in both phases (j�Ij _ m�, where m� is the pion
mass), analyzing the formation of a charged pion con-
densed phase. This phenomenon was discussed in electri-
cally neutral dense quark matter in Refs. [7–9]. Finite
temperature corrections, in the frame of chiral perturbation
theory, have been considered in Ref. [10], extending the
discussion also to other condensates like the chiral con-
densate or the axial-isospin charge density condensate
in Ref. [11].

The situation becomes even more interesting when
considering that neutron stars possess large magnetic fields
whose effects should also be included when studying the
condensation conditions. Recently, in Ref. [12] the role
played by the coupling of �0 to a magnetic field via the

triangle anomaly has been considered, showing the emer-
gence of a �0 domain wall for values of the magnetic field
strength B larger than a certain critical value. This could
also happen for ð�;�0Þ states when B� 107–1019 G.
Magnetic fields can also play an important role in the

dynamics of systems where charged pions are copiously
produced, such as relativistic heavy-ion (RHI) collisions.
Recently, the importance of large magnetic fields for the
evolution of QCD matter produced in noncentral RHI
collisions has been discussed in Ref. [13] as well as their
influence on the phase structure of QCD, with emphasis on
the chiral symmetry restoration and deconfining transi-
tions. In Ref. [14], a discussion of the effective potential
in the framework of the linear sigma model, coupled to
quarks and/or Polyakov loop, suggests a richer structure of
the strong interactions like, for example, a possible split-
ting between chiral symmetry restoration and deconfine-
ment in the presence of magnetic fields. The influence of
the external magnetic field on the formation of CP-odd
domains in RHI collisions has also been discussed in
Ref. [15]. A decrease in the confining critical temperature
was found in [16], where a hadron-quark transition was
studied within the MIT bag model. With the above ingre-
dients put together, the theoretical study of a charged boson
condensate with a finite chemical potential in the presence
of magnetic fields becomes even more relevant. Although
this is an old problem, the results from several approaches
vary in their conclusions. For instance, it was long ago
argued that a nonrelativistic Bose-Einstein gas of charged
particles does not condense in the presence of a magnetic
field, regardless of how weak the field may be [17].
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This result motivated the search for conditions where con-
densation could take placewith magnetic fields, in particular
to study whether this could happen extending the number of
spatial dimensions [18–20]. In the nonrelativistic case, treat-
ing the dimensionality d of the system as a continuous
variable, it was shown in Ref. [18] that condensation can
happen only for d > 4. For pairs of bosons or fermions and
in the relativistic case, it was shown in Ref. [19] that for the
case when d is taken as an integer, condensation happens for
odd d � 5. A similar conclusion was reached in Ref. [20],
although these authors also realized that the lowest Landau
level can play the role of the ground state to accommodate a
large charge density in the d ¼ 3 case.

The common feature of all of the above-mentioned
analyses is the definition of the condensation condition
which is taken as the equality of the chemical potential
and the ground state energy. However, in the presence of a
magnetic field, this condition leads to a divergence of the
particle density for that state. Indeed, since for a constant
magnetic field the energy levels separate into transverse
and longitudinal (with respect to the magnetic field direc-
tion) and the former are described in terms of discrete
energy levels, the divergence of the Bose-Einstein distri-
bution when the chemical potential is equal to the lowest
energy level can only be cured in a larger than d ¼ 4
number of spatial dimensions.

The implications of this condition were recognized in
Ref. [21] where it was argued that when the temperature T
is much lower than eB one can already consider that the
system occupies only the lowest Landau level. This means
that the value for the chemical potential to compute the
ground state density does not need to be equal to the lowest
energy. In this picture, the occupation of this state occurs
without the need of having a critical temperature; that is,
the system undergoes a diffuse phase transition.

Nevertheless, one can argue that if in the absence of a
magnetic field the system is already in the condensed phase
with a macroscopic fraction of the population occupying
the lowest energy level, a slow turning on of the magnetic
field should not lead to the instantaneous destruction of the
condensate. Put in equivalent terms, the onset of conden-
sation for small magnetic fields should be a phenomenon
that takes place at a given critical temperature Tc since it
does so in the limit of a vanishing magnetic field and the
presence of a small one cannot drastically change the
picture. To implement this idea, one should keep in mind
that the chemical potential is not a number that can arbi-
trarily be set to take a specific value, but rather, a function
of the thermodynamic variables such as temperature and
density. Its value should be determined by demanding that
the ground state is populated by a finite charge density. The
missing ingredient that bridges the gap in the analysis is to
consider the plasma screening effects, which are of course
needed since we are dealing with infrared phenomena
where the effective mass is small or may even vanish.

In this work, we study the conditions for the onset of
a condensed phase for a charged boson system, in the
presence of an external magnetic field. To mimic the
situation where there is an isospin imbalance, we introduce
a finite chemical potential�. For the description, we resort
to model the boson system in terms of a theory of a charged
scalar with quartic self-interactions. We show that for
small and large values of the magnetic field, the system
presents the magnetic catalysis phenomenon [22]; that is,
that the formation of the condensate is favored by the
presence of the magnetic field. This phenomenon has
also been found in the context of the Nambu-Jona-Lasino
model at T ¼ 0 [23] and in (2þ 1) dimensions both at
T ¼ 0 and T � 0 [24], where it was shown that even the
presence of an arbitrary small magnetic field breaks the
chiral invariance of the models. A main result of our work
is to show that when including the plasma screening ef-
fects, there is a well-defined critical temperature associated
with the onset of condensation. A similar calculation, using
optimized perturbation theory, albeit without the introduc-
tion of a chemical potential, was done in Ref. [25]. The
authors found that the phase transition is always second
order and the magnetic catalysis phenomenon is present for
all values of the magnetic field. They also found that the
critical temperature increases with increasing values of the
magnetic field.
The work is organized as follows: In Sec. II, we find the

lowest energy state where condensation happens and define
the order parameter for the transition. In Sec. III, we
compute the one-loop corrections to the grand potential
and set up the discussion for the onset of the condensation
phenomenon in terms of the existence of a large but finite
charge density in the ground state. In Sec. IV, we revisit the
description of the onset of condensation when corrections
from interactions are accounted for. We take the limit
B ! 0 and point out the need to include plasma screening
effects by means of resummation, even in this case. In
Sec V, we explicitly compute the resummed self-energy
for finite B in the low temperature approximation in the
limits of small and large magnetic fields. This self-energy
is then used in Sec. VI to compute the critical temperature
for condensation when the charged bosons are taken as
pions, for typical densities in compact astrophysical ob-
jects such as neutron stars. We finally summarize and
conclude in Sec. VII.

II. ORDER PARAMETER

Wewant first to define the order parameter that describes
the condensation transition. This is a delicate task since (as
we will show) in the presence of a magnetic field, the
condensate does not correspond to a spatially uniform
state. Let us start by introducing the Lagrangian represent-
ing a charged scalar field � with finite chemical potential
� interacting with a uniform external magnetic field B
oriented in the z direction. Working in the symmetric
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gauge, the vector potential corresponding to the given
magnetic field can be written as

A ¼ 1

2
B� r: (1)

In Euclidean space and after introducing the magnetic field
by means of the minimal substitution we get

LE ¼ ð@� þ�Þ��ð@� ��Þ�þ jðr� iqAÞ�j2

þm2j�j2 þ �

4
j�j4 þ �L; (2)

where �L contains the ultraviolet counterterms and q is
the (positive) charge associated to the field �. We want to
describe the situation where for a given value of the chemi-
cal potential, the system develops a superfluid phase char-
acterized by a boson condensate described by a classical
field �c; namely, that the field can be expressed as

� ¼ 1ffiffiffi
2

p �c þ ~�; (3)

where ~� is the quantum field, as referred from the real
classical ground state �c. In the presence of an external
magnetic field, the classical equation of motion does not
allow a constant value for �c [26], and thus �c cannot
simply be taken as the order parameter for the transition. In
order to see how one can proceed in such a situation, let us
find the ground state. Using the Lagrangian in Eq. (2) we
obtain the classical action

�c¼�
Z
d3x

�
1

2
�cð�r2þq2A2þm2��2Þ�cþ �

16
�4

c

�
;

(4)

where we have discarded a surface term after integration by
parts and � ¼ 1=T. When the space boundary is not strictly
taken at infinity, the surface term does not vanish; however,
given the form of the classical solution [see Eq. (7) below],
the boundary contribution can be neglected for a sufficiently
large volume. We first look for a solution for the free case
(� ¼ 0); thus, the eigenvalue problem for the classical
equation of motion becomes

½�r2 þ ðqBÞ2ðx2 þ y2Þ=4þm2 ��2��c ¼ E2�c; (5)

which is recognized as a two-dimensional harmonic oscil-
lator whose eigenvalues are given by

E2
l ðpzÞ ¼ p2

z þm2 þ ð2lþ 1ÞqB��2; (6)

where l � 0 labels the Landau level. Let us specialize to the
lowest energy state. This corresponds to l ¼ 0 and pz ¼ 0
for which the solution can be written as [27]

�c ¼ v0e
�qBðx2þy2Þ=4; (7)

where v0 can be determined from the normalization condi-
tion. The corresponding ground state energy, or effective
mass squared, is given by

E2
0ð0Þ ¼ m2 þ qB��2: (8)

As anticipated, the solution in Eq. (7) is not spatially
uniform. In order to define an appropriate order parameter,
we first normalize the solution over a given spatial volume V.
This procedure involves finding the average over V of �2

c

defined as

h�2
ci ¼ 1

V

Z
d3x�2

c: (9)

From Eqs. (7) and (9) one finds

h�2
ci ¼ v2

0

�
1� e��=2�0

�=2�0

�
; (10)

where � � BA is the magnetic flux passing through the
transverse area A, and �0 � �=q is the quantum magnetic
flux. Notice that for the analysis, neither A norB can be taken
as changing independently but instead that � should
be considered as the relevant variable. Also, notice that
the term between the parentheses in Eq. (10) goes to 1 as
� ! 0, as expected. The requirement to obtain the effective
mass squared independent of the magnetic flux, leads us to

consider ��c �
ffiffiffiffiffiffiffiffiffiffih�2

ci
p

as the order parameter to describe the
condensation transition. This is determined as follows. In
terms of ��c the ground state solution reads as

�c ¼ ��c

�
�=2�0

1� e��=2�0

�
1=2

e�qBðx2þy2Þ=4: (11)

We now look for the value of ��c that minimizes the classical
action, this time accounting for the effects of the self-
interaction (� � 0). Substituting Eq. (11) into Eq. (4) we get

�c ¼ �V

�
1

2
ðqBþm2 ��2Þh�2

ci þ �

16
h�4

ci
�
; (12)

where in general one defines

h�n
ci � 1

V

Z
d3x�n

c ¼ vn
0

�
1� e�n�=4�0

n�=4�0

�
: (13)

Therefore, the nontrivial minimum of Eq. (12) is found for a
value of the order parameter ��c given explicitly by

��c0 ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2 � qB

�

s �
�0

�

�
1=2

�
�
1� e��=2�0

1þ e��=2�0

�
1=2

	ð�2 �m2 � qBÞ: (14)

Notice that for a given value of B (and of �), since the
thermal occupation of the ground state grows when �2 !
m2 þ qB, then Eq. (14) means that a macroscopic fraction of
the charged particles will occupy the condensed state as
��c0 ! 0þ. One can expect that the same is true when
considering a higher order n in the perturbative expansion
of the effective action; that is, that the superfluid transition is
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signaled by the condition that ��cn ! 0þ. We now proceed
to find how this condition is realized at order n ¼ 1.

III. ONE-LOOP EFFECTIVE POTENTIAL

The corrections to the value that minimizes the action
are obtained from the grand potential. For the theory at
hand, this is given by

�ð ��cÞ ¼ � 1

�V
ln
Z

D ~��D ~�e�S½��;��; (15)

where S½��; �� is the action defined in Eq. (2) and� and ~�
are related as in Eq. (3). At one-loop order, the grand
potential has the explicit expression

�ð ��cÞ ¼ ðm2
B ��2Þh�2

ci þ �

4
h�4

ci þ 1

2�V
ln detD�1;

(16)

where the inverse propagator matrix operator is defined as

D�1 ¼ �D2� þm2 þ �
2�

2
c

�
4�

2
c

�
4�

2
c �D2þ þm2 þ �

2�
2
c

 !
;

(17)

with

D2� ¼ ð@� ��Þ2 þ ðr� iqAÞ2: (18)

Hereafter we use the notation

mB �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ qB

q
; (19)

for the effective mass in the lowest Landau level.
The fact that the operators D2� depend on the coordi-

nates makes it difficult to find the functional determinant.
Nevertheless, since our interest is to explore the condensa-
tion phenomenon near the phase transition, we can resort to
expand the grand potential in powers of the order parame-
ter near the value ��c1 that minimizes it:

�ð ��cÞ 	 �ð ��c1Þ þ 1

2
ð ��c � ��c1Þ2

�
@2�

@ ��2
c

��������� ��c¼ ��c1

: (20)

The factor,

M2ð ��c1Þ �
�
@2�

@ ��2
c

��������� ��c¼ ��c1

; (21)

can be regarded as an effective mass squared for the quan-

tum field ~�. Following the discussion at the end of Sec. II,
let us explore the behavior of�ð ��c1Þ andM2ð ��c1Þ near the
superfluid phase transition where we expect that ��c1 ! 0þ.
Notice also that M2 represents the curvature of the grand
potential in the direction of ��c. For a given value of B (and
of �) the system is in the normal phase when the curvature
is positive. As the occupation number of the ground state
increases, the curvature should tend to change sign.

Therefore the transition to the superfluid phase is also
signaled by the condition M2 ! 0þ. The explicit one-
loop expressions for �ð0Þ and M2ð0Þ are

�ð0Þ ¼ T
X1

n¼�1

Z d3p

ð2�Þ3 lnD�1;

M2ð0Þ ¼ m2
B ��2 þ �T

X1
n¼�1

Z d3p

ð2�Þ3 D;

(22)

where D is the propagator for a charged scalar in the
presence of a constant magnetic field. We use the expression
for D obtained in the Schwinger proper time method,
given by

D ¼
Z 1

0

ds

coshðqBsÞ e
�s½ð!n�i�Þ2þp2

zþm2þp2
?
tanhðqBsÞ

qBs �; (23)

where p2
? represents the square of the components of p

transverse to the direction of the magnetic field and !n is a
boson Matsubara frequency. Also, in writing Eq. (23) we
have ignored a phase factor which does not contribute when
considering closed loop expressions. Note that the one-loop
correction inM2ð0Þ is in fact the self-energy. This is not the
case when one considers higher loop corrections. Carrying
out the integrations over the transverse components we get

�ð0Þ ¼ qBT

2�

X
l;n

Z dpz

2�
lnðP2 þm2Þ

M2ð0Þ ¼ m2
B ��2 þ �

qBT

2�

X
l;n

Z dpz

2�

1

P2 þm2
;

(24)

where

P2 ¼ ð!n � i�Þ2 þ p2
z þ qBð2lþ 1Þ; (25)

with l � 0 being the index labeling the Landau levels.
Let us now separate the T ¼ 0 (purely magnetic field)

contribution from the thermal dependence by writing

�ð0Þ ¼ �B þ�T;B

M2ð0Þ ¼ m2
B ��2 þ�B þ�T;B;

(26)

where the subscripts T and B denote the temperature and
magnetic field-dependent contributions.
Let us first compute the purely magnetic field contribu-

tions. As shown in the Appendix, these contributions are
easily obtained using dimensional regularization. They can
be expressed in terms of the Hurwitz zeta function 
ðs; uÞ
and are given explicitly by

�B ¼ m4

ð4�Þ2
�
1

2
ln

�
2qB

m2

�
þ
�
2qB

m2

�
2

 0
�
�1;

1

2
þ m2

2qB

��

�B ¼ �m2

ð4�Þ2
�
1þ ln

�
2qB

m2

�

þ
�
2qB

m2

�
ln

�
�

�
1

2
þ m2

2qB

�	 ffiffiffiffiffiffiffi
2�

p ��
; (27)

AYALA et al. PHYSICAL REVIEW D 86, 076006 (2012)

076006-4



where 
 0ðs; uÞ ¼ @
ðs; uÞ=@s and �ðuÞ is the gamma func-
tion. In writing Eq. (27) we have chosen the renormalization

scale in theMS scheme as�MS ¼ me�1=2. With this choice,

one gets a vanishing contribution in the limit B ! 0.
As is also shown in the Appendix, the thermal contribu-

tion to �ð0Þ and M2ð0Þ can be expressed as

�T;B ¼ � qB

4�2

X1
n¼1

coshð��nÞ
Z 1

0

ds

s2
e�sm2

B��2n2=4s

1� e�2qBs
;

�T;B ¼ �
qB

4�2

X1
n¼1

coshð��nÞ
Z 1

0

ds

s

e�sm2
B��2n2=4s

1� e�2qBs
:

(28)

Since condensation is a low temperature phenomenon, let
us approximate Eq. (28) in the limit where T 
 mB. In this
case, the integrals can be computed using the steepest
descent method and the result can be expressed as

�T;B	�2�m4
B�

5=2

�
�Li3=2ðzÞþ

X1
n¼1

zn

n5=2
n�

en��1

�

þf�!��g;

�T;B	�

2
m2

B�
3=2

�
�Li1=2ðzÞþ

X1
n¼1

zn

n3=2
n�

en��1

�

þf�!��g; (29)

where the polylogarithm function is defined as

LisðzÞ �
X1
n¼1

zn

ns
; (30)

and the fugacity z, scaled temperature � and scaled mag-
netic field � are defined as

z � eð��mBÞ=T; (31)

� � T

2�mB

; (32)

� � qB

mBT
; (33)

respectively. Notice that the sum over the index n in
Eq. (29) corresponds to a sum over Matsubara frequencies.
Also, in writing Eq. (29) from Eq. (28), we have explicitly
separated the contribution from the lowest Landau level—
whose expression is given in terms of the polylogarithm
function—from the contribution of the rest of the energy
levels. This separation proves useful since the contribution
from the lowest Landau level, unlike that from the rest of
the levels, is strongly infrared divergent near the phase
transition and must be treated separately [21].

Recall that the charge density is defined as

� ¼ �@�ð ��cÞ
@�

: (34)

Near the superfluid transition where M2ð0Þ ! 0 one can
compute the charge density by considering only the term

�ð0Þ in the grand potential; therefore, at one-loop order,
the thermal part of the charge density is obtained from the
first line of Eq. (29) as

�	m3
B�

3=2

�
�Li1=2ðzÞþ

X1
n¼1

zn

n3=2
n�

en��1

�
�f�!��g:

(35)

Since the phase transition happens when��mB the terms
with f� ! ��g in Eqs. (29) and (35) are negligible, given
that they become proportional to powers of the factor
expð�ðmB þ�Þ=TÞ � expð�2mB=TÞ 
 1, and thus here-
after we ignore them. Notice that with this approximation,
the second equation of Eqs. (29) and (35) imply that �T;B

and � are proportional. We have now set up the stage to
discuss the condensation phenomenon in terms of a finite
charge density in the ground state.

IV. BOSE-EINSTEIN CONDENSATION REVISITED

The existence of a critical temperature and a critical
chemical potential indicates that the system of charged
bosons reaches a kind of saturation where the occupation
of the ground state becomes important. This saturation
leads to the superfluidity phenomenon. From the computa-
tional point of view, the condensation conditions are
searched for from the values of the parameters that mini-
mize the vacuum energy. Given that the description of the
onset of condensation may be obscured by the existence of
infrared divergent quantities and in order to gain insight, let
us first revisit how these conditions are found at tree and
one-loop level.
At tree level, the condensation condition is given by

� ¼ mB. This condition implies the vanishing of the
mass term M2ð0Þ in the grand potential, as can be seen
from Eq. (26). If we now consider the one-loop correction,
from the second equation of Eq. (29) and from the limiting
behavior of Li1=2ðzÞ for � ! mB (z� 1) and � 
 mB

(z 
 1)

Li1=2ðzÞ 	
8><
>:

ffiffiffiffiffiffiffi
�

1�z

q
þ 


�
1
2

�
for z & 1

z for z 
 1;

(36)

we see that M2ð0Þ diverges when � ! mB. This behavior
has been interpreted as the impossibility of the existence of
a superfluid state in the presence of an external magnetic
field [17]. However, this usual prescription for the onset of
condensation is not adequate in the presence of an external
magnetic field.
Consider the situation in the absence of a magnetic field.

Intuitively, once the superfluid phase is established, it is
difficult to imagine that this can be instantaneously de-
stroyed by the turning on of an arbitrary small external
magnetic field. One would expect that in case the magnetic
field destroys the superfluid state, when the field is small,

MAGNETIC CATALYSIS OF A CHARGED BOSE-EINSTEIN . . . PHYSICAL REVIEW D 86, 076006 (2012)

076006-5



the condensed state should be restored for a different
temperature. Similar considerations were made for the
case of a noninteracting gas in Ref. [21] albeit for a high
external magnetic field, in the limit T ! 0. In such case it
was shown that the charge density in the normal phase
vanishes, i.e., all the charges populate the superfluid phase.
However, since the physical conditions require to have a
finite charge density, the chemical potential—which de-
pends on temperature as well as on this charge density—
does not reach the value that corresponds to the ground
state energy and therefore no infrared divergence occurred.
It is important to emphasize that Ref. [21] suggests that
under such conditions, there is no definite critical tempera-
ture associated with the superfluid transition.

To continue gaining insight, let us keep on analyzing the
case with zero external magnetic field. From Eq. (35), the
charge density for � ! 0 becomes

� 	
�
mT

2�

�
3=2

Li3=2ðeð��mÞ=TÞ: (37)

The function Li3=2ðzÞ is well defined for z � 1, although its
derivative diverges at z ¼ 1. Notice that there is no ana-
lytical continuation for Li3=2ðzÞ which gives a real result

for z > 1. We have explicitly,

Li3=2ðzÞ 	
8><
>:



�
3
2

�
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4�ð1� zÞp
for z & 1

z for z 
 1:

(38)

Thus, the maximum value allowed for the chemical poten-
tial is �0 ¼ m (z ¼ 1). This result is interpreted as the
saturation of the boson system that gives rise to condensa-
tion at this critical value of the chemical potential. Since the
charge density is a conserved quantity, there must be a
critical temperature T0 for which condensation takes place.
In other words, �0 ¼ �ðT0; �Þ. The condition to obtain
the critical temperature comes from Eq. (37) by setting
�0 ¼ m, resulting in

T0 ¼ 2�

m

�
�


ð32Þ
�
2=3

: (39)

This is the well-known result for the critical temperature of a
noninteracting boson gas. For temperatures lower than the
critical temperature, T < T0, the gas can be separated
into two phases: the normal (N) phase and the superfluid
(S) phase. The charge density splits into these two states,
� ¼ �N þ �S, where the charge density in the normal phase
�N is defined as the charge density �, evaluated at the
critical chemical potential �0. In the absence of the mag-
netic field, this is given by

�N ¼
�
mT

2�

�
3=2


ð3=2Þ: (40)

The superfluid charge density corresponds to the difference
between the total charge density and the charge density in

the normal phase, �S ¼ �� �N , for a fixed total charge
density �.
When interactions are accounted for, the situation

changes. The condition for the phase transition is once
again looked for from the vanishing of the effective mass
squared M2ð0Þ. From Eq. (26) and the second equation of
Eq. (29), in the limit B ! 0, the effective mass squared is
given by

M2ð0Þ ¼ m2 ��2 þ �m2

2

�
T

2�m

�
3=2

Li3=2ðeð��mÞ=TÞ

!�!m�m2

2

�
T

2�m

�
3=2


ð3=2Þ; (41)

which shows that M2ð0Þ cannot vanish for � � m.
Moreover, since the function Li3=2ðzÞ cannot be analyti-

cally continued to real values for z > 1, there is no physical
solution that sets M2ð0Þ ¼ 0 even if we were to consider
�>m.
The above results show the need of an extra ingredient

already for B ¼ 0. In this case, the solution is well known:
since the physical conditions require the effective mass
squared to vanish, plasma screening effects need to be
accounted for by means of resummation. Examples of
the importance to include resummation effects have been
recently discussed for systems subject to the influence of
an external magnetic field. For instance, in Ref. [28] the
temperature dependent effective potential for a scalar the-
ory, similar to the case here discussed, was considered. A
resummation of ring diagrams turns out to be extremely
important to understand the appearance of a first order
phase transition. The scenario has also been considered
in other theories such as the linear sigma model [29] and
the standard model, during the electroweak phase transi-
tion [30]. In all these cases, a second order phase transition
turns into a first order one.
In the present context, inclusion of resummation effects

means that the self-energy should be computed self-
consistently as

� ! �� ¼ �T
X1

n¼�1

Z d3p

ð2�Þ3 Dðm2 ! m2 þ ��Þ: (42)

To simplify the calculation, and in case the coupling� is not
too large, it is customary to substitute inside the argument of

the propagator in Eq. (42), �� ! �1. For the low tempera-
ture expansion forB ¼ 0 andwhen� ¼ m, we see from the
second equation of Eqs. (29) and (38) that in this case

�1 ¼ �m2

2

�
T

2�m

�
3=2


ð3=2Þ: (43)

When the coupling � is not small, a full self-consistent
treatment is needed.
In the following section, we explain in detail the resum-

mation procedure for a finite external magnetic field. From
there, the case treated in this section is obtained as the limit
with B ! 0.
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V. RESUMMATION AT FINITE B

As was mentioned in the previous section, in order to
consistently compute the critical temperature when inter-
actions are accounted for, it is necessary to consider re-
summation. Inclusion of these effects allows us to find the
chemical potential, beyond its tree level value � ¼ m, by
consistently accounting for plasma screening. The need for
resummation is even more dramatic for B � 0, since when
ignoring screening and� ! mB the charge density and the
thermal contribution to the self-energy both diverge in the
infrared. In Ref. [31], the thermal effective potential in
the ��4 theory was computed by a resummation of the ring
diagrams. Effectively, the resummation was done through a
solution of the renormalization group equation.

Resummation results in a shift of m2 in the one-loop
correction of the grand potential

�ð0Þ ! �rð0Þ ¼ �B þ�T;Bjm2!m2þ ��

M2ð0Þ ! M2
rð0Þ ¼ m2

B ��2 þ�B þ�T;Bjm2!m2þ ��;

(44)

where the subscript r is to emphasize that resummation
effects are included. As a result, the charge density becomes

� ¼ � @�rð0Þ
@�

: (45)

The resummed self-energy �� is obtained self-consistently

�� ¼ �
qBT

2�

X
l;n

Z dpz

2�

1

P2 þm2 þ ��

���������¼mB

�fT ! 0g;

(46)

whereP2 is defined inEq. (25).We consider only the thermal
contribution, as indicated by subtracting the fT ! 0g term.
Also since we are interested in computing this self-energy
near the phase transition, we consider its value for� ¼ mB.
The self-consistent equation is reduced tofinding the solution
to the expression

�� ¼ �T;Bjm2!m2þ ��;�¼mB
: (47)

For the rest of this section, we concentrate on finding an

explicit expression for �� in some limits.
In order to simplify the self-consistent equation, recall

that since we want to include the effect of thermal fluctua-
tions coming from the resummation of the so-called ring
diagrams for small temperatures, we use the low tempera-
ture approximation for �T;B given in Eq. (29). We can

consider �� 
 m2 up to the leading order in the right-hand

side of Eq. (47). At leading order, we can set �� ¼ 0 in all
the terms, except in the argument

z ¼ eð��
ffiffiffiffiffiffiffiffiffiffiffiffi
m2þqB

p
Þ=Tjm2!m2þ ��;�!mB

(48)

of the polylogarithm function L1=2ðzÞ, since this diverges

when � ¼ mB in the limit �� ! 0. Therefore we set

z ! eðmB�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þ ��þqB

p
Þ=T 	 e� ��=2mBT: (49)

We explore the situation where �� 
 mBT, which is a good
enough condition to control the infrared divergences. Then
we can expand the fugacity as

z 	 1��=2mBT: (50)

Using the expression for Li1=2 in Eq. (36) we obtain a

simplified expression for the self-consistent equation

�� 	 �

2
m2

B�
3=2

2
4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�mBT

��

s
þ X1

n¼1

1

n3=2
n�

en� � 1

3
5: (51)

This is a third order equation in the variable
ffiffiffiffiffi
��

p
. It can be

solved explicitly, though the solution is given in terms of
complicated expressions. It is therefore more instructive to
find the solution for different values of T and B, in par-
ticular, the next-to-leading order correction in � for the
case qB 
 mBT here treated. For this purpose, we expand
Eq. (51) for � ! 0. Also, since we are close to B ¼ 0 we

can write �1, given in Eq. (43), instead of �� in the right-
hand side of Eq. (51), resulting in

�� 	 �1=2qBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ð3=2Þp �

T

2�m

�
1=4 þ �m2

2

�
T

2�m

�
3=2


ð3=2Þ: (52)

It can be shown that the first term on the right-hand side of
Eq. (52) is the leading correction coming from the lowest
Landau level. Notice that this term also makes explicit
the breaking of the perturbative regime as it is proportional

to �1=2.
We emphasize that resummation is needed only for the

case when considering small values of the external magnetic
field, compared with temperature. In fact, notice that the
nonthermal contribution to the self-energy�B in Eq. (27) is
negative. Its limiting values can be approximated as

�B 	

8>>><
>>>:
� �

6

�
qB
4�m

�
2

for qB < m2

� �qB
ð4�Þ2 ln2 for qB � m2:

(53)

Therefore, in this case there is always a sufficiently small
temperature such that�B þ�T;B < 0 for � & mB and the

effective mass squared Mð0Þ2 in Eq. (26) can thus vanish.

VI. CRITICAL TEMPERATURE

Having solved the infrared divergence problem by the
introduction of the resummation procedure in the self-
energy, we now proceed to find the critical temperature for
the superfluid phase transition and explore how this critical
temperature is modified as a function of the strength of the
magnetic field, compared to the zero field case. As we
pointed out in Sec. IV, the charge density is a conserved
quantity and therefore it cannot diverge. From the resummed
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version of Eq. (35), that is, with the mass shifted as m2 !
m2 þ ��, we can express the chemical potential in terms of
the charge density and the other parameters, namely, � ¼
�ð�; T; BÞ. For a fixed charge density anda givenvalue of the
magnetic field, the critical temperatureTcð�; BÞ can be found
from the condition that sets the grand potential up to its
minimal value. Recall that for B ¼ 0 it is well known that
the phase transition is of the second order. Even more, in the
case of zero chemical potential, the transition is always of
second order [25]. Here we will assume that for B � 0 the
phase transition continues being of the second order, which is
the expected behavior if we slowly turn on themagnetic field

M2
rð0ÞjT¼Tc;�¼�c

¼ 0

�@�rð0Þ
@�

��������T¼Tc;�¼�c

¼ �; (54)

where �cð�; BÞ � �ðTc; �; BÞ. We proceed to numerically
solve Eq. (54).

In the low temperature approximation that we are con-
sidering, the thermal contribution to the self-energy is
proportional to the charge density, as can be seen from
Eqs. (29) and (35), upon neglecting the terms with
f� ! ��g. Therefore we can write

�T;B ¼ ��

2mB

: (55)

The same is true after including resummation effects. Since
� is constant, we can use the above result to immediately
solve for the critical chemical potential from the first line
of Eq. (54), resulting in

�c 	
2
4m2

B þ�B þ ��

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

B þ ��
q

3
51=2

: (56)

Notice that now, finding the critical temperature becomes
equivalent to solving Eq. (35) with the replacement

m2 ! m2 þ ��, where for T and � use is made of their
critical values T ¼ Tc,� ¼ �c, with�c given explicitly in
Eq. (56).

Let us now find Tc numerically. For this purpose, we
consider a charged pion condensate in the core of compact
stars. The mass is given by m ¼ m� 	 140 MeV. The
typical surface temperature for a cold neutron star is
T � 100 eV. Since the critical temperature Tc for small
B is expected to be close to the value Tc0 at zero magnetic
field, we can use Eq. (39) to obtain the charge density that
is needed for the onset of condensation at these
temperatures.

Figures 1 and 2 show the critical temperature Tc scaled to
the critical temperature at zero magnetic field Tc0 as a
function of the magnetic field strength scaled to m2

�. In
both cases, we consider two different values of the charge
density, � ¼ 10�10m3

� and � ¼ 10�7m3
�, which correspond

roughly to temperatures T0 � 100 eV and T0 � 10 keV,
respectively.

Figure 1 corresponds to the case qB 
 mBT. In practice
we consider that the parameter � defined in Eq. (33) is such
that � < 10�3. Notice the smooth rise of the critical tem-
perature as the magnetic field increases. This signals that
when the magnetic field is slowly turned on it catalyzes the
formation of the condensate; that is, the critical tempera-
ture is larger than for the B ¼ 0 case. Nevertheless this
behavior disappears for higher values of the magnetic field
and the formation of the condensate appears at lower
temperatures. We also mention that catalysis in this case
can occur for a larger range of magnetic field strengths
when the charge density is larger, as well as for larger
values of the coupling constant �.
Figure 2 corresponds to the case qB � mBT. We ex-

plicitly consider � > 103. For these larger values of B the
critical temperature grows. This means that at some inter-
mediate values of qB between the large and small regions
here considered, the magnetic field catalyzes again the
formation of the condensate. The catalysis is enhanced as
the coupling constant � increases, and contrary to the low
magnetic field case, it is also enhanced for lower densities.

0.9

0.95

1

1.05

10 12 10 11 10 10 10 9

=0.01
=0.1
=1

0.9

0.95

1

1.05

10 10 10 9 10 8 10 7 10 6

=0.01
=0.1
=1

FIG. 1. Critical temperature Tc scaled to the critical tempera-
ture Tc0 as a function of the magnetic field strength scaled to m2

�.
The calculation is valid for the case when qB 
 mBT. The upper
panel corresponds to a density � ¼ 10�10m3

� whereas the lower
panel to a density � ¼ 10�7m3

�.
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VII. SUMMARYAND CONCLUSIONS

In this work, we have studied the condensation phe-
nomenon for a system of charged bosons in the presence
of an external magnetic field. Contrary to what is com-
monly believed, we have shown that condensation happens
at a definite critical temperature. The missing ingredient,
overlooked in a previous analysis and accounted for in this
work, is the treatment of the plasma screening effects by
means of resummation. We have explicitly computed the
critical temperature, for typical densities found in compact
astrophysical objects, for small and large values of the
magnetic fields. We have shown that the magnetic field
catalyzes the onset of the condensation at very small and
large values of the magnetic field, agreeing in these regions
with the case of zero chemical potential [25]. For inter-
mediate values of the magnetic field, the critical tempera-
ture for condensation turns out to be lower than in the
B ¼ 0 case.

Recall that although the term magnetic catalysis usually
refers to an enhancement of dynamical symmetry breaking

by an external magnetic field, the phenomenon seems to be
universal, appearing in different physical scenarios [32]
such as the one treated in this work, namely, a condensate
of scalar particles, as opposed to the more usually studied
case of a fermion condensate.
We should also mention that the problem has been

studied by lattice methods as well. The first lattice simu-
lation for deconfinement and chiral symmetry restoration
for two-flavor QCD, in the presence of a magnetic back-
ground, was done in Refs. [33,34]. The result was that the
transition temperature significantly decreased with in-
creased magnetic field. A similar conclusion was presented
in Ref. [35]. In that work it was found that in the chirally
broken phase, the chiral condensate increased monotoni-
cally with a growing magnetic field strength. In fact, in the
chiral limit this behavior started linearly. In the same limit
and in the chirally restored phase, the condensate vanished
independent of the strength of the magnetic field. On the
other hand, in Refs. [36,37] the effect of an external
magnetic field on the finite temperature transition of
QCDwas considered. Thermodynamic observables includ-
ing the chiral condensate and the susceptibility were mea-
sured. The result was that the transition temperature
significantly decreased with increased magnetic field.
Such discrepancies can be originated by the fact that in
Refs. [33–35] the pion had a large mass. In the case of
Refs. [36,37], light pions as well as an improved lattice
were used. These seemingly contrasting results call for a
closer look at the phenomenon, in particular for the case of
intermediate values of the magnetic field strength. This is
work that we are currently pursuing and will be reported
elsewhere.
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APPENDIX

The grand potential for a scalar field in the presence of a
uniform magnetic field evaluated at �c ¼ 0, is given by

�ð0Þ ¼ 1

2
tr lnðDþ þm2Þ þ 1

2
tr lnðD� þm2Þ;

¼
Z

dm2T
X1

n¼�1

Z ddp

ð2�Þd Dðk; !nÞ; (A1)
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FIG. 2. Critical temperature Tc scaled to the critical tempera-
ture Tc0 as a function of the magnetic field strength scaled tom2

�.
The calculation is valid for the case when qB � mBT. The upper
panel corresponds to a density � ¼ 10�10m3

� whereas the lower
panel to a density � ¼ 10�7m3

�.
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where the operators D� are defined in Eq. (18) and the
propagator D expressed in the Schwinger proper time
formalism is defined in Eq. (23). The validity of the second
line in Eq. (A1) is more easily seen from the representation
of the grand potential in terms of Landau levels, Eq. (24).
Thus, to obtain the grand potential, we need to compute the
term proportional to the one-loop self-energy and then
integrate over m2, neglecting unphysical ultraviolet
divergent constants.

The sum over Matsubara frequencies !n ¼ 2�nT gives
rise to the Jacobi theta function

	3ðz; xÞ ¼
X1

n¼�1
e��xn2þ2�zn;

which obeys the inversion property [38]

	3ðz; xÞ ¼ e�z
2=xffiffiffi
x

p 	3

�
z

ix
;
1

x

�
:

Identifying z ¼ 2iT�s and x ¼ 4�T2s allows us to rewrite
the full propagator as

T
X1

n¼�1
D ¼ 1ffiffiffiffi

�
p

Z 1

0

dsffiffiffi
s

p e�s½m2þp2
zþp2

?
tanhðeBsÞ

eBs �

coshðeBsÞ

�
�
1

2
þ X1

n¼1

e�
�2n2

4s coshð��nÞ
�
: (A2)

The ultraviolet divergent term is the first term inside the
square bracket. The one-loop self-energy, including the
counterterm �m2, is given by

� ¼ �m2 þ �T
X1

n¼�1

Z d3p

ð2�Þ3 D ¼ �B þ�T;B; (A3)

where we separate the thermal contribution �T;B

from the purely magnetic field contribution �B. This
last contribution contains the ultraviolet divergence,
which is canceled with the counterterm �m2 using
dimensional regularization [25]. Introducing the
scale factor �, the purely magnetic contribution is
given by

4

�B ¼ �m2 þ �ffiffiffiffiffiffiffi
4�

p
Z ddp

ð2�Þd �
3�d

�
Z 1

0

dsffiffiffi
s

p e�s½m2þp2
zþp2

?
tanhðqBsÞ

qBs �

coshðqBsÞ : (A4)

Integrating the p? and pz momentum components and
expanding in powers of e�qBs, the purely magnetic

contribution to the self-energy is expressed in terms
of a sum over the Landau levels

�B ¼ �m2 þ 2�qB�d�3

ð4�Þðdþ1Þ=2
X1
l¼0

Z 1

0
ds

e�sðm2þqBð2lþ1ÞÞ

sðd�1Þ=2

¼ �m2 þ 2�qB

ð4�Þ2
�
4��2

2qB

�ð3�dÞ=2

� 


�
3� d

2
;
1

2
þ m2

2qB

�
�

�
3� d

2

�
; (A5)

where 
 is the Hurwitz zeta function


ðs; uÞ ¼ X1
l¼0

ðlþ uÞ�s: (A6)

Expanding in the number of dimensions 3� d we get

�B ¼ �m2 � �m2

ð4�Þ2
�

2

3� d
� �þ ln

4��2

2qB

� 2eB

m2

 0
�
0;
1

2
þ m2

2eB

��
; (A7)

where 
 0ðs; uÞ � @s
ðs; uÞ. The divergent term is re-

moved using MS scheme. In order to have a vanishing
contribution to the self-energy in the absence of ther-
mal and magnetic effect, one can choose for the scale

factor the convenient value � ¼ me�1=2. Using the

relation 
 0ð0; uÞ ¼ lnð�ðuÞ= ffiffiffiffiffiffiffi
2�

p Þ we finally arrive at
the expression for �B in Eq. (27).
The expression for �B in Eq. (27) is obtained by inte-

grating�B=� with respect tom2 in Eq. (A7), and using the
same value for the scale factor to remove the divergent

terms in the MS scheme.
The finite temperature part is given by the second term

inside the square bracket of Eq. (A2). After integration
over p? and pz, the function �T;B can be written as in

Eq. (28). Consequently, by integrating�T;B=�with respect

to m2 we get the function �T;B in Eq. (28).

In the limit T 
 mB, one can use the steepest descent
approximation [39]. By scaling the variable s ! s0=mBT in
Eq. (28), both integrals can be expressed in terms of

I ¼
Z

ds0e�mBfðs0Þgðs0Þ 	
ffiffiffiffiffiffiffi
2�

p
gðs0Þe�mBfðs0Þ

j�mBf
00ðs0Þj1=2

; (A8)

with fðsÞ ¼ �ðsþ n2=4sÞ and with the saddle point
s0 ¼ n=2. With this approximation we arrive at Eqs. (29)
and (35).
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