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We study the energy-momentum tensor of stable, metastable and unstable Q-balls in scalar field

theories with U(1) symmetry. We calculate properties such as charge, mass, mean square radii and the

constant d1 (‘‘D-term’’) as functions of the phase space angular velocity !. We discuss the limits when !

approaches the boundaries of the region in which solutions exist, and derive analytical results for the

quantities in these limits. The central result of this work is the rigorous proof that d1 is strictly negative for

all finite energy solutions in the Q-ball system.
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I. INTRODUCTION

The matrix elements of energy momentum tensor T��

(EMT) [1] contain basic information, such as mass [2] and
spin of the particle [3], and the constant d1. This constant
denotes the value of the corresponding form factor at zero-
momentum transfer, and is the only experimentally un-
known ‘‘charge’’ associated with the EMT. Its physical
meaning was uncovered in Ref. [4] where it was shown
that d1 is related to the spatial distribution of internal
forces. This is analog to the interpretation of the electric
form factor as the Fourier transform of the electric charge
distribution [5] (and subject to the same type of limitations
[5,6] due to relativistic corrections).

The EMT form factors can in principle be studied
through generalized parton distribution functions [7,8]
accessible in hard exclusive reactions such as deeply vir-
tual Compton scattering [9–12]. In this work we shall
loosely refer to d1 as the D-term, although both coincide
strictly speaking only for asymptotically large renormal-
ization scales [13]. Theoretical studies of EMT form fac-
tors were presented in chiral perturbation theory, lattice
QCD, effective chiral field theories or models [13–23].

It is a striking observation that in all theoretical studies
d1 was found negative—for pions, nucleons, nuclei.
Results from chiral soliton models [16–19] gave rise to
the suspicion that the sign of d1 could be related to stabil-
ity. The naturally emerging questions are as follows: could
the negative sign of d1 be a model-independent feature, a
theorem? And, is there really a relation between d1 and
stability?

This work is devoted to the study of the EMT of Q-balls
[24,25] with the aim to shed further light on these ques-
tions. Q-balls are nontopological solitons in theories with
global Abelian [25] or non-Abelian [26] symmetries, and
have been discussed in a variety of approaches with a wide
range of applications in particle physics, cosmology, and
astrophysics [27–46].

TheQ-ball equations of motion admit stable, metastable
and unstable solutions. This makes them an ideal ground

for our purposes. In this work we will be interested in the
ground state Q-ball solutions [25]. The equation of motion
admit also radial excitations [37] which will be subject to a
separate work [47].
The stability of Q-ball systems was studied in many

works [37–42]. But this is, to the best of our knowledge,
the first time this issue is addressed from the point of view
of the EMT. In particular, we present the first rigorous
proof in a dynamical system that d1 must be negative.
This supports the idea that the negative sign of d1 could
be a general feature. However, our results also show that
there is no relation between the sign of d1 and stability. The
outline of this work is as follows.
In Sec. II, after a brief review of Q-balls, we derive the

expressions for the energy density T00ðrÞ, pressure and
shear forces, pðrÞ and sðrÞ, related to the stress tensor
TikðrÞ, and prove analytically that exact solutions of the
Q-ball equation of motion satisfy the Laue conditionR1
0 drr2pðrÞ ¼ 0 [48], which is a consequence of the con-

servation of the EMT, and which we show to be equivalent
to the virial theorem [30]. This is analog to the situation in
soliton models of the nucleon [16–18].
In Sec. III, we study Q-ball properties such as charge,

mass, mean square radii, and the D-term in a chosen
potential as functions of the angular velocity ! in the U(1)
space in the region !min <!<!max in which the equa-
tions of motion admit finite energy solutions. An interest-
ing observation is that among the quantities we study d1
varies most strongly with !.
In Secs. IV and V, we then focus on the behavior of the

Q-ball properties as ! approaches the boundaries of the
region in which finite energy solutions exist, i.e., the limits
! ! !min and ! ! !max respectively. We derive in both
cases analytical results which describe the behavior of the
different quantities in these limits and which are fully
supported by the numerical results.
In Sec. VI, we formulate two independent proofs that d1

is strictly negative for all solutions in the Q-ball system,
and show that the sign of d1 is not related to stability.
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Section VII contains a summary of our findings and the
conclusions. Some technical details and supplementary
results are discussed in the Appendix.

II. Q-BALLS

We consider the relativistic field theory [25] of a com-
plex scalar field �ðxÞ defined by the Lagrangian

L ¼ 1

2
ð@���Þð@��Þ � V: (1)

The potential V � 0 is defined in terms of the positive
constants A, B, C (with 4AC> B2 to guarantee V > 0 for
� � 0) as follows:

V ¼ Að���Þ � Bð���Þ2 þ Cð���Þ3: (2)

The Lagrangian is invariant under global U(1) symmetry
transformations � ! �ei�, �� ! ��e�i� with � real.
This system admits nontopological soliton solutions [25]
which in the soliton rest frame are given by

�ðt; ~xÞ ¼ expði!tÞ�ðrÞ; r ¼ j ~xj: (3)

The Euler-Lagrange equations of the theory in (1) imply
for the radial field �ðrÞ the following differential equation
(here and in the following primes denote differentiation
with respect to the argument):

�00ðrÞ þ 2

r
�0ðrÞ þ!2�� V0ð�Þ ¼ 0; (4)

which is subject to the boundary conditions

�ð0Þ � �0 ¼ const; �0ð0Þ ¼ 0;

�ðrÞ ! 0 for r ! 1: (5)

The Noether theorem applied to the global U(1) sym-
metry implies the conserved charge

Q ¼
Z

d3x�chðrÞ; �chðrÞ ¼ !�ðrÞ2: (6)

The sign of ! determines the sign of the charge Q. In the
following we assume!> 0without loss of generality. The
presence of a continuous global symmetry is essential for
the existence of the soliton. More precisely, finite energy
solutions exist for ! in the range

!2
min <!2 <!2

max; (7)

with

!2
min ¼ min

�

�
2Vð�Þ
�2

�
¼ 2A

�
1� B2

4AC

�
> 0;

!2
max ¼ V 00ð�Þj�¼0 ¼ 2A:

(8)

From (4) and (5) we obtain for�ðrÞ the following small-
and large-r behavior (the dots indicate subleading terms):

�ðrÞ ¼ �0 þ ðV0ð�0Þ �!2�0Þ r
2

6
þ � � � small r; (9)

�ðrÞ ¼ c1
r

expð�r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

max �!2
q

Þ þ � � � large r: (10)

The constants �0 and c1 are known, of course, only after
solving the boundary value problem (4) and (5).

A. Stability criteria

Solutions for ! satisfying the existence condition (7)
can be classified as (a) stable, (b) metastable, and
(c) unstable Q-balls; see e.g., Ref. [42] for an overview.
(a) IfM denotes the mass of the soliton, andm the mass

of the field �, which is m ¼ ffiffiffiffiffiffi
2A

p ¼ !max, then the
absolute stability condition can be expressed as [29]

M<mQ; m � !max: (11)

(b) Metastable solutions do not satisfy (11) but are
stable with respect to small fluctuations, and satisfy
a weaker ‘‘classical stability condition’’ [24,29]
which can be formulated in the equivalent ways

d

d!

�
M

Q

�
� 0 , dQ

d!
� 0 , d2M

dQ2
� 0; (12)

i.e., a critical !c (extreme charge Qc) exists at
which the slope (curvature) of the quantities in
(12) changes.

(c) Solutions satisfying neither the stronger condition
(11) nor the weaker condition (12) are unstable.

B. The EMT of Q-balls

For the theory defined by the Lagrangian (1) the canoni-
cal energy momentum tensor

T�� ¼ @L
@ð@��Þ@��þ @L

@ð@���Þ@��
� � g��L (13)

is symmetric and static. The energy density, which defines
the mass M ¼ R

d3xT00, is given by

T00ðrÞ ¼ 1

2
!2�ðrÞ2 þ 1

2
�0ðrÞ2 þ Vð�Þ: (14)

The T0k components vanish; i.e., the Q-ball has spin
zero. (Of course, Q-ball solutions can be assigned a
nonzero spin by means of appropriate projection tech-
niques [49].) Finally, the Tij components describe the

stress tensor

Tij ¼
�
xixj

r2
� 1

3
�ij

�
sðrÞ þ �ijpðrÞ (15)

with the distribution of the shear forces, sðrÞ, and pressure,
pðrÞ, given by

sðrÞ ¼ �0ðrÞ2 (16)

pðrÞ ¼ 1

2
!2�ðrÞ2 � 1

6
�0ðrÞ2 � Vð�Þ: (17)
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The dimensionless constant d1 is defined through the stress
tensor Tij [4], and can be expressed in terms of sðrÞ and
pðrÞ (cf. Sec. II C) as follows:

d1 ¼ � 4�

3
M

Z 1

0
drr4sðrÞ; (18)

¼ 5�M
Z 1

0
drr4pðrÞ: (19)

The large-r asymptotics (10) ensures that all integrals
(which define M, Q, d1, mean square radii, etc.) exist.

C. Consequences from conservation of EMT

For a static EMT @�T�� ¼ 0 is equivalent to riTij ¼ 0

which, using the decomposition (15), implies [4]

2

r
sðrÞ þ 2

3
s0ðrÞ þ p0ðrÞ ¼ 0: (20)

In order to prove that (20) holds for Q-balls, we insert sðrÞ
and pðrÞ from Eqs. (16) and (17) into (20), which yields

2

r
sðrÞ þ 2

3
s0ðrÞ þ p0ðrÞ

¼ �0ðrÞ
�
�00ðrÞ þ 2

r
�0ðrÞ þ!2�ðrÞ � V 0ð�Þ

�
¼ 0

(21)

due to the equations of motion in Eq. (4).
From (20) one can derive the equivalent representations

(18) and (19) for d1 in terms of sðrÞ and pðrÞ, and other
general relations [16]. For instance, multiplying (20) by r3

and integrating (by parts) over r from zero to infinity yields
the ‘‘Laue condition’’ [48]Z 1

0
drr2pðrÞ ¼ 0: (22)

In order to prove (22) for Q-balls we integrate by parts
(primes denote derivatives with respect to the arguments,
the finite upper integration limit R is for later purposes)

Z R

0
drr2pðrÞ ¼

�
r3

3
pðrÞ

�
R

0
�

Z R

0
dr

r3

3
p0ðrÞ: (23)

Next we notice that

p0ðrÞ ¼
�
� 1

3
�00ðrÞ þ!2�ðrÞ � V 0ð�Þ

�
�0ðrÞ

¼ � 4

3
�0ðrÞ�00ðrÞ � 2

r
�0ðrÞ2 ¼ � 2

3r3
½r3�0ðrÞ2�0;

(24)

where we used !2�� V0ð�Þ ¼ ��00ðrÞ � 2
r �

0ðrÞ in the

first step which holds due to the equations of motion (4).
Hence, using sðrÞ ¼ �0ðrÞ2, we obtain

Z R

0
drr2pðrÞ ¼

�
r3

3

�
pðrÞ þ 2

3
sðrÞ

��
R

0
: (25)

The small- and large-r behavior of the solutions in (9)
guarantees that the lower and (after taking R ! 1) upper
integration limits in (25) vanish which proves (22).
It is instructive to prove (22) independently as follows.

Let �ðrÞ be a Q-ball solution with charge Q and mass M,
which we rewrite by means of (6) and (14) in terms of the
‘‘charge,’’ ‘‘surface,’’ and ‘‘potential energies’’ (where we
leave the number of dimensions D ¼ 3 general)

M ¼ 1

2
Ech þ 1

2
Esurf þ Epot (26)

Esurf ¼
Z

dDx�0ðrÞ2; Epot ¼
Z

dDxVð�Þ;

I ¼
Z

dDx�ðrÞ2; Ech ¼ Q2

I
:

(27)

We consider dilatational variations �ðrÞ ! �ð�rÞ of the
solutions with a positive parameter �. Substituting in the
integrals in (27) ~x ! �~x yields

Mð�Þ ¼ 1

2
Ech�

D þ 1

2
Esurf�

2�D þ Epot�
�D: (28)

M0ð�Þ ¼ 0 and M00ð�Þ> 0 at � ¼ 1, because �ð�rÞ for
� ¼ 1 is a solution which minimizes the energy functional.
We obtain, using again (6) and the definitions in (27),

0¼! 1

D

@Mð�Þ
@�

���������¼1
¼ 1

2
Ech þ 2�D

2D
Esurf � Epot

¼
Z

dDx

�
1

2
!2�ðrÞ2 �D� 2

2D
�0ðrÞ2 � Vð�Þ

�
: (29)

For D ¼ 3 we identify the expression (17) for pðrÞ in the
curly brackets of (29) which completes our alternative
proof of (22). Equation (29) is known as the virial theorem
[30]. Notice that (29) can be used to eliminate, for instance,
the potential energy term from (26), leading to

M ¼ !Qþ 1

D
Esurf : (30)

As a last application of (20) we integrate this equation
over r from zero to infinity. This yields the relation [16]

pð0Þ ¼ 2
Z 1

0
dr

sðrÞ
r

; (31)

which provides a helpful cross check for numerical calcu-
lations, and implies the following interesting relation:
inserting in (31) the expressions (16) and (17) yields

1

2
!2�2

0 � Vð�0Þ ¼ 2
Z 1

0
dr

�0ðrÞ2
r

: (32)

This is interesting, because the left-hand side depends on
�0 only while the right-hand side is a functional of �0ðrÞ
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where �0 drops out. Below in Sec. III A, we will discuss
the physical interpretation of (32).

D. Relations among Q-ball properties

Further interesting relations among different Q-ball
properties follow from combining (6), (14), (16), and
(17) as

T00ðrÞ þ pðrÞ ¼ !�chðrÞ þ 1

3
sðrÞ: (33)

Integrating (33) over d3x we recover (30) for D ¼ 3 [the
derivations are equivalent, but (30) elucidates the relation
of the factor 13 to the dimensionality of the space]. Next, we

define the ‘‘surface tension’’ 	 and the mean square radius
hr2si of the shear forces sðrÞ as follows:

	 ¼
Z 1

0
drsðrÞ; hr2si ¼

R1
0 drr2sðrÞR1
0 drsðrÞ : (34)

Thus, the surface energy Esurf ¼
R
d3xsðrÞ, Eq. (27), can

be written as Esurf ¼ 4�hr2si	 which is what one expects
for a spherical object with a well-defined surface and

radius hr2si1=2. In Sec. IV, we will see that these notions
make sense for Q-balls in a certain limit.

Finally, we weight (33) with r2, and integrate over d3x.
This allows us to express d1 in terms of other properties as

d1 ¼ 5

9
ð!QMhr2Qi �M2hr2EiÞ; (35)

with the mean square radii of energy and charge densities
defined as

hr2Ei ¼
R
d3xr2T00ðrÞR
d3xT00ðrÞ

; hr2Qi ¼
R
d3xr2�chðrÞR
d3x�chðrÞ

: (36)

E. Parameters and numerics

In our numerical study we fix the parameters as

A ¼ 1:1; B ¼ 2:0; C ¼ 1:0 (37)

(for which in Ref. [37] radial Q-ball excitations were
found; the latter originally motivated our study, but will
be discussed in a separate work [47]). This yields the
following range of allowed ! values

0:2<!2 < 2:2: (38)

The parameter set ðA; B;CÞ could be assigned physical
units, say (GeV2, GeV0, GeV�2). Then !, M would be
given in GeV, mean square radii in GeV�2, etc. But for
simplicity we will work with dimensionless quantities.

The numerical method is as follows. For a given ! the
differential equation (4) is solved with slightly shifted
initial conditions �ð"Þ � �" and �0ð"Þ¼1

3ðV 0ð�"Þ�
!2�"Þ" with numerical parameters " in the range 10�10

to 10�4. We checked that the results do not depend on ".
Finite energy solutions are found using the shooting

method by varying the initial value �" until �ðrÞ ! 0 at
large r.
The quality of the numerics is monitored by testing that

(i) the differential equation (20) holds, (ii) the Laue con-
dition (22) is valid, (iii) different expressions for d1 in (18),
(19), and (35) yield the same result, (iv) the same value
for pð0Þ follows from (17) and (31). We find a relative
numerical accuracy of Oð10�6Þ or better.

III. GROUND STATE Q-BALLS

In this section, we discuss the ground state properties of
Q-balls in our potential (2) for different values of !.

A. Effective potential Ueff and �0

Identifying r ! t and �ðrÞ ! xðtÞ, the equation of
motion (4) can be read [25] as the Newtonian equation

€xðtÞ ¼ Ffric �rUeffðxÞ Ffric ¼ � 2

t
_xðtÞ;

Ueff ¼ 1

2
!2x2 � VðxÞ;

(39)

describing the motion of a particle of unit mass under the
influence of the time- and velocity-dependent friction Ffric

in the effective potential Ueff shown in Fig. 1. The initial
and boundary values (5) mean that at t ¼ 0 the particle
starts from the position x0 with zero velocity, and comes to
rest in the origin x ¼ 0 after infinite time. Thus xðtÞ> 0
and the particle never stops at finite t. This implies decreas-
ing monotony of the ground state fields, �ðrÞ> 0 and
�0ðrÞ< 0 for 0< r <1.
The pressure (17) is given at r ¼ 0 by pð0Þ ¼ Ueffð�0Þ

and the condition (7) guarantees the existence of a region
of � with Ueffð�Þ> 0 [25]. This proves that

0

0.5

1

0 0.5 1

Ueff(φ)

ω 2
min=0.2

0.3

0.55

0.8

1.0

1.25

1.8

ω 2
c

2.0

2.1
2.152.182.195

ω 2
max=2.2

φ

ω 2
abs

FIG. 1 (color online). The effective potentials Ueffð�Þ ¼
1
2!

2�2 � Vð�Þ as functions of � for selected values of !2 in

the range (38). The circles show the initial values �0 for each !
2,

which lie on a curve starting and ending at the limiting values
!2

min ¼ 0:2 and!2
max ¼ 2:2 (marked by open circles). The special

values !2
c � 1:9 and !2

abs � 1:55 are discussed in text.
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pð0Þ> 0: (40)

Now also the physical interpretation of (32) is evident.
The left-hand side of (32) is the initial potential energy.
The right-hand side of (32) is the work W ¼ R

Ffricdx the

particle does to overcome the friction before coming to rest
at x ¼ 0 with zero effective potential energy.

Solutions exist for all ! in the range !min <!<!max.
With our numerical method, we were able to find solutions
in the subinterval 0:216 � !2 � 2:195.

The effective potentials Ueffð�Þ ¼ 1
2!

2�2 � Vð�Þ are
shown in Fig. 1 for selected ! including the limiting cases
!min and !max. On each of the Ueffð�Þ curves in Fig. 1 we
marked the initial conditions �0 which solve the boundary
value problem (4) and (5). The Ueffð�0Þ for different ! lie
on a curve which exhibits a global maximum close to
!2

abs � 1:55, and changes the curvature around !2
c � 1:9

(these frequencies will be discussed in detail in Sec. III C).
This curve starts and ends at the limiting points

lim
!!!max

�0 ¼ 0; lim
!!!min

�0 ¼
ffiffiffiffiffiffi
B

2C

s
¼ 1; (41)

with the potential Ueffð�0Þ ! 0 in both cases; see
Appendix A. Ueffð�0Þ as function of �0 is not unique for
�0 � 1.

B. Solutions �ðrÞ and densities

In this section, we describe the results for �ðrÞ and the
various densities. Some of our observations concerning
the behavior of the densities in the limits ! ! !min;max

will be made more rigorous in Secs. IV and V.
The ground state solutions �ðrÞ, which are uniquely

determined in terms of the initial values �0 discussed in
the previous section, are shown in Fig. 2(a) as functions of
r for selected values of! in the range 0:216 � !2 � 2:195
our numerics can handle. We have chosen a logarithmic
r-scale to better show the features of all solutions in a
single plot. On a logarithmic scale the �ðrÞ are nearly
constant for r < 0:1, and have the small-r behavior (9).
Their large-r asymptotics agrees with (10).

With decreasing ! the solutions �ðrÞ remain nearly
constant at their initial values in a region 0 � r < R0 and
form increasingly long plateaus from which they then drop
down to their large-r asymptotics (10) over decreasingly
narrow transition regions with thicknesses 	 R0. Here R0

can be understood as the ‘‘size’’ of the Q-ball, which will
be defined below more accurately. In the limit ! ! !min

the field�ðrÞ ! �0�ðR0 � rÞ where R0 ! 1 and�0!1,
see (41) and Appendix A. This behavior (‘‘thin-wall
limit’’) can be strictly derived [25]. In the opposite limit,
as ! increases, the solutions �ðrÞ become more wide-
spread and their magnitude decreases; see (41) and
Appendix A.

Figure 2(b) shows the charge densities �chðrÞ ¼ !�ðrÞ2
as functions of r. Also the charge densities exhibit for

small ! extended plateaus in the region 0 � r & R0 inside
the Q-balls, and drop abruptly to zero outside. For
! ! !max the charge densities become more wide-spread
and their magnitudes show an overall decrease.

0

0.5

1

0.1 1 10 100

(a)φ(r)

r

ω2=0.216
ω2=0.250
ω2=0.360
ω2=0.550
ω2=0.800
ω2=1.250
ω2=1.800
ω2=2.000
ω2=2.100
ω2=2.170
ω2=2.195

0

0.5

1

0.1 1 10 100

(b)ρch(r)

r

ω2=0.216
ω2=0.250
ω2=0.360
ω2=0.550
ω2=0.800
ω2=1.250
ω2=1.800
ω2=2.000
ω2=2.100
ω2=2.170
ω2=2.195

0

0.2

0.4

0.6

0.8

0.1 1 10 100

(c)T00(r)

r

ω2=0.216
ω2=0.250
ω2=0.360
ω2=0.550
ω2=0.800
ω2=1.550
ω2=1.800
ω2=2.000
ω2=2.100
ω2=2.170
ω2=2.195

-0.2

0

0.2

0.4

0.6

0.1 1 10 100

(d)p(r)

r

ω2=0.216
ω2=0.250
ω2=0.360
ω2=0.550
ω2=0.800
ω2=1.550
ω2=1.800
ω2=2.000
ω2=2.100
ω2=2.170
ω2=2.195

0

0.1

0.2

0.3

0.1 1 10 100

(e)s(r)

r

ω2=0.216
ω2=0.250
ω2=0.360
ω2=0.550
ω2=0.800
ω2=1.250
ω2=1.800
ω2=2.000
ω2=2.100
ω2=2.170
ω2=2.195

FIG. 2 (color online). Field�ðrÞ, charge density �chðrÞ, energy
density T00ðrÞ, pressure pðrÞ, shear force distribution sðrÞ vs r for
Q-ball ground state solutions for selected values of !.
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Figure 2(c) shows the energy densities T00ðrÞ, which
look qualitatively similar to charge densities for ! * 1.
But for ! & 1 the energy densities start to develop a
‘‘bump’’ around R0, and as ! approaches !min the bump
becomes a characteristic ‘‘spike.’’ The reason for that is
that for ! * 1 the Q-balls are ‘‘diffuse’’ objects, while for
! & 1 they start to develop a more and more well-defined
‘‘edge.’’ In fact, as ! ! !min the notions of a surface and
surface tension become better defined [25]. The character-
istic bump/spike structure in T00ðrÞ at r
 R0 reflects the
contribution of the surface energy. In the limit ! ! !max

we find T00ðrÞ ! 0. In the limit ! ! !min we have
T00ðrÞ ! const for 0 � r < R0 with a surface energy con-
tribution proportional to �ðr� R0Þ with R0 ! 1.

Figure 2(d) shows the pressures pðrÞ as functions of r.
For all ground state solutions the pressures are positive
‘‘inside’’ and ‘‘negative’’ outside in agreement with general
expectations (79). We are now in the position to provide an
exact definition of the scale R0 as the point where the
pressure vanishes, i.e., pðR0Þ ¼ 0 with 0< R0 <1. The
Laue condition is fulfilled because the integralsRR0

0 drr2pðrÞ and
R1
R0
drr2pðrÞ have opposite signs and

precisely cancel. Numerically the sum of these two contri-
butions normalized with respect to the sum of their moduli
is of Oð10�6Þ or smaller. In the limit ! ! !max we find
pðrÞ ! 0. For ! ! !min we obtain pðrÞ ! const for 0 �
r < R0 with a surface energy contribution proportional to
��ðr� R0Þ and a diverging Q-ball size R0.

Figure 2(e) shows the shear forces sðrÞ which are best
suited to discuss the concepts of ‘‘diffuseness’’ or edge.
From (9) and (10) we see sðrÞ ! 0 as r ! 0 or r ! 1, and
from Eq. (16) we see it is an evidently positive quantity,
i.e., sðrÞ must have a global maximum somewhere. To
determine the position of this maximum consider s0ðrÞ ¼
2�0ðrÞ�00ðrÞ. Now due to the monotony property of �ðrÞ
discussed in Sec. III A, we have �0ðrÞ ¼ 0 only at r ¼ 0
and at infinity. Therefore, the maximum of sðrÞ coincides
with the point where �00ðrÞ ¼ 0. This change of curvature
occurs in the vicinity of the edge of the Q-ball, and in the
limit ! ! !min precisely at r ¼ R0 where sðrÞ becomes
proportional to �ðr� R0Þ with a coefficient related to the
surface tension. As ! approaches !max the shear force
distribution becomes wider and wider, which indicates a
more and more diffuse edge of the Q-ball.

C. !c and !abs

The frequencies !c and !abs were discussed in the
sequence of Eq. (12), and mentioned in the context of
Fig. 1. In this section, we discuss how they appear in the
numerical results. At the frequency ! ¼ !c � 1:38

(1) ðM=QÞð!Þ has a global maximum [Fig. 3(a)],
(2) Qð!Þ has a global minimum [Fig. 3(b)],
(3) MðQÞ has a branch point at Qc ¼ Qð!cÞ [Fig. 3(c)].

The frequency !c and charge Qc define classical stability.
For !<!c we have ðM=QÞ0ð!Þ> 0, and Q0ð!Þ< 0. For

Q>Qc we haveM
00ðQÞ< 0. These are equivalent criteria

for the stability of Q-balls against small fluctuations. In
Fig. 3, the branches of classically stable Q-balls are shown
as solid lines, while the unstable branches are depicted as
dotted lines.
Classical stability is a necessary but not sufficient con-

dition for stability. For a Q-ball to be absolutely stable it is
required that M<mQ; see Eq. (11). Figure 4 shows
M�mQ normalized with respect to M as function of !.
The quantity ðM�mQÞ=M is negative for !<!abs �
1:245 [and has a global maximum at ! ¼ !c which fol-
lows from the fact that Mð!Þ and Qð!Þ have extrema
there]. Thus, for !<!abs the Q-balls are absolutely sta-
ble. In the region !abs <!<!c they are metastable. For
!>!c we have unstable Q-balls.
In the limit! ! !max � m one observesM ! mQ; see

Fig. 4. This means the unstable Q-balls dissociate into
‘‘Q-clouds,’’ i.e., into a gas of free quanta [28].
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FIG. 3 (color online). (a) M=Q as function of !, with
ðM=QÞ0ð!Þ> 0 in the range !<!c � 1:38 (solid line). (b) Q
as function of !, with Q0ð!Þ< 0 for !<!c (solid line). (c) M
vs Q, with M00ðQÞ< 0 in the branch denoted by the solid line.
The solid (dotted) lines correspond to the region of classically
stable (unstable) Q-balls; see Eq. (12).
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FIG. 4 (color online). ðM�mQÞ=M as function of ! which
exhibits a maximum at !c. For !<!abs we have M�mQ< 0
and the Q-balls are absolutely stable. For !abs <!<!c the
Q-balls are metastable, and for !c < !<!max they are un-
stable. (M�mQ) approaches zero as ! ! !max which is
indicated by the vertical line.
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D. Ground state properties

In this section, we study ‘‘global’’ Q-ball properties,
appropriate integrals of the ‘‘local’’ densities from
Sec. III B. The numerical results are shown in Fig. 5 which
is organized as follows. The columns show as functions of
! quantities associated with (from left to right) the distri-
butions of charge, energy, pressure and shear forces. Values
of !abs, !c, !min=max are indicated in all plots.

Figures 5(a)–5(d) show Q, M, d1, 	. At ! ¼ !c charge
Qð!Þ and mass Mð!Þ exhibit global minima, see (12),
while in the vicinity of ! � !c the surface tension 	ð!Þ
exhibits the largest curvature, and �d1ð!Þ a global
minimum.

Figures 5(e)–5(h) show the different length scales of
Q-balls: square roots of the mean square radii of the charge
and energy densities and shear forces [Eqs. (34) and (36)],
and R0 which is where pðrÞ changes sign. The behavior is
qualitatively similar: all radii increase as ! ! !min=max,

and have global minima around ! � !abs (for the mini-

mum of hr2si1=2 we cannot exclude that it is, within numeri-
cal accuracy, exactly at !abs).

Figures 5(i)–5(k) shows the charge density, energy den-
sity, and pressure at the center of theQ-balls as functions of
!. These quantities exhibit maxima around !abs.

Since sð0Þ vanishes, it would make no sense to show this
quantity in analogy with Figs. 5(i)–5(k). Instead, in Fig. 5(l)
we show the surface energy [Eq. (27)], as function of!. As
! increases from!min to!max the surface energy decreases
monotonically, which is compatible with the view that with

increasing ! the Q-ball becomes a more and more diffuse
object (see Sec. III B), such that the role of a surface energy
become less and less important. Esurfð!Þ changes the curva-
ture at the point ! ¼ !c within numerical accuracy.
Some of the quantities vary strongly with!; for instance

d1 extends over 12 orders of magnitude. This is not sur-
prising since we compare Q-balls with different masses
and sizes. For each quantity one could find ‘‘natural units’’
in order to make (from this point of view) the comparisons
quantitatively more meaningful. The dimensionless con-
stant d1 has the natural units ðmass� lengthÞ2. To see this
notice that it can be obtained from d1 ¼ � 1

3M
R
d3xr2sðrÞ,

and
R
d3xsðrÞ has dimension mass, since sðrÞ and T00ðrÞ

have the same dimensions. Thus, one choice of natural
units to measure d1 could be M2hr2i i with i ¼ s, E. In
Fig. 6, we see that in these units the constant d1 varies
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FIG. 5 (color online). Ground state properties ofQ-balls as functions of!. (a) ChargeQ [Eq. (6)]. (b) MassM, defined before Eq. (14).
(c) Constant d1 [Eq. (18)]. (d) Surface tension 	 [Eq. (34)]. The mean square radii of (e) charge and (f) energy densities [Eq. (36)],
and (h) shear forces [Eq. (34)]. (g) Position R0 of the zero of the pressure. The values of densities in the centers of Q-balls for
(i) charge density, ( j) energy density, (k) pressure [Eqs. (6), (14), and (17)]. (l) The surface energy defined in (27). The special value
!abs � 1:245 (!c � 1:38) is marked by a square (star). The vertical lines indicate the limits !min � 0:447 and !max � 1:483.
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much more moderately. In fact, forQ-balls of all! we find
that 0< ð�d1Þ=ðM2hr2siÞ< 0:3 holds.

IV. THE LIMIT ! ! !min

In this section, we discuss Q-ball properties in the limit
! ! !min, the so-called thin wall limit. In this limit the
solutions describe objects of increasing size R with uni-
form charge distribution for r < R, which drops to zero
over a narrow transition region (thin wall) [25]. In some
sense the Q-balls resemble liquid drops.

In a liquid drop of the size R the pressure distribution is
pðrÞ ¼ p0�ðR� rÞ � 1

3p0R�ðR� rÞ where p0 denotes

the constant pressure inside the drop. This pðrÞ satisfies
the Laue condition (22). The shear forces are given by
sðrÞ ¼ 	�ðR� rÞ, and the differential equation (20) leads
to the Young-Laplace relation 	 ¼ 1

2p0R [50].

In the following we will ‘‘test’’ the predictions from the
liquid drop picture using our numerical results, and derive
analytically relations valid in the limit ! ! !min.

In Fig. 2, we have seen that the solutions and densities
approach the expected liquid drop shapes; see Sec. III B.
Let us highlight here the shear force distribution. Figure 7
shows sðrÞR0=	 as function of r=R0 in the ‘‘edge region’’
for selected ! close to !min. The curves are scaled such
that the areas under the graphs are normalized to unity.
Clearly, as ! approaches!min the shear force distributions
peak more and more strongly in a narrow region concen-
trated around r=R0 � 1. The edge region makes up 5% or
less of the size of the Q-ball, as expected.

That the Q-ball size diverges as ! ! !min is apparent
from Figs. 5(e)–5(h). Our first quantitative expectation is

that both the radius R0 describing the position of the zero of

the pressure and hr2si1=2 characterize equally well the po-
sition of the edge of the Q-ball. Hence we expect these
radii to coincide for ! ! !min, i.e.,

lim
!!!min

hr2si
R2
0

¼ 1: (42)

The numerical results in Fig. 8(a) support Eq. (42).

In the following we choose hr2si1=2 as a reference length
scale for the size of the Q-ball in the liquid drop limit, and
define the surface and volume of a Q-ball as

s(r) R0 γ-1

0

20

40

60

80

0.95 1 1.05 r/R 0

ω2=0.216
ω2=0.220
ω2=0.224
ω2=0.230
ω2=0.2379
ω2=0.250

FIG. 7 (color online). sðrÞR0=	 as function of r=R0 in the edge
region, for selected values of ! in the range 0:216 � !2 � 0:25.
The curves are scaled such that the areas under the graphs are
normalized to unity. The figure shows that with !2 approaching
!2

min ¼ 0:2 the shear forces approach their liquid drop limit

sðrÞ ¼ 	�ðr� R0Þ where 	 denotes the surface tension, and
R0 the position at which the pressure vanishes.
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FIG. 8 (color online). Q-ball properties as functions of !2 in
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2
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(b) M=ðT00ð0ÞVsÞ and Q=ð�chð0ÞVsÞ. (c) 2	=ðpð0Þhr2si1=2Þ and
ð�d1Þ=ðMðM�!QÞhr2siÞ. (d) �chð0Þ, T00ð0Þ, pð0Þ. The solid,
dashed, and dashed-dotted lines show our numerical results,
which approach the predicted limits marked by symbols. In
Fig. 8(d) the thin lines are the analytic results derived from
Eq. (50).
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As ¼ 4�hr2si; Vs ¼ 4�

3
hr2si3=2: (43)

The charge distribution becomes �chðrÞ ¼ �0�ðR� rÞ in
the liquid drop limit, yielding hr2chi ¼ 3

5R
2 for the mean

square charge radius in Eq. (36). The situation is analog for
hr2Ei, although T00ðrÞ has a � function-type spike at r ¼ R
due to surface energy, as can be seen in Fig. 2(c). But the
surface energy is proportional to R2, while the contribution
of the constant bulk matter density inside the drop is
proportional to R3, so the influence of the spike can be
neglected for a large drop. Hence, we expect

lim
!!!min

hr2chi
hr2si

¼ 3

5
; lim

!!!min

hr2Ei
hr2si

¼ 3

5
; (44)

and the numerical results in Fig. 8(a) support this. For the
above discussed reasons we can furthermore expect

lim
!!!min

M

T00ð0ÞVs

¼ 1; lim
!!!min

Q

�chð0ÞVs

¼ 1; (45)

which is also confirmed; see Fig. 8(b).
Surface and surface tension 	 are abstract notions for

arbitrary Q-balls which are defined through Eq. (34). One
way to check the usefulness of those definitions provides
the Young-Laplace relation, which implies

lim
!!!min

2	

p0hr2si1=2
¼ 1: (46)

Notice that because of our definitions (34), (43), and (30),
we always have the relation

2	

p0hr2si1=2
¼ 2ðM�!QÞ

p0Vs

: (47)

From (19) we obtain for a liquid drop ddrop1 ¼ � 4�
3 M	R4.

Inserting here the expression for 	 from (47) yields

lim
!!!min

ð�1Þd1
MðM�!QÞhr2si

¼ 1: (48)

Figure 8(c) confirms both relations (46) and (48).
Next let us focus on the center properties ofQ-balls. For

! ! !min the limiting value of the field �ðrÞ at r ¼ 0
assumes the value �2

const ¼ B=ð2CÞ; see (41) and
Appendix A. For our potential and choice of parameters
this means

lim
!!!min

�chð0Þ ¼ !min�
2
const ¼

ffiffiffiffiffiffiffi
0:2

p
;

lim
!!!min

T00ð0Þ ¼ !2
min�

2
const ¼ 0:2; lim

!!!min

pð0Þ ¼ 0;

(49)

which is supported by our results in Fig. 8(d). The result for
pð0Þ is derived alternatively in Appendix B.

We can go a step further and derive predictions from
the liquid drop picture for the densities in (49) also for! �
!min. This can be done because the most important features

for!>!min are probably the finite size of theQ-ball, and
its diffuse edge. But these features become important ‘‘far
away’’ from the Q-ball center. So one would expect the
liquid drop approach to give useful approximations for
�chð0Þ, T00ð0Þ, and pð0Þ not only for ! ¼ !min but also
for ! in some vicinity of !min.
The result for �constð!Þ follows from Eq. (A2) using the

plus sign, and can be written as

�2
constð!Þ ¼ B

C

0
@1
3
þ 1

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 6C

B2
ð!2 �!2

minÞ
s 1

A: (50)

Figure 8(d) shows that (50) provides excellent approxima-
tions for the exact ! dependencies of �chð0Þ, T00ð0Þ, pð0Þ
from up to !2 & 1. The reason for that can be seen in
Fig. 1. In our potential, the ‘‘particles’’ (in the ‘‘particle
motion’’ picture of Sec. III A) are released very close to the
respective maxima of Ueff , and this is what Eq. (50)
actually describes; see Appendix A.
This brings us to another test of the liquid drop picture:

as ! ! !min we expect the edge of the Q-ball to become
more and more well defined. We have seen this in Fig. 7,
but this observation can be made quantitative by defining
the thickness of the edge region as

ð�r2sÞ2 ¼ hhðr2 � hhr2iiÞ2ii ¼ hhr4ii � hhr2ii2 � 0; (51)

where we introduced (cf., Appendix C)

hhrnii ¼
R1
0 drrnsðrÞR1
0 drsðrÞ : (52)

With this definition we can formulate the expectation that
in the thin-wall limit the relative size of the edge region
vanishes:

lim
!!!min

�r2s
hr2si

! 0: (53)

This is supported by the numerical results; see Fig. 9.
Finally we turn our attention to the behavior of inte-

grated quantities for ! ! !min. In this limit Q, M, d1 and
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FIG. 9 (color online). The ratio �r2s=hr2si characterizing the
relative size of the ‘‘wall thickness,’’ as function of !2 (solid
line). In the limit ! ! !min (thin-wall limit) �r2s=hr2s i ! 0
(marked by the symbol). The numerical results support this
expectation.
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the radii diverge, as shown in Fig. 5, although certain ratios
of these quantities remain finite, and follow the predictions
from the liquid drop picture; see the discussion above. The
key to understanding quantitatively the behavior of these
quantities in the limit ! ! !min is the surface tension 	,
the only ‘‘integrated’’Q-ball property which remains finite
in this limit.

The surface energy Esurf diverges because it is propor-
tional to the surface area, which diverges for ! ! !min.
Taking out carefully these divergences allows one to define
the surface tension—cf. Eq. (2.19) in Ref. [25]—as

lim
!!!min

	 ¼ lim
!!!min

Z �0

0
d�

ffiffiffiffiffiffiffi
2Û

p
; (54)

where Û ¼ Vð�Þ � 1
2!

2�2. Let us define

"min ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 �!2

min

q
> 0: (55)

With the substitution � ! x ¼ �2 we obtain

Z �0

0
d�

ffiffiffiffiffiffiffi
2Û

p
� 1

2

Z �2
0ð"minÞ

0
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2C

�
B

2C
� x

�
2 � "2min

s
:

(56)

For "min � 0 the integrand is complex. Recalling that for
"min ! 0 we have �2

0ð"minÞ ! �2
const ¼ B=ð2CÞ (see

Appendix A) we obtain, for our parameters,

lim
!!!min

	 ¼
ffiffiffiffi
C

p

2
ffiffiffi
2

p
�
B

2C

�
2 ¼ 1

2
ffiffiffi
2

p ; (57)

which agrees with the numerical results; see Fig. 10(a).
Next we want to determine the behavior of the mean

square radius hr2si in this limit. From Eq. (50) we obtain for
pð0Þ, Eq. (17), the behavior

pð0Þ ¼ 1

2
!2�2

0 � Vð�0Þ ¼ B

4C
"2min þOð"4minÞ; (58)

which we have seen in Fig. 8(d) and derived alternatively
in Appendix B. Combining this result with (46) and (57)
yields for our potential

lim
"min!0

"4minhr2si ¼
B2

2C
¼ 2; (59)

which is supported by the numerical results in Fig. 10(b).
Analogously we obtain

lim
"min!0

"6minQ ¼ �

3
ffiffiffi
2

p B4

C5=2
!min; (60)

lim
"min!0

"6minM ¼ �

3
ffiffiffi
2

p B4

C5=2
!2

min; (61)

lim
"min!0

"14mind1 ¼ � �2

144

B10

C6
!2

min: (62)

The numerical results in Figs. 10(c)–10(e) fully support
these conclusions. We see that among the quantities in (57)
–(62) d1 has the most rapid rise for ! ! !min, which
explains the observations in Fig. 5. Combining (59), (61),
and (62) yields
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FIG. 10 (color online). Q-ball properties as functions of !2

plotted in the form Xð!2 �!2
minÞN . The respective quantities X,

and their scaling powers N, written as the pairs ðX;NÞ, are as
follows: (a) ð	; 0Þ, (b) ðhr2si; 2Þ, (c) ðQ; 3Þ, (d) ðM; 3Þ, (e) ðd1; 7Þ.
The triangles mark the analytical predictions from Eqs. (57) and
(59)–(62).
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d1
M2hr2si ¼ � 1

4

"2min

!2
min

þ � � � ; (63)

where the dots indicate higher order terms. Equation (63)
explains the observation made in Fig. 6, namely that d1
measured in its natural units vanishes in this limit.

The liquid drop analogy was very successful. One could
be tempted to drive it further than we did it here, e.g., by
giving the drop also a uniform charge distribution. The
resulting repulsive forces ensure stability, and a virial
theorem analog to (29) can be derived. But the microscopic
details of the stabilizing dynamics are different from a
Q-ball, and we will not pursue this analogy further.

V. THE LIMIT ! ! !max

In this section, we discuss the properties of Q-balls for
! ! !max. For certain potentials one obtains small and
stableQ-balls in this so-called ‘‘thick-wall’’ limit [30]. But
in our potential for !2 >!2

c � 1:9 the Q-balls are un-
stable. For instance, the solution !2 � 2:192 with Q¼42
andM � 62:4 can decay into two absolutely stableQ-balls
corresponding to !2 � 1:223 with Q ¼ 21 andM � 28:5,
or into three absolutely stable Q-balls corresponding to
!2 � 1:466 with Q ¼ 14 and M � 20:4.1

Finally, as ! ! !max in our potential, the solutions get
more and more spread out, and approach from above
M ! mQ where m ¼ !max is the mass of the quanta; see
Fig. 4. This means that the unstable Q-balls dissociate into
a gas of free quanta, a Q-cloud [28].

The aim of this section is to study analytically how
Q-ball properties behave for ! ! !max. The key for that
is the large-r asymptotics of�ðrÞ derived in Eq. (10) which
shows that as long as !2 <!2

max the solutions �ðrÞ decay
at large r fast enough to ensure the convergence of the
integrals appearing inM,Q, or other properties. Of course,
the existence condition (7) requires! to be always smaller
than !max. But we may study the scaling of Q-ball prop-
erties as ! approaches !max from below.

Let us define

�asympðrÞ¼c1
r
e�"maxr; "max¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

max�!2
q

>0; (64)

which is the leading term in the large-r asymptotics of�ðrÞ
in (10). We consider first the charge Q in Eq. (6)

Q ¼ 4�!
Z 1

0
drr2�2ðrÞ � � � � þ 4�!

Z 1

...
drr2�2

asympðrÞ

¼ � � � þ 4�!c21
"max

Z 1

...
dx expð�2xÞ; (65)

where in the second step we split the integral into an inner
(indicated by the three dots) and an outer part. It is under-
stood that this decomposition is done at a sufficiently large
radius R such that �ðrÞ can be well approximated by its
asymptotic form (64) for r > R. In the third step in (65) we
made the substitution r ! x ¼ "maxr.
From Eq. (65) we see what happens as "max decreases.

The inner part indicated by the three dots in (65) gives a
finite contribution to Q, but the outer contribution scales
like 1="max. Thus, we expect that with decreasing "max the
product "maxQ ! const. This method though does not
allow us to determine the value of the constant. For that a
more careful analysis is needed, which we will report
elsewhere [47]. But in this way we correctly predict that
Q / 1="max at small "max, which is fully supported by the
numerical results; see Fig. 11.
Applying this method to other quantities we obtain the

results summarized below (all constants are positive and
different in each case):

lim
"!0

"maxQ ¼ const; (66)

lim
"!0

"maxM ¼ const; (67)
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3

FIG. 11 (color online). The Q-ball properties d1, M, Q, R0,

ri ¼ hr2i i1=2 (i ¼ E;Q; s), Esurf , 	 as functions of "max ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

max �!2
p

. The region in the plot covers the range 1:8 �
!2 � 2:195. The small-"max scaling of d1, M, Q, hr2Qi1=2 and

hr2Ei1=2 was predicted analytically in Eqs. (66)–(69).

1Here we content ourselves to state that the decays are possible
energetically, but we are not concerned about their dynamics.
Notice also that in these examples integer charges were chosen.
But in general the chargeQ is not quantized. Also ‘‘asymmetric’’
decays into Q-balls of different charges are possible, but then
less energy is released.
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lim
"!0

"2maxd1 ¼ �const; (68)

lim
"!0

"2maxhr2ki ¼ const; k ¼ Q;E; s; (69)

lim
"!0

"�1
maxEsurf ¼ const; (70)

lim
"!0

"�3
max	 ¼ const: (71)

The predictions (66)–(71) are fully supported by the nu-
merical results as shown in Fig. 11.

Notice that the results (69)–(71) for Esurf , 	, hr2si are
numerical observations, because our method cannot be
applied to quantities vanishing with "max ! 0. In fact, for
instance the scaling of the outer contribution in the integral
(27) defining Esurf does imply Eq. (70). But our rough
method would generically suggest that the contribution
of the inner region scales like "0max and dominates. A
more careful analysis is needed to prove the prediction
(70); see Ref. [47]. The same reservations apply to the
scaling behavior of 	 and hr2si, which are both connected to
Esurf via Eq. (34).

We observe numerically that the position R0 where pðrÞ
changes sign scales in the same way as the square roots of
the mean square radii in (69). Thus, independently of

whether we measure it in terms of R0 or the hr2i i1=2, the
size of the solutions grows with "max ! 0.

The constant d1 diverges as 1="2max with decreasing
"max; see Fig. 11. However, when measured in its natural
units it actually goes to zero as d1=ðM2hr2siÞ / "2max as we
have seen previously in Fig. 6.

To summarize, as "max ! 0mass, charge and size of the
Q-balls diverge as 1="max; see (66), (67), and (69). Thus,
the mean charge and energy densities, which are propor-
tional to Q=ðsizeÞ3 and M=ðsizeÞ3, vanish like "2max.
Figure 4 has shown that the Q-balls are unstable, and their
(positive) binding energy M�mQ approaches zero (from
above) as "max ! 0. Hence, in this limit we obtain a dilute
gas of free Q-quanta as discussed in Ref. [28].

VI. THE SIGN OF d1

In this section, we will show in several independent
ways that d1 is negative. In Sec. VIA, we will use for
that the observation that for Q-balls sðrÞ happens to be
positive for 0< r <1, and in Sec. VIB we will explain
why sðrÞ must be positive. In Sec. VIC, we will prove that
d1 < 0 using arguments based on pðrÞ and the Laue
condition.

One may wonder why several proofs are needed. Indeed,
the EMT conservation dictates that sðrÞ and pðrÞ are con-
nected by the differential equation (20), which is the origin
of the equivalent presentations (18) and (19) for d1 in terms
of sðrÞ and pðrÞ [16], and we have explicitly proven that
our expressions for sðrÞ and pðrÞ satisfy (20). So, if one is

able to conclude from sðrÞ the sign of d1, then it must be
possible to draw the same conclusion also from pðrÞ.
Therefore, at first glance it may seem sufficient to conclude
the sign of d1 in one way, and below we will see that for
Q-balls it is much easier to use sðrÞ for that.
However, concluding the sign of d1 from sðrÞ alone

bears some danger, because from any ‘‘input’’ sðrÞ one
obtains via (20) a function pðrÞ which automatically2

satisfies the Laue condition (22) [16]. So one may well
encounter an approach with sðrÞ � 0 and conclude d1 < 0
without being sure one really deals with a correct solution
of the equations of motion and a true minimum of the
energy functional. But the other way around, the pressure
is ultimately related to the issue of stability by Eq. (22),
which we have shown to be equivalent to the virial theorem
(29). A proof that d1 < 0 on the basis of pðrÞ is therefore in
general on much more solid ground.

A. Arguments based on sðrÞ and inequalities

In this section, we will show that d1 < 0 using argu-
ments based on the shear force distribution. The argument
is trivial and makes use of the observation that manifestly
sðrÞ ¼ �0ðrÞ2 � 0 8r.
In Eq. (18) we have seen that d1 is given by ð� 4

3�MÞ
times the integral over r4sðrÞ over r from zero to infinity.
Since sðrÞ � 0 this immediately implies d1 � 0. This in-
equality can be improved by recalling that �0ðrÞ< 0 for
0< r <1; see Sec. III A. Therefore d1 < 0 which com-
pletes the proof.
The fact that sðrÞ � 0 can be further explored to derive

an inequality showing that d1 must be negative. Using (51)
and (52) we have d1 ¼ � 4�

3 M	hhr4ii and hr2si ¼ hhr2ii
and can rewrite the constant d1 as

� d1
M2hr2si

¼ M�!Q

M

�
1þ

�
�r2s
hr2si

�
2
�
: (72)

Notice we implicitly benefited from the fact that sðrÞ � 0,
when introducing the averages hhrnii in (52). Next we
explore that Esurf ¼

R
d3rsðrÞ> 0, and with !Q> 0 we

conclude from (30) that 0<M�!Q<M. Using
the latter inequality in (72) finally implies that

0<� d1
M2hr2si

< 1þ
�
�r2s
hr2si

�
2
: (73)

This proves that ð�d1Þ> 0. As a byproduct Eq. (73)
provides also an upper bound on (� d1) but in terms of
�r2s=hr2si. At this point it is not obvious whether this
quantity is bound from above, though numerically we

2The differential equation (20) allows one to determine pðrÞ
from a given input function sðrÞ only up to an integration
constant. But the latter can be fixed by demanding that for a
well-localized finite-energy object pðrÞ ! 0 as r ! 1. In a
similar way one can determine sðrÞ from a given input function
pðrÞ.
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observe this to be the case in Fig. 9. That�r2s=hr2si is indeed
bound from above will be shown in Ref. [47].

For completeness let us mention the following more
useful upper bound on the magnitude of (� d1). The
starting point is Eq. (35) where we neglect the positive
quantity !QMhr2Qi ¼ M!2

R
d3rr2�ðrÞ2. This yields the

bound

� d1
M2hr2Ei

<
5

9
; (74)

which is satisfied by the numerical results; see Fig. 6. We
checked that this is the strongest inequality one can derive
involving hr2Ei as length scale. The inequality (74) is
attractive because it provides an upper bound on (� d1)
in its natural units solely in terms of quantities related to
the energy density T00ðrÞ.

B. Arguments based on the particle interpretation

In the previous section, we explored the observation that
sðrÞ happens to be positive for 0< r <1 forQ-balls. Here
we will show this must be the case.

For that we use the particle interpretation picture [25]
discussed in Sec. III A. The Newtonian equation (39) de-
scribing the motion of a unit mass particle moving in the
effective potential Ueff ¼ 1

2!
2x2 � VðxÞ under the friction

Ffric ¼ � 2
t
_xðtÞ follows from the Lagrange function Lð _x; xÞ

and Rayleigh’s dissipation function F ð _xÞ,

Lð _x; xÞ ¼ 1

2
_xðtÞ2 �UeffðxÞ; F ð _xÞ ¼ 1

t
_xðtÞ2; (75)

according to

d

dt

�
@L

@ _x

�
� @L

@x
¼ �@F

@ _x
: (76)

The physical meaning of Rayleigh’s dissipation function
F ð _xÞ is that it describes the rate at which the system
dissipates its energy E due to the frictional force, namely

dE

dt
¼ d

dt

�
_x
@L

@ _x
� L

�
¼ �2F � 0 8 t; (77)

which must be negative because the system dissipates
energy. This means that F ð _xÞ � 0 8t.

If we recall that xðtÞ and t in the particle interpretation
picture correspond to �ðrÞ and r, we instantly see that
F ð _xÞ corresponds to 1

r sðrÞ. Since F ð _xÞ � 0 this proves

that the distribution of shear forces sðrÞ � 0.

C. Arguments based on the pressure pðrÞ
In this section, we will prove that d1 is negative, basing

our arguments on the pressure distribution.
Let us first demonstrate that for ! satisfying the exis-

tence condition (7) the pressure is positive at small r, and
negative at large r. In Sec. III A, we have proven pð0Þ> 0,
and for reasons of continuity pðrÞ> 0 also in some vicinity

of the origin. At large r we derive from (10) the following
asymptotics for the pressure:

pðrÞ ¼ �ð!2
max �!2Þ 2c

21
3r2

expð�2r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

max �!2
q

Þ þ � � �
(78)

where the dots indicate subleading terms. Clearly, for all!
satisfying the existence condition (7), the pressure is nega-
tive at large r. To summarize, we have

pðrÞ> 0 for small r; pðrÞ< 0 for large r: (79)

This implies that pðrÞmust change the sign an odd number
of times. Of course, pðrÞ must change sign at least to
comply with the Laue condition (22). From a physical
point of view, we expect pðrÞ to be positive in the center
(which implies repulsive forces directed towards outside)
and negative outside (attractive forces towards inside), as
we derived in (79). A stable solution arises when the
repulsive and attractive forces exactly balance each other
according to (22). This physically intuitive pattern was
observed also in soliton models of the nucleon [16–19].
For a ground state one may expect the pressure distri-

bution to change sign only once; see Fig. 2(d). If we
assume pðrÞ to change sign one and only one time, this
immediately implies that d1 is negative. Figure 12 illus-
trates the argument. The left panel of Fig. 12 visualizes the
Laue condition (22): the shaded areas above and below the
x axis are equal and exactly compensate each other. Thus,
due to the Laue condition (22) we have

Z R0

0
drR2

0r
2|{z}

>r4

pðrÞ ¼ �
Z 1

R0

drR2
0r

2|{z}
<r4

pðrÞ

)
Z R0

0
drr4pðrÞ<�

Z 1

R0

drr4pðrÞ
(80)

which means
R1
0 drr4pðrÞ< 0, and d1 must be negative, as

can be seen in the right panel of Fig. 12.
If we knew pðrÞ has one zero only, the proof that d1 < 0

would be complete here. It is intuitive to assume that the
pressure distribution of a ground state changes sign only
once according to (79). However, here we will provide a
general argument which is valid not only for ground states.
For that we need the following lemma. For any solution

of the Q-ball equations of motion we have

Z R

0
drr2pðrÞ> 0 for 0<R<1: (81)

To prove (81) we make use of the result (25) derived in
Sec. II C and explore the particle interpretation picture
of the Q-ball equations of motion. For that we notice
that pðrÞ þ 2

3 sðrÞ, the right-hand side of (25), is positive

8r <1 because
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�
pðrÞ þ 2

3
sðrÞ

�
¼ 1

2
�0ðrÞ2|fflfflffl{zfflfflffl}
Ekin

þ 1

2
!2�ðrÞ2 � Vð�Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Ueff

: (82)

In other words, pðrÞ þ 2
3 sðrÞ corresponds to the total—

kinetic plus potential—energy of the particle at a given
time t (with t $ r). The total energy of the particle must
be larger than zero 8t <1, because at any finite time
t the particle still needs to do work against the friction in
order to arrive, after infinite time, at the origin x ¼ 0 (with
x $ �). This means that the integral in (25) is positive and
proves Eq. (81).

To understand this result intuitively, we remark that if
the integral (81) could become zero at some finite R, then
the fields would stabilize themselves in a subinterval r 2
½0; R�. Then, setting the fields outside that interval to zero
would yield a stable solution with lower mass [because
T00ðrÞ � 0 also in the omitted region], in contradiction to

the expectation that a given set of initial value data leads to
a unique minimum of the action.
We have now all ingredients for the proof that d1 < 0

based on pressure and the Laue condition, namely (79) and
(81). The proof is as follows.
Equation (79) means pðrÞ must change sign an odd

number N of times. Let Ri with i ¼ 1; . . . ; N denote the
radii where this happens with 0< R1 < R2 < . . .<RN <
1. Notice that we do not include points where pðrÞ could
have zeros without changing sign.
The Laue condition (22) can then be written asZ R1

0
drr2pðrÞ þ

Z R2

R1

drr2pðrÞ þ � � � þ
Z 1

RN

drr2pðrÞ

¼ 0: (83)

By construction pðrÞ � 0 in the first, third, . . . integrals,
and pðrÞ � 0 in the second, fourth, . . . last integrals. We
will now replace each of the terms in (83) by a smaller
term, and show in this way that

R1
0 drr4pðrÞ< 0.

Step 1. We consider the first two terms in (83). In the first
(second) term pðrÞ is positive (negative). ThereforeZ R1

0
drr2pðrÞ � 1

R2
1

Z R1

0
drr4pðrÞ;

Z R2

R1

drr2pðrÞ � 1

R2
1

Z R2

R1

drr4pðrÞ:
(84)

Adding up the two inequalities in (84) we obtainZ R2

0
drr2pðrÞ � 1

R2
1

Z R2

0
drr4pðrÞ: (85)

If there is only one change of sign, then we take the limit
R2 ! 1 and recover the situation of Eq. (80), and our
proof is complete here. If pðrÞ changes sign more than
once, i.e., N � 3, then we have to continue our proof and
include further contributions in step 2.

Step 2. Notice that
RR2

0 drr4pðrÞ> 0 for R2 <1 due to

(81). Moreover R1 < R3 <1. ThereforeZ R2

0
drr2pðrÞ � 1

R2
1

Z R2

0
drr4pðrÞ> 1

R2
3

Z R2

0
drr4pðrÞ:

(86)

In the next two intervals pðrÞ � 0 for r 2 ½R2; R3�, and
pðrÞ � 0 for r 2 ½R3; R4�. Therefore, in analogy to (84),Z R3

R2

drr2pðrÞ � 1

R2
3

Z R3

R2

drr4pðrÞ;
Z R4

R3

drr2pðrÞ � 1

R2
3

Z R4

R3

drr4pðrÞ:
(87)

Combining (86) and the results in (87) we obtainZ R4

0
drr2pðrÞ> 1

R2
3

Z R4

0
drr4pðrÞ: (88)
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FIG. 12 (color online). r2pðrÞ and r4pðrÞ as functions of r for
selected !. For better comparison, r is given in units of the
radius R0 where pðrÞ changes sign, and the normalization factors
aN are such that the curves reach unity at their global maxima.
The left (right) panel shows the integrand of the Laue condition
[the integrand of d1, Eq. (19), up to the prefactor 5�M]. The
figure illustrates why d1 is negative. Integrating the curves in the
left panel yields zero due to (19). Weighting the curves by an
additional factor of r2 and integrating then yields a negative
result for d1; see right panel.
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If pðrÞ changes sign exactly N ¼ 3 times, then we take in
(88) the limit R4 ! 1 and our proof is completed here. If
pðrÞ changes sign more often, then we repeat step 2.

Last step. If pðrÞ changes the sign N ¼ 2kþ 1 times
(recall that N is odd, and RN <1), then we repeat succes-
sively the second step k times, until we arrive at

Z 1

0
drr2pðrÞ> 1

R2
N

Z 1

0
drr4pðrÞ: (89)

Now, the first integral vanishes due to the Laue condition
(22), and using the definition (19) giving d1 in terms of the
pressure, we conclude from (89) the desired result that d1
must be negative.

D. Stability and d1

Above we have proven d1 < 0 exploring the Laue con-
dition which is satisfied by all solutions, minimizing the
energy functional; see Sec. II C. It is important to stress
that thereby we did not use the stability considerations
discussed in Sec. II A. All solutions correspond to minima
of the energy functional and therefore must have d1 < 0.
Whether the minima are global or local, and whether they
describe stable, metastable or unstable Q-balls plays no
role for the sign of d1. Figure 12 illustrates this point: the
solutions in Figs. 12(a)–12(c) are respectively stable, meta-
stable and unstable. But in all cases d1 is negative, as
shown in Figs. 12(d) and 12(e).

VII. CONCLUSIONS

We have presented a study of Q-balls in a scalar field
theory with U(1) symmetry, and investigated the proper-
ties of Q-balls as functions of the angular velocity !.
While Q-ball stability was studied in literature before
Refs. [37–42], to the best of our knowledge this is the first
study in which this issue is addressed from the point of
view of the EMT, and the constant d1. All solutions pre-
sented in this work were exact solutions of the equations of
motion. Particular focus was put on the behavior of Q-ball
properties for ! approaching the boundaries !min;max of

the region in which solutions exist.
For ! ! !min the Q-balls occupy increasingly large

volumes filled with Q-ball matter of nearly constant den-
sity [25]. We have shown that in this limit the Q-ball
properties follow the predictions of the liquid drop picture.
Certain Q-ball properties such as charge Q, massM, mean
square radii, and d1 diverge as ! ! !min. We derived
analytically the limits for these and other properties, which
are fully supported by our numerical results.

In the opposite limit ! ! !max the solutions become
unstable and approach the Q-cloud limit [28]. Also in this
limit some properties diverge. We derived analytically the
scaling behavior of these quantities as ! approaches
!max. Further results will be reported in Ref. [47]. It is

remarkable that, among all properties we studied, d1
diverges most strongly as ! ! !min;max.

The conservation of the EMT implies among others the
Laue condition [4,48] stating that the pressure must satisfyR1
0 drr2pðrÞ ¼ 0, which we have proven explicitly in two

independent ways. One of the proofs is equivalent to the
virial theorem.
The central result of this work is that the constant d1 is

strictly negative for all Q-ball solutions,

d1 < 0; (90)

for which we have provided two explicit analytical proofs.
One proof involved the relation of d1 to sðrÞ, and made use
of the Newtonian particle interpretation of the Q-ball
equations of motion [25] in which the shear force distri-
bution sðrÞ is related to the Rayleigh dissipation function
describing the frictional forces. Since the Newtonian sys-
tem dissipates energy due to friction, sðrÞ must be positive
for 0< r <1. This implies d1 < 0.
The other proof explored the relation of d1 to pðrÞ, and

made use of the Laue condition. We have shown, using the
equations of motion, that pðrÞ is positive in the center of
theQ-ball (which corresponds to repulsion) and negative at
large r (which corresponds to attraction). This means pðrÞ
must change the sign an odd number of times, and we have
formulated a general proof valid for any Q-ball solution
with a pressure with an arbitrary number of zeros. We
observed that for ground states pðrÞ changes sign only
once, but for radial excitations of Q-balls one encounters
more complex structures [47].
The proof of (90) based on pðrÞ elucidates that for

Q-balls the negative sign of d1 is a consequence of the
Laue condition. The last important insight of our study is
that d1 < 0 holds not only for stable solutions. In the
Q-ball system d1 < 0 holds also for metastable and un-
stable solutions, for which no study of d1 has been pre-
viously presented in literature. This indicates that d1 < 0
could hold for all particles, irrespective of whether they are
stable or unstable. Since d1 is not known experimentally
for any particle, this is already an important piece of
information.
Interesting open questions are whether d1 of rotating

Q-balls [37,38] is also negative, and how quantum fluctua-
tions [51] modify the picture of d1. It would be also
interesting to see how d1 is altered for Q-balls coupled to
fermionic fields, which allows them to ‘‘evaporate’’ [27].
The ultimate goal would be to generalize the proofs given
in this work to quantum field theories, and to apply them to
the description of hadrons. So far, in all theoretical studies
d1 was always found negative, for pions [13], nucleons
[15–19], and nuclei [4,20,21]. Also lattice QCD calcula-
tions yield a negative quark contribution to the d1 of
nucleon, though the gluon contribution and hence the total
d1 are not yet known [14]. First experimental results are
compatible with d1 being negative [52] but this observation
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is not yet conclusive [53], and future data will provide
further insights [54].
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APPENDIX A: STATIONARY SOLUTIONS

In this Appendix, we discuss stationary solutions of the
equations of motion (4) and (5) of the type �ðrÞ ¼ �const

8r. Though they do not obey the boundary condition (5) at
infinity, these solutions are nevertheless of interest.

If �ðrÞ ¼ �const the boundary conditions at r ¼ 0 in (5)
hold, and the equation of motion (4) becomes

!2�const�V0ð�constÞ
¼ð!2�2Aþ4B�2

const�6C�4
constÞ�const¼0: (A1)

The trivial solution �const ¼ 0 describes the vacuum.
Further (for !min � ! � !max always real) solutions are

�2
const ¼ B

3C
�

�
B2

9C2
þ!2 � 2A

6C

�
1=2

: (A2)

Because L in (1) is symmetric under � ! �� it is suffi-
cient to focus on the non-negative solutions.

In the particle interpretation picture the two positive
stationary solutions in (A2) have the following meaning.
The solution with the minus sign in (A2) corresponds to the
situation that the particle is at t ¼ 0 precisely in the local
minimum of the effective potential in Fig. 1 and will stay
there forever. The solution with the plus sign in (A2)
corresponds to the (not stable) situation that the particle
is at t ¼ 0 precisely in the global maximum of the effective
potential in Fig. 1 and will stay there forever.

As ! ! !min we obtain �2
const ¼ B=ð6CÞ from (A2),

corresponding to the (not interesting for us) situation where
the particle stays forever in the minimum of Ueff , and the
(much more interesting) solution

�2
const ! B

2C
¼ 1 as ! ! !min; (A3)

corresponding to the situation with the particle placed at
the maximum of Ueffð�Þ which for ! approaching !min

from above is just above zero. This situation is of interest,
because as ! ! !min the particle has to be placed very
close to this maximum of Ueffð�Þ, and ‘‘wait’’ there long
enough such that its small initial potential energy Ueffð�Þ
is sufficient to overcome the time-dependent friction which
decreases with time [25].

As ! ! !max we obtain from (A2) the solutions
�2

const ¼ 0 and �2
const ¼ ð2BÞ=ð3CÞ. When ! ¼ !max the

effective potential does not dip below zero at all; i.e., it is

not possible to release the particle from any �0 > 0 so it
would stop in the origin [25]. The only solution is�2

const ¼
0. However, from (A2) that solution develops in the limit
! ! !max from the minimum of Ueff which is below zero.
But for any regular solution with!<!max the potential at
the starting point Ueffð�0Þ> 0. Therefore, the stationary
solution �2

const ¼ 0 obtained here is not continuously con-
nected to the limiting value for �0 stated in Eq. (41).

APPENDIX B: BOUNDS ON THE PRESSURE

The pressure at the origin is just pð0Þ ¼ Ueffð�0Þ and
this is positive [Eq. (40)] because for any regular solution
the effective potential of the particle at the starting point
must be positive. In this Appendix we will show that the
pressure is also bound from above. From (5) and (17) we
obtain

pð0Þ ¼ 1

2
!2�2

0

�
1� 2Vð�0Þ

!2�2
0

�
: (B1)

Using (8) we notice that 8�ðrÞ [including �ðrÞ at r ¼ 0]

2Vð�Þ
�2

� min
�

�
2Vð�Þ
�2

�
� !2

min: (B2)

Inserting (B2) in (B1) and including also the lower bound
from Eq. (40) we obtain

0< pð0Þ � 1

2
ð!2 �!2

minÞ�2
0: (B3)

An important application of the upper bound in (B3) is that
it allows us to verify independently the result for pð0Þ in
the limit ! ! !min quoted in (49). We remark that the
upper bound in (B3) is for !min <!<!max always a real
inequality and saturated only in the limit ! ! !min.

APPENDIX C: GENERATING FUNCTIONAL
FOR hhrnii

In Sec. IV, we defined the hhrnii in (52), which allowed
us to express compactly hr2si ¼ hhr2ii and the measure
for the wall width ð�r2sÞ2 ¼ hhr4ii � hhr2ii2. Another in-
teresting application, if we continue to negative n, is
pð0Þ ¼ 2	hhr�1ii. This allows us to express the result
obtained in (46) as

lim
!!!min

hhr�1iihhr2ii1=2 ¼ 1: (C1)

The result in Eq. (C1) can be understood and interpreted by
recalling that sðrÞ ! 	�ðr� RÞ in the liquid drop limit
which is equivalent to ! ! !min; see Sec. IV.
The positivity of the shear forces, which was crucial in

Secs. VIA and VIB, allows us to introduce the functional

Fð�Þ ¼
Z 1

0
drsðrÞ expð��r2Þ; (C2)

which is a generating functional for hhrnii for even n
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Fð�Þ ¼ Fð0Þ X1
n¼0

ð�1Þn
n!

hhr2nii�n: (C3)

The surface tension is just 	 ¼ Fð0Þ, the surface energy
is Esurf ¼ �4�F0ð0Þ and d1 ¼ � 4�

3 MF00ð0Þ. The mean

square radius of the shear forces, and the measure of the
wall width �r2s can be expressed as

hr2si ¼ �
�
@

@�
logFð�Þ

�
�¼0

; (C4)

ð�r2sÞ2 ¼
�
@2

@�2
logFð�Þ

�
�¼0

: (C5)

We remark that each integral over sðrÞ can be traded for
an integral over pðrÞ by exploring the differential equation
(20). For instance, 	 ¼ 3

4

R1
0 drpðrÞ and

hr2si ¼ �6

R1
0 drr2pðrÞ logrR1

0 drpðrÞ : (C6)

These and further relations were derived in Ref. [16] and
can be used as cross checks for the numerics.

[1] H. R. Pagels, Phys. Rev. 144, 1250 (1966).
[2] X. D. Ji, Phys. Rev. Lett. 74, 1071 (1995).
[3] X. D. Ji, Phys. Rev. Lett. 78, 610 (1997).
[4] M.V. Polyakov, Phys. Lett. B 555, 57 (2003).
[5] R. G. Sachs, Phys. Rev. 126, 2256 (1962).
[6] X. D. Ji, Phys. Lett. B 254, 456 (1991); G. A. Miller, Phys.

Rev. C 80, 045210 (2009)
[7] D. Müller, D. Robaschik, B. Geyer, F.-M. Dittes, and J.
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